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Abstract. The scarcity of labeled data is a significant challenge in medical image 

segmentation tasks. In recent years, Segment Anything Model (SAM) has gained 

attention as a foundational model for segmentation tasks due to its powerful zero-

shot capabilities and prompt-based interactive manner. However, due to the sub-

stantial domain gap between medical and natural image data, adapting SAM to 

the medical domain requires a large volume of annotated medical data. Unfortu-

nately, in medical applications, obtaining densely annotated data is both costly 

and challenging, particularly for rare diseases. Therefore, to efficiently fine-tune 

SAM, we consider utilizing Semi-Supervised Learning (SSL) to harvest 

knowledge from unlabeled samples. In this paper, we present InteractMatch, 

which consists of a Prompt Augmentation-Based Consistency (PAC) and a 

Cross-Model Knowledge Distillation (CKD). The PAC module effectively lev-

erages various types of prompts from SAM to facilitate model training on unla-

beled data, improving both robustness and predictive accuracy by introducing 

perturbations to the prompts. Additionally, CKD is introduced to align the prob-

ability distributions of the two model branches, thereby reducing discrepancies 

in their predictions and enhancing the output invariance of the model. Extensive 

experiments on two public datasets demonstrate that our InteractMatch achieves 

state-of-the-art performance in semi-supervised medical image segmentation 

task, particularly, leading a 1.93% dice score improvement on the ACDC dataset. 

Code is available at: https://github.com/haohua-chang/InteractMatch. 

Keywords: Segment Anything Model, Semi-Supervised Learning, Medical Im-

age Segmentation. 

1 Introduction 

Medical image segmentation is a critical step in accurate diagnosis and treatment plan-

ning [1], aiming to recognize target anatomical or pathological structure within images 

[2]. In recent times, the Segment Anything Model (SAM) [3] as an interactive founda-

tion segmentation model has demonstrated strong generalization capabilities in various 

natural image segmentation tasks [4]. Nonetheless, directly applying SAM to medical 

image segmentation tasks has been shown to underperform compared to current state-

https://github.com/haohua-chang/InteractMatch


of-the-art medical segmentation algorithms, such as U-Net-based models and Trans-

former variants [5,6]. This is primarily due to the significant differences between med-

ical data and natural images, and SAM lacks of domain-specific medical knowledge 

[7], which hinders its ability to associate segmented regions with meaningful semantic 

categories [2]. Consequently, SAM needs to be fine-tuned on medical image data to 

learn the relevant features. 

Current approaches applying SAM to medical image segmentation mainly rely on 

fully-supervised training manner that require large amounts of labeled data [2,7,8,9]. 

However, expert annotations in medical practice are expensive and hard to collect [10], 

especially for some rare diseases. Compared to labeled medical image segmentation 

data, unlabeled data is easier to obtain and remarkably more abundant in most medical 

applications. To fully leverage the large volume of unlabeled medical data for efficient 

fine-tuning of the SAM, we aim to employ Semi-supervised Learning (SSL) to harvest 

the knowledge from unlabeled data for superior segmentation. In such a way, SSL al-

lows the model to achieve performance similar to the model trained via fully-supervised 

learning [4], even if only using limited labeled data.  

Recently, many latest works have proposed using semi-supervised methods to fine-

tune the SAM [1,4,10,11]. Among these, some approaches treat the SAM as an inde-

pendent component, using the pseudo-labels generated by the SAM as additional su-

pervised signals to train the model. Other methods apply simple perturbations to the 

point prompts within a semi-supervised learning framework to enhance model perfor-

mance. Nevertheless, these methods do not fully account for the unique characteristics 

of SAM’s prompt mechanism. Inspired by image-based augmentation techniques, 

which enhance the model’s discriminative capability by perturbing the input data, this 

paper intends to increase the perturbation of the prompts to make the model more robust 

to input prompts and stabilize its predictions. In such manner, the model is able to en-

hance its discriminative capability across different target types or regions. To this end, 

we propose augmenting all types of SAM prompts and devising a corresponding semi-

supervised learning strategy. In addition, as our framework predicts coarse mask pre-

dictions by 2 different SAM decoders respectively, we strive to ensure that the 

knowledge learned by the two decoders to exhibit strong consistency, ensuring that the 

mask predictions across different models reflect similar information. 

To achieve this goal, this study proposes an InteractMatch framework, which con-

tains Prompt Augmentation-based Consistency (PAC) and Cross-Model Knowledge 

Distillation (CKD). Specifically, in PAC, the model extracts the center points and cen-

ter boxes from the unprompted predictions of the unlabeled data, and these different 

types of prompts are treated as determined prompts. Meanwhile, data augmentation is 

applied to these prompts, and the augmented results are considered as ambiguous 

prompts. Then, the consistency loss between the ambiguous prompt predictions and the 

final predictions is computed, effectively utilizing the large amount of unlabeled data 

and SAM prompting mechanism  to enhance model performance. Moreover, upon two 

decoder branches, the CKD regards them as a teacher and a student model respectively, 

and performs dynamic distillation between them to ensure the two branches producing 

similar predictions. Different from previous knowledge distillation method that only 

adopting the distillation loss between the two different segmentation models, the 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

proposed CKD performs the distillation between two different decoders while main-

taining the encoders identical. In such way, CKD can strengthen the output consistency 

under different perturbations and effectively improves the model's segmentation per-

formance. The key contributions presented in this paper are as follows: 

─ We propose the InteractMatch framework to harvest knowledge from unlabeled data 

for medical image segmentation, which comprises PAC and CKD to enhance the 

perturbation of prompt and improve the consistency of the predictions of the two 

branches, thus utilizing the large amount of unlabeled data to improve the accuracy 

and robustness of the model. 

─ In PAC, we propose determined prompting strategy and ambiguous prompting strat-

egy to perturb different types of prompts and compute their consistency loss with the 

integration results, which fully utilizes the SAM model prompting mechanism to 

train the model effectively on the unlabeled data. 

─ To enforce the mask consistency among different decoders, we present CKD, which 

allows the model to learn a more stable probability distribution by calculating the 

KL scatter loss between two branches, avoiding highly biased predictions and en-

hancing the robustness of the model. 

─ Extensive experiments on two benchmarks verify that our method outperforms ex-

isting methods on the breast cancer segmentation task and the cardiac structure seg-

mentation task, especially when labeling data is extremely limited. To be specific, 

using only 10 MRI slices, our method obtains a Dice improvement of more than 

1.93% over various strong baselines on the cardiac structure segmentation task. 

2 Related work 

2.1 Segment Anything Model 

In the latest years, Segment Anything Model (SAM) has demonstrated outstanding per-

formance across segmentation tasks in various domains. Trained on 1.1 billion masks, 

SAM is capable of performing zero-shot segmentation across a wide range of tasks. Its 

prompt-based interface allows users to provide segmentation prompts, such as points, 

boxes, text, and masks, and interactively generates multiple possible segmentation re-

sults in real time. 

Although SAM achieves performance comparable to state-of-the-art fine-tuned 

models in many segmentation tasks [3], it still has certain limitations, particularly in 

domain-specific applications. In response, various improved versions of SAM have 

been proposed, which can be broadly categorized into two major groups. The first cat-

egory focuses on refining segmentation quality by enhancing SAM’s ability to capture 

finer details in target regions [12,13]. For instance, HQ-SAM [12] introduces HQ-

Output Tokens to directly generate high-quality masks, which produces segmentation 

results with more precise boundaries and richer details while retaining strong generali-

zation capabilities. The second category is designed to improve SAM’s generalization 

ability and adaptability across diverse applications [14,15]. For example, SEEM [14] 

incorporates a memory mechanism and multimodal fusion, enhancing the model’s 



flexibility and usability. It supports a broader and more composable set of prompts, 

making it particularly well-suited for complex and diverse real-world scenarios. 

Furthermore, since the direct application of SAM to medical image segmentation 

has shown suboptimal performance, several fine-tuned versions of SAM for the medi-

cal domain have been proposed. These approaches can be classified into two categories. 

The first category is based on Parameter-Efficient Fine-Tuning (PEFT) [2,7], which 

integrate domain-specific knowledge into SAM. Med-SA [7] adapts the SAM for med-

ical applications by incorporating a spatial-depth transposition  mechanism to extend 

2D SAM to 3D medical images and a hyper-prompt adapter to enhance prompt-condi-

tioned adaptation. SAMed [2] employs Low-Rank Adaptation on SAM’s image en-

coder and mask decoder, combined with a warm-up optimization strategy, achieving 

state-of-the-art performance with reduced storage and deployment costs. The second 

category focuses on enhancing the robustness of the model [8,9]. In this context, weakly 

supervised self-training [9] leverages anchor-based regularization and low-rank fine-

tuning to develop a task-agnostic framework, further improving SAM’s robustness in 

medical image segmentation. 

However, most of the current SAM-based methods require a large amount of labeled 

data to achieve satisfactory performance, which does not solve the problem of scarce 

labeled data in medical image analysis. To overcome this challenge, in this study, semi-

supervised techniques are used to extract more information from a large amount of un-

labeled data to improve the segmentation performance under limited labeling. 

2.2 Semi-Supervised Learning 

Supervised semantic segmentation research [16,17] has made significant progress in 

recent years. Despite this, these methods heavily rely on large-scale, high-quality pixel-

wise annotations, which are both expensive and time-consuming to obtain, particularly 

for dense pixel-level labeling. To mitigate the high annotation costs, semi-supervised 

semantic segmentation (SSS) has been proposed, where models are trained using a 

small amount of labeled data alongside a large pool of unlabeled data. 

Based on existing research, semi-supervised segmentation methods can be classified 

into two main approaches: (1) Pseudo-label-based methods [18,19]: These methods 

generate pseudo-labels for unlabeled images and use them to retrain the model. For 

instance, FixMatch [18] generates pseudo-labels from weakly augmented data and em-

ploys consistency training by applying these pseudo-labels to strongly augmented ver-

sions of the same data. ST++ [19] improves the utilization of pseudo-labels in semi-

supervised learning by incorporating reliability filtering and curriculum learning, ad-

dressing issues such as error accumulation in pseudo-labels and the neglect of sample 

difficulty. (2) Consistency regularization-based methods [20,21,22]: These methods 

seek to improve model performance by enforcing consistent predictions on unlabeled 

data under different perturbations. Mean Teacher [20] utilizes an exponential moving 

average (EMA) update mechanism in a teacher-student architecture, ensuring predic-

tion consistency between the teacher and student models as a form of regularization. 

CPS [21] enforces cross-consistency supervision between two networks, encouraging 

them to produce consistent predictions on unlabeled data and preventing overfitting to 
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Fig. 1. The overview of InteractMatch method, which integrates PAC and CKD to enhance model 

training on unlabeled data through prompt-based data augmentation. The first prediction is un-

prompted prediction (default prompt), the second prediction is prompted prediction.  

self-generated pseudo-labels. 

Given the capability of semi-supervised learning to efficiently leverage information 

from unlabeled data, recent studies have explored the use of semi-supervised strategies 

to train the SAM model. Li et al. [4] generate prompts based on CNN predictions and 

select outputs with high consistency between CNN and SAM pseudo-labels. SemiSAM 

[11] integrates SAM’s outputs as an additional supervision signal within the Mean 

Teacher framework. Nevertheless, these approaches treat SAM merely as an independ-

ent component for pseudo-label generation without considering its prompt-based char-

acteristics, limiting model performance. It is also worth noting that CPC-SAM [1] em-

ploys a cross-prompting strategy for model training but only applies simple data aug-

mentation to point prompts, lacking a comprehensive utilization of SAM’s prompt 

mechanism. To address these limitations, this paper proposes to augment the data with 

all types of SAM prompts, design tailored semi-supervised learning strategies for effi-

cient fine-tuning of SAM, and introduce a knowledge distillation strategy to improve 

the stability and accuracy of model predictions. These enhancements are expected to 

mitigate the challenge of limited annotated data in medical image segmentation tasks. 

3 Methods 

We propose the InteractMatch framework, which incorporates PAC and CKD, designed 

for SSL in medical image segmentation, as illustrated in Fig. 1. Considering SAM's 

promptable nature and its sensitivity to prompt locations in SSL, we develop PAC, 

which fully exploits different types of prompts. This approach incorporates both a de-

termined prompting strategy and an ambiguous prompting strategy to enhance the 

model’s segmentation performance under various prompt perturbations. Furthermore, 

we introduce CKD within a dual-branch model architecture by employing unidirec-

tional knowledge distillation. In this manner, the model achieves greater robustness 

while mitigating potential negative interactions between the two branches that may 

arise from bidirectional knowledge distillation. 
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3.1 Preliminary 

Segment Anything Model (SAM). SAM [3] serves as a foundation model for segmen-

tation tasks, designed for powerful zero-shot segmentation capability. It employs a Vi-

sion Transformer (ViT) as the image encoder and integrates a Prompt Encoder and a 

Mask Decoder to enable interactive segmentation. Given a labeled dataset 𝑆 =

{(𝐼𝑖 , 𝑀𝑖)}𝑖=1
𝑁 , where 𝐼𝑖 ∈ R(H×W×3) represents the 𝑖-th RGB image with a resolution of 

𝐻 ×𝑊, and  𝑀𝑖 ∈ RH×W denotes the corresponding ground-truth segmentation mask, 

the image encoder of SAM is denoted as 𝐸𝐼 , the prompt encoder as 𝐸𝑃, and the mask 

decoder as 𝐷. For a given image 𝐼 ∈ 𝑆, the image embedding 𝐼emb is obtained using the 

image encoder: 𝐼emb = 𝐸𝐼(𝐼; 𝜃𝐼), where 𝜃𝐼 represents the parameters of the image en-

coder. Simultaneously, a prompt is processed by the prompt encoder to generate the 

prompt embedding 𝑃emb : 𝑃emb = 𝐸𝑃(𝑃; 𝜃𝑃) , where prompts can be of three types: 

points, bounding boxes, or masks. Ultimately, the mask decoder produces the predicted 

segmentation mask 𝑝: 𝑝 = 𝐷(𝐼emb, 𝑃emb; 𝜃𝐷). The entire data flow of SAM can be fur-

ther simplified as: 𝑝 = 𝐷(𝐸𝐼(𝐼), 𝐸𝑃(𝑃)). 

Overview of InteractMatch. The InteractMatch framework integrates SSL strategies 

with the promptable capabilities of SAM, enabling joint training using a small set of 

labeled data 𝑆 = {(𝐼𝑖 , 𝑀𝑖)}𝑖=1
𝑁  and a large set of unlabeled data 𝑈 = {(𝐼𝑖)}𝑖=𝑁+1

𝑁+𝑀 . To en-

sure high-quality predictions in the early training stage and leverage SAM’s strong few-

shot learning capability, we first fine-tune SAM on all labeled data. Building on this, 

we train the model on unlabeled data using the PAC strategy. Owing to the demon-

strated efficacy of cross-pseudo supervision [21] in improving SSL outcomes, we adopt 

a dual-branch structure, following the design in [1]. To be more specific, our model 

employs two mask decoders with the same structure but different initializations, 𝐷1 and 

𝐷2, which share a common image encoder 𝐸𝐼  and prompt encoder 𝐸𝑃. Each module 

retains the same functionality as in the original SAM [3]. Taking Branch 1 as an exam-

ple, for a given input image 𝐼, the model first generates an unprompted prediction 𝑝1: 

𝑝1 = 𝐷1(𝐸𝐼(𝐼), 𝐸𝑃(𝑃default)). Subsequently, we employ the prompts 𝑃d2 and 𝑃a2, gen-

erated by the PAC method in branch 2, to perform prompted predictions, yielding 𝑝̂1,𝑑 

and 𝑝̂1,𝑎 : 𝑝̂1,𝑑 = 𝐷1(𝐸𝐼(𝐼), 𝐸𝑃(𝑃d2)), 𝑝̂1,𝑎 = 𝐷1(𝐸𝐼(𝐼), 𝐸𝑃(𝑃a2)) . The final output of 

branch 1, 𝑝̂1, is the mean of 𝑝̂1,𝑑 and 𝑝̂1,𝑎. Branch 2 follows the same process, generat-

ing 𝑝2, 𝑝̂2,𝑑, 𝑝̂2,𝑎, and  𝑝̂2. In addition, to further enhance segmentation stability, we 

apply CKD to the unprompted predictions 𝑝1 and 𝑝2 from both branches. 

3.2 Prompt Augmentation-Based Consistency 

PAC consists of  the determined prompting strategy and the ambiguous prompting strat-

egy and performs two predictions. The first prediction is unprompted prediction, where 

the determined prompting strategy and ambiguous prompting strategy are applied to 

the generated coarse mask to obtain the determined prompts and ambiguous prompts. 

Subsequently, the prompts generated by both strategies are input back into the model 

to generate the prompted predictions. Finally, the prompted predictions obtained from 

both strategies are averaged to form pseudo-labels, which are used to calculate the 
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consistency loss with respect to the predictions generated under the ambiguous prompt-

ing strategy. 

Determined prompting strategy. To generate more accurate prompt information, we 

design the determined prompting to extract the center point of the mask's shape and the 

smallest enclosing box from the coarse mask generated in the first prediction. Given 

that the coarse mask may contain small noisy regions, we select the largest connected 

component within the coarse mask as the Region of Interest (ROI), and from this ROI, 

we generate the aforementioned center point and bounding box. By generating these 

two distinct and more accurate types of prompts as location cues for the SAM model, 

this strategy helps guide the model toward producing more precise prediction results. 

Ambiguous prompting strategy. To generate vague or relatively inaccurate prompt 

information, the proposed ambiguous prompting selects a random point within the ROI 

of the coarse mask from the first prediction as a point prompt, and generates a box 

larger than the ROI as an enlarged offset box. Importantly, this box is created by ran-

domly shifting and enlarging the box generated in the determined prompting strategy 

along various directions. To further enhance this strategy, the box is designed to always 

enclose the entire ROI, as this strategy aims to avoid producing excessively inaccurate 

location prompts that could negatively affect the model’s predictions. By generating 

these two types of vague prompts, the model can better learn the consistency of outputs 

under different prompting conditions. 

Loss function. Due to the use of a dual-branch architecture, where the loss calculation 

process for both branches is identical, we explain how the PAC loss is computed using 

Branch 1 (𝐷1) as an example. First, the prompt used by Branch 1 is generated by Branch 

2. Branch 2 uses the default prompt 𝑃default to generate the unprompted prediction 𝑝2, 

where following [2], 𝑃default is fine-tuned during training for automatic segmentation 

and also employed during inference. Then, the determined prompting strategy and am-

biguous prompting strategy are applied to 𝑝2, generating the determined prompt 𝑃d2 

and the ambiguous prompt 𝑃a2, respectively. These prompts are input into 𝐷1 to gener-

ate the prompted predictions 𝑝̂1,𝑑 and 𝑝̂1,𝑎. We then integrate the prompted prediction 

results from the two strategies, 𝑝̂1 = (𝑝̂1,𝑑 + 𝑝̂1,𝑎)/2, which provides a more robust re-

sult as pseudo-labels to guide the model in learning the correct features and effectively 

improving its performance. Thereafter, the PAC loss between 𝑝̂1,𝑎 and 𝑝̂1 is calculated. 

Similarly, we generate the prompted predictions 𝑝̂2,𝑑, 𝑝̂2,𝑎, and their integrated result 

𝑝̂2 through 𝐷2. The PAC loss 𝐿 AC is then applied to both branches, as shown in equa-

tion (1): 

𝐿 AC =
1

2
[𝐿dice(𝑝̂1,𝑎 , 𝑝̂1) + 𝐿ce(𝑝̂1,𝑎, 𝑝̂1)] +

1

2
[𝐿dice(𝑝̂2,𝑎, 𝑝̂2) + 𝐿ce(𝑝̂2,𝑎, 𝑝̂2)]. (1) 

By integrating the prediction results from both prompting strategies, the model will 

generate more accurate predictions. Calculating the PAC loss between these predictions 

and the predictions obtained under ambiguous prompting will enhance the model's ro-

bustness to different prompt perturbations, improving its ability to perform accurate 

segmentation. 



3.3 Cross-Model Knowledge Distillation 

To further enhance the model's robustness and accuracy, we introduce CKD across the 

two branches. By calculating the KL divergence loss between the prediction results of 

the two branches in the unprompted prediction, branch 1 is treated as the teacher model 

for unidirectional knowledge distillation, allowing branch 2 to learn a similar probabil-

ity distribution as branch 1. This method treats the segmentation task as a series of 

independent pixel classification problems [23], and uses knowledge distillation to align 

the class probabilities for each pixel generated by branch 2 with the class probabilities 

(soft labels) generated by branch 1. The CKD loss 𝐿CKD is defined in equation (2): 

𝐿CK = 𝐿KL(𝑝2, 𝑝1), (2) 

where 𝐿KL represents the KL divergence loss for segmentation tasks, as calculated fol-

lowing the method described in [23], and is given by equation (3): 

𝐿KL =
1

𝑊 × 𝐻
∑𝐾𝐿(𝑞𝑖

2 ∥ 𝑞𝑖
1),

𝑖∈𝑅

(3) 

where 𝑊, 𝐻 represent the width and height of the image, respectively, and 𝑅 denotes 

the total number of pixels in the image. Normalization is applied to balance the loss 

calculation, ensuring that the loss function does not influence the gradient update due 

to differences in pixel count. 𝑞𝑖
2 denotes the class probability distribution of the 𝑖-th 

pixel generated by branch 2, and 𝑞𝑖
1 denotes the class probability distribution of the 𝑖-

th pixel generated by branch 1. 

The CKD introduced in this study imposes a consistency constraint between the two 

branches, helping the model avoid predictions with significant deviations from the 

ground truth during training. To be more precise, if there is a large discrepancy between 

the predictions of the two branches, the CKD method gradually aligns the predictions 

of branch 2 with those of branch 1, consequently reducing the occurrence of highly 

divergent predictions and improving the model's robustness.  

3.4 Optimization and Inference 

Optimization. The total loss for training the InteractMatch architecture is a combina-

tion of the supervised losses 𝐿sup1 and 𝐿sup2 on labeled data, the cross-supervision loss 

𝐿cross  and PAC loss 𝐿PAC  on unlabeled data, and the CKD loss 𝐿CKD  on all data, as 

shown in equation (4). 

𝐿total = 𝐿sup1 + 𝐿sup2 + 𝜆1𝐿CK + 𝜆2𝐿cross + 𝜆3𝐿 AC. (4) 

Firstly, proposed method fine-tunes the model using labeled data before training 

with a large amount of unlabeled data. Thus, we compute the loss between the un-

prompted prediction and the corresponding labels, as shown in equation (5). 

𝐿sup1 = 𝐿𝑠(𝑝1, 𝐲) + 𝐿𝑠(𝑝2, 𝐲), (5) 

where 𝐿𝑠 represents the combination of dice score loss and Cross-Entropy (CE) loss. 

This loss function enables the model to quickly learn effective features from the data, 

ensuring the prediction quality during the early stages of the unsupervised learning 

phase. 
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Secondly, to ensure that the prompted predictions progressively approach the ground 

truth, we also compute the supervised loss 𝐿sup2 for the predictions of both branches 

under the determined prompting strategy and ambiguous prompting strategy, as shown 

in equation (6). 

𝐿sup2 = 𝐿𝑠(𝑝1,𝑑 , 𝐲) + 𝐿𝑠(𝑝1,𝑎, 𝐲) + 𝐿𝑠(𝑝2,𝑑, 𝐲) + 𝐿𝑠(𝑝2,𝑎 , 𝐲). (6) 

Finally, we calculate the loss between the unprompted prediction 𝑝1 from branch 1 

and the prompted prediction  𝑝̂2 from branch 2, as well as the loss between 𝑝2 and 𝑝̂1. 

Cross-branch supervision alleviates the confirmation bias issue inherent in self-super-

vision within the same branch [1]. The calculation of the cross-supervision loss 𝐿cross 
is shown in equation (7). 

𝐿cross =
1

2
[𝐿dice(𝑝1, 𝑝̂2) + 𝐿ce(𝑝1, 𝑝̂2)] +

1

2
[𝐿dice(𝑝2, 𝑝̂1) + 𝐿ce(𝑝2, 𝑝̂1)]. (7) 

Inference. During inference, the model uses the default prompt for prediction, gener-

ates segmentation masks using both branches, and take the average of these masks as 

the final prediction result.  

4 Experiments 

4.1 Datasets 

This paper evaluates the InteractMatch method on two public medical segmentation 

datasets: the ACDC dataset [24] and the BUSI dataset [25].  

ACDC. The Automatic Cardiac Diagnosis Challenge (ACDC) is a dataset for cardiac 

MRI (CMR) evaluation with the goal of segmenting the myocardium, the right ventricle 

cavity and the left ventricle cavity. The dataset contains a total of 200 cine MRI scans 

of 100 patients at end-diastole (ED) and end-systole (ES) of the heart. Following 

[31,32], the dataset will be randomly split at the patient level, where 70 patients will be 

used for training, 10 for validation, and 20 for testing. 

BUSI. The dataset is medical images of breast cancer and includes a total of 780 ultra-

sound images. These images are categorized into three categories i.e. normal, benign 

and malignant. In this article, we will randomly split the data of benign and malignant 

categories and finally obtain 431, 86 and 130 images for training, validation and testing 

respectively. 

4.2 Implementation Details and Evaluation Metrics 

Implementation Details. The InteractMatch method is implemented using PyTorch 

and trained on a single NVIDIA 3090 GPU. The training process is conducted on the 

ACDC and BUSI datasets under approximately identical settings. In detail, the ViT-

base version of the SAM is utilized, with LoRA [26] is applied to the query and value 

heads within each transformer block of 𝐸, using a rank 𝑟 = 4, while all parameters in 



𝐸𝑃  and 𝐷1 , 𝐷2  are optimized through standard backpropagation, following the ap-

proach in [2]. Following [1], the pre-trained weights are loaded for both the image en-

coder and prompt encoder, whereas the two decoders are randomly initialized. Addi-

tionally, the output resolution of the mask decoders is increased using a progressive 

upsampling strategy, as proposed in [27]. Input images are resized to 512 × 512 and 

normalized within the range [0,1]. Data augmentation following [1]. The adapted SAM 

is trained for 8000 epochs using the AdamW optimizer. A warmup period of 5,000 

iterations is employed, followed by an exponential learning rate decay, consistent with 

[2]. The maximum learning rate is set to 0.001 and the hyperparameters 𝜆2 is empiri-

cally set to 0.4. The batch size is set to 6 for the BUSI dataset and 12 for the ACDC 

dataset, with each batch comprising an equal proportion of labeled and unlabeled data.  

Evaluation Metrics. The performance of the proposed segmentation method is as-

sessed using four evaluation metrics: the Dice Similarity Coefficient (DSC), Jaccard 

(JC), 95th percentile Hausdorff Distance (95HD), and Average Surface Distance 

(ASD). The DSC quantifies the similarity between the predicted segmentation and the 

ground truth by measuring the overlap between the two regions. A higher DSC value 

indicates a greater correspondence between the predicted and actual segmentations. The 

JC, also referred to as the Intersection over Union (IoU), provides an alternative meas-

ure of overlap; however, it is a more stringent metric as it is directly based on the IoU 

calculation. The 95HD evaluates the 95th percentile of the distances from the predicted 

segmentation boundary to the ground truth boundary, with lower values indicating a 

closer alignment between the two. The ASD computes the mean distance between the 

predicted and actual segmentation boundaries, serving as a measure of overall segmen-

tation error. Both DSC and JC are expressed as percentages, while 95HD and ASD are 

measured in pixels for the BUSI dataset and in millimeters for the ACDC dataset, as 

the BUSI dataset does not provide resolution information. 

4.3 Comparison with the State-of-the-art Networks 

We evaluate the proposed method against state-of-the-art (SOTA) SSL methods, in-

cluding UAMT [28], CPS [21], URPC [29], MC-Net+ [30], DCNet [31], BCP [32], 

UniMatch [22], SemiSAM [11], and CPC-SAM[1]. To further evaluate performance, 

we compare our method with fully supervised baselines trained on labeled data (U-Net 

[33]) and the zero-shot SAM using a center-point prompt derived from ground truth 

labels as in [34], denoted as "SAM-point". To ensure a fair comparison, we selected the 

optimal results of these methods on the ACDC and BUSI test sets. As shown in Table 

1, our method demonstrates a significant performance improvement over the other SSL 

approaches on the ACDC dataset. In particular, across different amounts of labeled 

data, our method leads to improvements of 1.93% and 0.87% DSC scores over the sec-

ond-best competitor, while JC scores surpass others by 2.6% and 1.29%, respectively. 

Besides, our approach achieves substantial performance gains in HD95 and ASD, re-

ducing their values by 3.19 mm and 1.35 mm, respectively, in the single labeled sample 

experiment compared to the second-best approach. Meanwhile, InteractMatch attains 

competitive sensitivity and specificity scores of 88.31% and 99.86%, respectively, in a 

single labeled data experiment. Moreover, to assess the robustness of our method, we 
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conducted experiments with random seeds of 42, 542, and 1337. The average DSC and 

its standard deviation obtained from three different seeds were 86.6% and 0.0000403, 

respectively. The experimental comparison results in Table 2 demonstrate that our 

method consistently outperforms competing approaches across all evaluation metrics 

and labeled data ratios on the BUSI dataset. Notably, under the SSL setting, our method 

achieves DSC improvements of at least 1.02% and 1.76% in experiments with 10 and 

20 labeled samples, respectively. 

Table 1. Comparison with state-of-the-art (SOTA) methods on the ACDC dataset. The column 

"#Lab" indicates the number of labeled samples and the total number of training samples, respec-

tively. 

Method 
ACDC 

#lab DSC↑ JC↑ HD95↓ ASD↓ 

U-Net [33] 70/70 91.53  84.77 4.23 1.11 

SAM-point (MIA’23) [34] 0/70 62.88  49.53 20.46 7.07 

U-Net [33] 1/70 29.37  20.53 107.51 52.84 

SAMed [2] 1/70 75.01  61.53 28.99 9.13 

UAMT(MICCAI’19) [28] 1/70 29.14  20.14 107.69 53.58 

C S(CV R’21) [21] 1/70 30.46  21.00 95.74 45.48 

UR C(MIA’22) [29] 1/70 31.00  20.81 123.03 59.94 

MC-Net+(MIA’22) [30] 1/70 38.84  28.58 62.21 30.67 

 CNet(MICCAI’23) [31] 1/70 41.13  31.6 1 56.16 24.71 

BC (CV R’23) [32] 1/70 68.39  56.8 50.9 21.99 

UniMatch(CV R’23) [22] 1/70 84.47  74.25 15.36 4.57 

SemiSAM [11] 1/70 34.18  23.96 100.75 47.03 

CPC-SAM [1] 1/70 85.56 75.74 9.19 2.84 

InteractMatch (ours) 1/70 87.49 78.34 6.00 1.49 

U-Net [33] 3/70 45.95  35.96 71.11 32.47 

SAMed [2] 3/70 83.04  71.98 14.93 4.05 

UAMT(MICCAI’19) [28] 3/70 56.67  45.93 15.06 45.24 

C S(CV R’21) [21] 3/70 56.87  46.88 20.18 2.91 

UR C(MIA’22) [29] 3/70 55.98  44.75 40.47 14.13 

MC-Net+(MIA’22) [30] 3/70 65.37  54.18 27.64 6.32 

 CNet(MICCAI’23) [31] 3/70 72.21  62.27 26.50 10.59 

BC (CV R’23) [32] 3/70 87.57  78.58 8.68 2.30 

UniMatch(CV R’23) [22] 3/70 87.31  78.20 8.62 2.74 

SemiSAM [11] 3/70 51.01  39.45 70.13 28.26 

CPC-SAM [1] 3/70 87.95 79.01 5.80 1.54 

InteractMatch (ours) 3/70 88.82 80.30 5.53 1.34 

Regarding computational efficiency, our approach requires 22,630 MB of GPU 

memory, slightly higher than the 22,497 MB occupied by CPC-SAM. The average in-

ference time per slice on the ACDC dataset is 0.0336 s for our method and 0.0318 s for 

CPC-SAM. These findings demonstrate that the proposed framework incurs negligible 



additional computational overhead while yielding notable enhancements in segmenta-

tion accuracy. 

Table 2. Comparison with state-of-the-art (SOTA) methods on the BUSI dataset. The column 

"#Lab" indicates the number of labeled samples and the total number of training samples, respec-

tively. 

Method 
BUSI 

#lab DSC↑ JC↑ HD95↓ ASD↓ 

U-Net [33] 431/431 77.19  68.29 75.03 31.21 

SAM-point(MIA’23) [34] 0/431 52.99  44.51 168.26 91.78 

U-Net [33] 10/431 31.63  24.52 159.49 63.43 

SAMed [2] 10/431 65.09  54.78 119.75 47.84 

UAMT(MICCAI’19) [28] 10/431 40.93  30.96 175.31 76.51 

C S(CV R’21) [21] 10/431 32.92  25.70 144.92 50.54 

UR C(MIA’22) [29] 10/431 32.16  24.75 151.59 64.97 

MC-Net+(MIA’22) [30] 10/431 36.24  27.45 167.91 71.80 

 CNet(MICCAI’23) [31] 10/431 42.14  32.11 154.39 64.21 

BC (CV R’23) [32] 10/431 61.81  51.12 112.91 38.15 

UniMatch(CV R’23) [22] 10/431 60.98  49.85 109.79 47.50 

SemiSAM [11] 10/431 43.43  32.48 177.30 84.46 

CPC-SAM [1] 10/431 71.20 61.15 100.22 37.86 

InteractMatch (ours) 10/431 72.22 63.10 85.78 33.04 

U-Net [33] 20/431 44.22  34.73 160.04 69.52 

SAMed [2] 20/431 67.28  57.55 107.31 49.70 

UAMT(MICCAI’19) [28] 20/431 45.83  35.84 163.53 80.92 

C S(CV R’21) [21] 20/431 46.74  37.61 142.73 56.70 

UR C(MIA’22) [29] 20/431 45.26  35.51 173.11 73.47 

MC-Net+(MIA’22) [30] 20/431 47.29  33.00 183.14 84.53 

 CNet(MICCAI’23) [31] 20/431 56.87  46.60 130.31 56.14 

BC (CV R’23) [32] 20/431 65.54  56.05 93.07 39.09 

UniMatch(CV R’23) [22] 20/431 62.47  51.48 100.73 45.88 

SemiSAM [11] 20/431 50.09  38.63 170.42 77.85 

CPC-SAM [1] 20/431 72.41 62.72 96.26 40.93 

InteractMatch (ours) 20/431 74.17 65.21 74.30 28.78 

 

The comprehensive performance improvements of the InteractMatch approach on 

the ACDC and BUSI datasets demonstrate its enhanced adaptability to diverse anatom-

ical structures in medical imaging. Overall, the robustness and superior performance of 

our method demonstrate the effectiveness of the InteractMatch approach. 
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Fig. 2. Visualizations of CPC-SAM method (top), InteractMatch method (middle) and corre-

sponding Ground Truth (bottom) in 5 cases on the ACDC dataset with 1 labeled patient. The red, 

blue, and pink regions respectively correspond to the left ventricular cavity, right ventricular 

cavity, and myocardium. The orange-colored boxes highlight the key differences between the 

various methods and the ground truth. 

To further validate the advantages of our method, qualitative comparisons are pre-

sented in Fig. 2. As depicted in the figure, our approach exhibits a marked improvement 

in robustness when dealing with noise in small regions, as evidenced by the boxed area  

Table 3. Ablation studies of different components of our method on the ACDC dataset. 

CKD PAC  DSC↑ JC↑ HD95↓ ASD↓ 

✓ ✓ 87.49 78.34 6.00 1.49 

✓  86.97 77.94 9.14 2.70 

 ✓ 85.11 75.07 10.76 3.47 

 

located at the bottom of Case 1. In particular, it achieves more accurate delineation of 

target regions, as evidenced by the boxed areas at the top of Case 1 and in Case 2. 

Besides, the InteractMatch approach effectively reduces both false-positive predictions 

(Cases 3 and 4) and false-negative predictions (Case 5). It is particularly worth empha-

sizing that minimizing false negatives is critical, as failing to detect abnormal tissues in 

medical image analysis can have severe consequences.  

4.4 Ablation Experiments 

Table 3 shows the ablation study of the two key components of the proposed method 

on the ACDC dataset. It is clear that 4 evaluation metrics of the model deteriorate when 

either of the two components is removed. To be specific, with the removal of the PAC 

(Row 2), i.e., the prompted prediction of both branches using only the predictions gen-

erated by the center point prompt for cross-supervision and using the CDK, the DSC of 

the model decreases by 0.52%. In addition, after the proposed method removes the 

CKD component (Row 3), i.e., it no longer imposes constraints on the unprompted pre-

diction between two branches, the DSC of the model exhibits a reduction of 2.38%. 

This indicates that both modules in InteractMatch play a crucial role in enhancing the 

model's segmentation performance. 

Case 1 Case 2 Case 3 Case 4 Case 5



4.5 Parameter Analysis 

This section analyzes key hyperparameters in the InteractMatch framework. More spe-

cifically, multiple experiments were conducted to investigate the impact of the number 

of random points and different bounding boxes in the ambiguous prompting strategy, 

the weight of the PAC loss, and the weight of the CKD loss. The effects of these pa-

rameters on the final performance are systematically examined. 

Random point number. The number of random points in the ambiguous prompting 

strategy provides varying degrees of position information to the model. As shown in 

Fig. 3(a), the DSC exhibits a general downward trend as the number of random point 

prompts increases. This decline may be attributed to the fact that an increased number 

of random point prompts provides more precise position cues, thereby reducing the 

ambiguity intended by the strategy and diminishing the effectiveness of the PAC 

method. Another potential reason is that some random points may fall outside the 

ground truth regions in the unlabeled data, introducing incorrect position information 

that adversely impacts model performance. 

   
(a)                                            (b) 

Fig. 3. DSC for different number of random points (a) and different boxes (b). 

Table 4. The model's performance under                     Table 5. The impact of CKD loss weight        

varying PAC loss weights 𝜆3.                                        𝜆1 on model performance. 

𝜆3  SC↑ JC↑ H 95↓ AS ↓ 

0.025 86.31 76.53 8.02 2.08 

0.05 87.49 78.34 6.00 1.49 

0.1 86.63 77.04 7.39 2.17 

0.2 85.02 74.65 9.94 2.83 

0.4 84.00 73.44 19.75 5.61 

Size and offset of the box. Under the ambiguous prompting strategy, larger bounding 

boxes cover a broader area, resulting in more ambiguous location cues provided to the 

model. Conversely, smaller bounding boxes offer more precise localization infor-

mation. To ensure that the expanded and shifted bounding box consistently encloses 

the entire ROI, the box size is directly proportional to the offset. The size and offset of 

the box is directly represented by the offset value; for example, an offset of 0.05 corre-

sponds to a scaling factor of 1.1. Fig. 3(b) illustrates the impact of different box sizes 

and offset values on model performance. Experimental results indicate that both exces-

sively large and overly small bounding boxes and offsets lead to performance degrada-

tion. More precisely, large offsets (e.g., 0.2 and 0.25) produce excessively ambiguous 
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position prompt, impairing model performance. In contrast, small offsets (e.g., 0.05) 

yield bounding boxes that provide nearly identical localization information to those 

generated by the determined prompting strategy, failing to leverage the benefits of the 

PAC method.  

The weight of PAC loss. Table 4 presents the impact of different PAC loss weights on 

model performance. Since the PAC loss is computed on unlabeled data, an excessively 

large weight may cause the model to focus on learning irrelevant features, leading to 

deviations from the ground truth (e.g., when 𝜆3 = 0.2 and 𝜆3 = 0.4). Conversely, an 

overly small weight (𝜆3 = 0.025) hinders the effectiveness of the proposed PAC 

method in improving model performance. Therefore, we adopt 𝜆3 = 0.05 as the final 

configuration, as it yields the best performance.  

The weight of CKD loss. The CKD loss weight reflects the strength of the constraint 

imposed on the two branches, with an excessively small 𝜆1 (e.g., 𝜆1 = 0.1) failing to 

activate the CKD mechanism, as shown in                     Table 5. It is worth mentioning 

that even with a relatively large loss weight (𝜆1 = 5), the CKD method remains effec-

tive in enhancing model performance. The final value of 𝜆1 = 1 is selected for our ap-

proach, as it achieves the most favorable overall performance. 

5 Conclusion 

In this work, we present InteractMatch framework to effectively leverage SSL scheme 

for fine-tuning SAM on medical image segmentation task. This architecture leverages 

the PAC module to perturb the spatial information fed into SAM and the CKD module 

to enhance prediction consistency between the two branches, efficiently extracting 

knowledge embedded within extensive unlabeled data to improve the model's robust-

ness and accuracy. Extensive experiments on two publicly available datasets demon-

strate that our method can effectively utilize unlabeled data to improve model perfor-

mance, even when labeled data is severely limited. In future work, we will explore 

additional perturbation strategies to further enhance the robustness of the model's out-

puts. 
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