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Abstract.  

Accurate and efficient water meter reading recognition system is essential for 

intelligent water resource management. However, existing systems face several 

challenges, including the high deployment costs of replacing old meters with 

smart ones, the limited device lifespan caused by local recognition on embedded 

devices, and the increased server workload associated with server-based pro-

cessing. To address these issues, we propose an intelligent water meter recogni-

tion system based on a three-layer edge computing architecture. The IoT layer is 

responsible for data collection, utilizing an HC32F460 chip to capture automati-

cally capture water meter images, compress the images, and transmit them to the 

edge layer. The edge layer is primarily composed of the YOLO-METER algo-

rithm for water meter reading recognition. Based on YOLO11n, we have im-

proved two modules by integrating FastC3k2 to enhance the extraction of low-

contrast features and MRFBlock to refine feature selection and improve the lo-

calization of reading regions on the water meter. The cloud layer periodically 

aggregates water meter readings, performs data analysis, and provides users re-

lated information, enabling real-time monitoring and insights. Experiments show 

that YOLO-METER achieves a 2.4% higher mAP50 and 6% fewer parameters 

than YOLO11n, enhancing recognition accuracy while reducing computational 

cost. This system facilitates efficient water usage monitoring, thereby improving 

operational efficiency and contributing to intelligent resource management. 

Keywords: Edge Computing, Smart Meters, Reading Recognition, Deep Learn-

ing, IoT. 

1 Introduction 

Water resources are crucial for human development and survival, playing an essential 

role in global sustainable development [1]. Efficient management of water resources 

not only promotes conservation and reduces consumption but also eases environmental 

burdens, restores ecological balance, and improves public welfare. For water utilities, 

optimized resource management leads to reduced operational costs, improved network 



efficiency, minimized leakage losses, and better management of growing urban water 

demands [2]. 

However, traditional manual meter reading methods still exist in many water re-

source management systems. These methods suffer from low efficiency and time-con-

suming operations, failing to meet the accuracy and real-time control demands of mod-

ern urban monitoring[3]. 

To overcome these challenges, advanced meters like electromagnetic [4], fluid [5], 

and ultrasonic[6] types enable automated data collection and wireless transmission. 

However, high costs and infrastructure replacement hinder large-scale adoption. As a 

result, upgrading existing meters with intelligent technologies without hardware 

changes has become a key research focus. 

In recent years, the rapid advancement of IoT [7] and deep learning technologies has 

greatly improved image recognition-based dial reading systems. These systems can be 

broadly categorized into two kinds based on where the algorithms are deployed. The 

first kind, local-based[8, 9], involves deploying algorithms directly on terminal devices. 

Here, the terminal captures images, performs reading recognition, and transmits the 

results to servers. However, this method is limited by the terminal's resources, leading 

to lower recognition accuracy and reduced equipment life. The second kind, cloud-

based[3, 10], deploys the algorithm in the cloud, where the terminal only captures im-

ages and sends them for processing. However, as the number of tasks increases, cloud 

servers may become overloaded, impacting response speed, system stability, and in-

creasing demands on data transmission bandwidth, along with potential security risks. 

We propose EdgeMeter, a smart water meter recognition system based on a three-

layer edge computing architecture to improve data acquisition, processing, and storage 

efficiency. The system is shown in Fig. 1. 

The system consists of three layers: the IoT layer, which utilizes an HC32F460 chip 

to automatically capture water meter images, compress them to reduce size, and trans-

mit the grayscale images to the edge layer at regular intervals to minimize power con-

sumption; The edge layer, primarily composed of NCT3568 boards, deploys YOLO-

METER, a lightweight and efficient recognition algorithm specifically designed for 

water meter reading detection. The architecture of YOLO-METER is illustrated in Fig. 

1. YOLO-METER achieves a 2.4% improvement in mAP50 over YOLO11n while re-

ducing the number of parameters by 6%, making it ideal for edge deployment; And the 

cloud layer, which aggregates the data from the edge layer, provides user services such 

as consumption tracking, leak detection, and water forecasting, and enables remote 

management and monitoring of devices. 

The main contributions of this paper are as follows. 

1. Smart Water Meter System  

In this paper, we propose a smart water meter system named EdgeMeter, based on a 

three-layer edge computing architecture, comprising the IoT, edge, and cloud layers. 

This system fully leverages the advantages of edge computing, reducing the load on 

central servers while also extending the life of the devices used for water meter image 

data collection. 
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Fig. 1. System architecture of the smart water and electricity metering system, consisting of IoT 

layer, edge layer, and cloud layer 

 

Fig. 2. Low-quality captured images;(a): severe blurring;(b): underexposure, overexpo-

sure;(c):fog 
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Based on YOLO11n, we introduce YOLO-METER, an algorithm designed to enhance 

meter reading detection. By improving feature extraction in low-contrast areas and re-

fining feature selection in digit-wheel regions, YOLO-METER significantly enhances 

the accuracy of water meter reading recognition. 

3. Water Meter Dataset 

We have constructed a dataset comprising 9,658 meter images, including both those 

captured under normal conditions and those taken in challenging environments, such 

as blurry, low-light and overexposed conditions. This dataset effectively covers a wide 

range of real-world scenarios encountered in practical applications. 

2 Related Work 

2.1 Water Meter Reading Acquisition 

Water meter reading Acquisition has been a critical task in automating water consump-

tion monitoring. Based on the method of acquiring the readings, these approaches can 

be broadly categorized into two main types: non-image-based methods and image-

based methods. 

Non-image-based water meter reading methods use sensors like ultrasonic[6], flu-

idic[5], and electromagnetic[4] to collect data without image processing. Though effi-

cient and reliable, they often need specialized infrastructure, making them less flexible 

in areas with traditional meters. 

Image-based methods for water meter reading recognition can be broadly divided 

into four categories: traditional machine learning-based methods, object detection-

based methods, sequence modeling methods, and hybrid multi-stage methods. Each of 

these approaches utilizes different techniques to process and interpret water meter im-

ages, offering varying degrees of accuracy and adaptability to different environments 

and meter designs. 

Traditional machine learning methods have been widely applied to water meter 

recognition. Zhao et al. [11] used handcrafted features, Oliveira et al. [12]  applied 

KNN, and Edward [13] improved SVM with features like histograms and contour pro-

files. These approaches rely on image feature extraction for reading recognition. 

Object detection-based methods are popular for automatically locating key regions 

in meter images. Liang et al. [14] found YOLOv3 more accurate than Faster R-CNN. 

Zhu et al. [15]  improved YOLOv4 with data augmentation and spatial attention. Mar-

tinelli et al. [16]  used YOLOv5, while Li et al. [3] proposed a lightweight spliced CNN. 

Zhang et al. [17, 18] enhanced recognition by detecting keypoints and dial features. 

Peng and Chen [19]  introduced an RFCN-based two-stage model for improved reading 

accuracy. 

Sequence modeling methods treat meter reading as a sequence recognition task. 

Yang et al. [20] proposed a fully convolutional network for fast reading, but it only 

handles fixed-digit meters. Xiu et al. [21] introduced an end-to-end approach, though 

its high resource demands limit deployment on edge devices. 
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Lastly, Hybrid multi-stage methods integrate detection, correction, and classification 

to boost recognition accuracy. Ktari et al. [22] combined YOLOv4 with OCR, Chen et 

al. [23] used U-Net for segmentation and VGG16 for recognition, while Zhao et al. [24] 

applied U-Net for correction and used their WMRRM model for character recognition. 

Object detection-based methods offer a good balance between accuracy and deploy-

ment, effectively addressing common issues like tilt, blur, and poor lighting.  

2.2 Water Meter System 

The water meter system can be categorized into local-based and cloud-based solutions, 

depending on where the water meter readings are obtained. 

For local-based solutions, Ye et al. [6] proposed a LoRa-enabled smart meter with 

STM32 for local processing. Han and Kim [9]  introduced MO-CNN to reduce memory 

use, enabling deployment on low-power devices. Other approaches use ultrasonic me-

ters with M-BUS [25], flow meters with valve control [26], turbine generators for signal 

processing [27], and flow sensors with LoRa transmission [28]. Wireless systems using 

LPWAN [29]  and real-time monitoring setups [30] have also been developed. 

In contrast, cloud-based solutions transmit meter images to remote servers for pro-

cessing. Alvisi et al.[10] introduced SWaMM, which collects water meter data and 

sends it to the cloud for recognition. Li et al.[3] transmitted water meter images to the 

server for recognition via 4G-network modules.  

3 System Design and Method 

3.1 System design  

The system, which is named EdgeMeter, is primarily divided into three layers: the IoT 

layer, edge layer, and cloud layer, ensuring the system's efficiency and flexibility in 

data acquisition, processing, and storage. 

3.2 IoT layer 

The IoT layer is responsible for water meter data acquisition, capturing water meter 

images at regular intervals and sending them to the edge layer, which is mounted on 

top of the water meter dial, as shown in Fig. 3. Structural Design of the IoT Layer 

Enclosure. The IoT layer includes a power supply, a control switch, a camera module, 

LEDs, a 4G data transmission module (SLM332), and an HC32F460.  

The HC32F460 is based on the ARMv7-M architecture, known for its low power 

consumption. In addition to the RUN mode, it also features a Sleep mode, in which 

only the MCU's timer remains powered while the other modules are in a power-off 

state, ensuring very low power consumption. This makes it highly suitable for the short-

duration operation required for water meter data capture.The power supply consists of 

a 3.6V Li-ion battery, which provides power to the entire device. To extend the battery 

life, we leverage the features of the HC32F460 chip. A timer (RTC) is configured to 

output a high-level signal at specified intervals. This signal activates the MOSFET, 

which supplies power to the other components on the board. When powered on, the 



circuit's LEDs light up, the camera captures an image, and the HC32F460 enters RUN 

mode to process the data. The front and back views of the board are shown in Fig. 4. 

The camera module captures images of the water meter. To ensure optimal image 

quality, LED lights on both sides of the board illuminate during the capture process, 

providing sufficient brightness for clearer images. After the picture is taken, the 

HC32F460 chip performs a compression operation. This involves grayscaling the im-

age, converting it to base64 format, and then transmitting it.  

 

Fig. 3. Structural Design of the IoT Layer Enclosure 

 

Fig. 4. Detailed View of the Circuit Board in the IoT Layer 

3.3 Edge layer 

The edge layer is responsible for processing images received from the IoT layer to rec-

ognize and analyze water meter readings. The NCT3568, a high-performance and en-

ergy-efficient development motherboard based on the RK3568, serves as the core of 
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this layer. It is equipped with a 4G module for communication via the HTTP protocol. 

The YOLO-METER recognition algorithm and its associated database are deployed on 

the NCT3568 to perform the meter reading analysis. 

The edge layer mainly processes the images sent from the IoT layer to complete the 

recognition and analysis of water meter readings. NCT3568 is a high-performance and 

low-power consumption development motherboard device based on the RK3568.Edge 

layer is equipped with 4G modules, and communicates with the http protocol. NCT3568 

deploys the recognition algorithm YOLO-METER and database.  

Dataset.  

We collected a total of 9,658 images of wheel dials through the IoT layer, which 

were split into 5,800 images for the training set, 1,919 images for the validation set, 

and 1,859 images for the test set, as shown in Table 1. Since the mechanical water meter 

has gradual increment values, there are intermediate states between readings. To ac-

count for this, we defined 20 categories: 10 integer categories (0, 1, 2, ..., 9) and 10 

decimal categories (0.5, 1.5, 2.5, ..., 9.5). 

To further analyze the composition of the dataset, we visualized the class distribution 

across the training, validation, and test sets, as shown in Fig. 5.. Since class 0 contains 

a significantly larger number of samples than the other classes, we applied a logarithmic 

transformation to the sample counts. This transformation improves the visibility of cat-

egories with smaller sample sizes, providing a clearer comparative overview of all clas-

ses. As depicted in Fig. 5, the proportions of each class are relatively consistent across 

the different subsets. This suggests that the dataset maintains a balanced distribution, 

which is crucial for ensuring fair model training and evaluation. 

Table 1. The number of images in training, validation, and test sets. 

Subset 
 

Number of Images 

Train 5880 

validation 1919 

Test 1859 

Total 9658 

Algorithm Architecture.  

In this paper, we propose YOLO-METER, an improved version of YOLO11, tai-

lored for the characteristics of the word-wheel dial dataset. Firstly, we introduce 

FastC3k2, an enhancement based on the FasterNet architecture proposed by Chen et al. 

[31]. FastC3k2 reduces the model’s parameter count and FLOPs while improving fea-

ture extraction from images. Secondly, the feature fusion component in the original 

YOLOv4 design uses convolutional operations, which suffer from a limited receptive 

field and weak ability for autonomous feature selection. To address these limitations, 

we propose a new module, MRFBlock, based on Mamba and a gating mechanism. This 



module significantly expands the model's receptive field and enhances its ability to au-

tonomously select features, improving multi-scale fusion and, consequently, the 

model’s detection performance and accuracy. The overall architecture of the algorithm 

is shown in Fig. 1.  

 

Fig. 5. Class Distribution Comparison Across Train, Validation, and Test Sets 

FastC3k2.  

Chen et al.[32] in order to design a fast neural network, the relationship between 

floating point numbers and access to memory was analyzed and a new partial convolu-

tion (PConv) was proposed, based on which Fasternet was further proposed. 

The architecture of FastC3k2 is shown in Fig. 1(a). Input X first passes through 

Conv, and then splits into two branches 
1X  and 

2X  .FastC3k also includes the Fast-

erNet Block, as shown in Fig. 6.The input (i-1)Z is convolved by Conv to get O, fol-

lowed by FasterNet Block operation, the result of the calculation is then spliced with 

O, and finally another convolution calculation is carried out to get (i)Z  . 

When C3k2 is False, the intermediate output iZ  is computed by FasterNet Block. 

FasterNet Block first Partial Convolution, then 1x1 convolution, BN layer, activation 

function using ReLU, followed by a layer of 1x1 convolution layer, and then finally the 

results of the computation and the input at the beginning of the residual connection 

[32]. The structure is illustrated in Fig. 1(b). 

MRFBlock.  

The 2D-Selective-Scan Mechanism (SS2D) [35] is the core component of the Visual 

State Space Block (VSSBLOCK), which is utilized to construct the hidden state space 

for cross-modal feature fusion. The VSSBLOCK passes through a linear layer, fol-

lowed by the Depthwise Convolution (DWConv) and SILU activation functions. It then 

passes through the SS2D, undergoes layer normalization, and concludes with an addi-

tional linear layer, as shown in  Fig. 7. 
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Fig. 6. FastC3k 

MRFBlock consists of two parts, VSSBLOCK and PGBlock. These two branches 

leverage the respective strengths of Mamba and CNN, fusing the features at the end. 

The structure is illustrated in Fig. 1(c). The input l 1Z − passes through VSSBlock and 

PGBlock, and the output lZ is obtained, as shown in Eq.(1). 

PGBlock efficiently filters features using CNN and valves, incorporating PConv for 

feature fusion without excessive computational cost. Its structure is shown in Fig. 1. 

By splitting the input 2lX −  into two branches, PGBlock performs computations in par-

allel. 

 

 

Fig. 7. ss2d(2D-Selective-Scan Mechanism) 

 ( ) ( )1 1VSSBlock PGBlockl l lZ Z Z− −= +  (1) 

PGBlock uses ReLU as the activation function to control the information flow of
1

1

LX − , which is then merged with l 1

2X − via dot product, refined with global features 

to blend channel information via 
1 1onv xC . Finally, the residual connection is fused 

with the original input l 2X −  fusion. The PG Block captures more global features while 

bringing only a slight increase in computational cost, and the resulting output feature 
lX  is defined as 
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Where   represents the activation function (ReLU) 

PGBlock captures more global features with minimal computational overhead. It 

uses a gating mechanism combined with convolution to preserve spatial information 

and capture detailed image features. Unlike traditional MLP, PGBlock transfers global 

features pixel-by-pixel, enriching contextual expression and improving feature model-

ing capabilities. The structure is illustrated in Fig. 1(d). 

3.4 Cloud layer 

The cloud layer serves as the core platform for data aggregation, user interaction, and 

system management. It provides real-time water usage monitoring, consumption fore-

casting, historical data analysis, and leak alerts. Additionally, it supports remote device 

management, enabling technicians to perform diagnostics, track performance, and de-

tect faults. This integration enhances intelligent water management and system relia-

bility. 

4 Experiment and Discussion 

4.1 Experimental indicators 

Experimental metrics using Precision, Recall, mAP, Flops, Parameters. The hyperpa-

rameters for the experiments were set as follows: batch size = 32, epochs = 300, weight 

decay = 0.0005, an initial learning rate of lr0 = 0.01, and a final learning rate of lrf = 

0.0001. The variables for the ablation experiments primarily focused on FastC3k2 and 

MRFBlock. 

4.2 Comparison Experiment 

The comparison models are categorized into one-stage and two-stage models. The 

two-stage model includes Fast R-CNN[33], which uses ResNet50 as its backbone net-

work. The one-stage models include RTDETR , YOLOV5x 、

YOLOV6,YOLOV7,YOLOV8,YOLOV9[34],YOLOV10. 

As shown in Table 2, YOLO-METER achieves a mAP of 94.9, which is significantly 

higher than the other models. Compared to RTDETR, YOLOv5, YOLOv6, YOLOv7, 

YOLOv8, YOLOv9, and YOLOv10, YOLO-METER's mAP is improved by 7.6%, 

2.7%, 1.9%, 3.6%, 2.6%, 1.6%, and 2.4%, respectively. Additionally, YOLO-METER 

has fewer parameters than the other models, with 25.93M fewer than RTDETR, 0.13M 

fewer than YOLOv5, 1.73M fewer than YOLOv6, 34.03M fewer than YOLOv7, and 

0.53M fewer than YOLOv8. While YOLOv9 and YOLOv10 have fewer parameters 

than YOLO-METER, their accuracy is not as high, and their floating point operations 

exceed those of YOLO-METER. Overall, YOLO-METER strikes an effective balance 

between accuracy and speed, making it highly suitable for deployment on edge devices. 



 

 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

Table 2. Comparison of Different Network Architectures 

Network Archi-

tecture 
mAP Precision Recall 

mAP@50-

95 
Flops 

Parame-

ters 

Fast R-CNN 93.1 89.9 90.2 85.1 182 41.3 

RTDETR 87.3 90.8 91.2 76.5 100.7 28.4 

YOLOv5 91.1 91.1 91.5 78.7 7.7 2.6 

YOLOv6 93.1 91.6 91.3 84.3 11.8 4.2 

YOLOv7 91.3 92.1 92.3 79.9 103 36.5 

YOLOv8 92.7 90.9 93.2 85.2 8.1 3.0 

YOLOv9 93.3 91.2 92.0 85.7 7.6 1.97 

YOLOv10 92.5 91.5 91.0 84.7 6.5 2.2 

YOLO11 92.5 90.4 90.7 85.3 6.5 2.6 

YOLO-METER 94.9 92.5 94.3 87.6 6.3 2.47 

 

4.3 Ablation study 

As shown in Table 4, replacing C3K2 with FastC3k2 reduces parameters by 11.9% and 

FLOPs by 13.4%, while increasing mAP by 0.7%. Though MRFBlock adds slight com-

putational overhead, it boosts mAP by 1.2%. Combining both modules cuts parameters 

and FLOPs further while improving mAP by 2.4%. As illustrated in Fig. 8, YOLO-

METER accurately detects bounding boxes even in blurry images and effectively 

avoids interference from surrounding digits. 

 

Fig. 8. (a)Original images;(b)Inference results of YOLO11n;(c)Inference results of our model 



Table 3. Comparison of Different Network Architectures 

Network Ar-

chitecture 

Activa-

tion 

Func-

tion 

mAP 
Preci-

sion 
Recall 

mAP@50-

95 
Flops 

Parame-

ters 

YOLO11 + 

MRFBlock 
GELU 93.1 91.2 92.2 85.7 6.9 2.74 

YOLO11 + 

MRFBlock 

Leaky 

ReLU 
93.4 91.4 92.5 86.0 6.8 2.74 

YOLO11 + 

MRFBlock 
PReLU 93.3 91.3 92.4 85.8 6.8 2.80 

YOLO11 + 

MRFBlock 
RELU 93.7 91.7 92.7 86.3 6.7 2.74 

Table 4. Comparison of Different Network Architectures 

Network 

Architec-

ture 

FastC3

k2 

MRF-

Block 
mAP 

Preci-

sion 
Recall 

mAP

@50-

95 

Flops 
Parame-

ters 

YOLO11   92.5 90.4 90.7 85.3 6.5 2.6 

YOLO11  ✓  93.2 90.6 91.5 85.5 5.8 2.29 

YOLO11  ✓ 93.7 91.7 92.7 86.3 6.7 2.74 

YOLO11  ✓ ✓ 94.9 92.5 94.3 87.6 6.3 2.47 

To assess the effect of activation functions on PGBlock performance, we tested 

ReLU, Leaky ReLU, PReLU, and GELU across multiple network setups. As shown in 

Table 3, activation choice notably impacts accuracy and efficiency. ReLU achieved the 

best mAP and recall, proving effective for fine-grained feature extraction and robust 

representation learning. 

We plotted the same layer of sensory wildness visualization as shown in Fig. 9,The 

MRFBlock module significantly improves the sensory wildness of the model. 

To illustrate FastC3k2's ability in detecting character box features, this study uses 

Grad-CAM++ to generate heat maps. These maps visualize the areas most influential 

to the model’s predictions. Redder regions indicate stronger attention, while bluer areas 

show weaker focus. As shown in Fig. 10, FastC3k2 helps the model concentrate more 

effectively on key image details, highlighting its advantage in feature extraction. 
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Fig. 9. (a)wildness of YOLO11; (b)wildness of YOLO11+MRFBlock 

4.4 Water analysis 

In this analysis, the daily water consumption data of some water meter dials in Panyu 

District, Guangdong Province were collected and statistically examined, as shown in 

Table 5. The water meters were categorized based on pipe caliber, primarily including 

15, 20, 25, and 80 calibers, with 15 and 20 calibers being the most common in residen-

tial water consumption. The analysis of average daily water consumption across differ-

ent months provides a valuable benchmark for users. 

Water use early warning relies on analyzing historical consumption data. Holt's Lin-

ear Trend Method [35] was used to predict consumption, with smoothing coefficients 

set to 0.8 for level and 0.2 for trend.  

Table 5. Average Daily Water Usage by Diameter Size 

caliber(mm) number 
Aug 

(m³/day) 

Sep 

(m³/day) 

Oct 

(m³/day) 

Nov 

(m³/day) 

Dec 

(m³/day) 

Aver-

age(m³/day) 

15 3310 2.38 2.16 2.13 3.26 2.19 2.43 

20 3342 1.07 1.23 1.08 1.79 1.17 1.26 

25 744 2.84 2.96 3.13 2.55 3.72 3.04 

80  301 130.77 157.54 149.98 164.90 163.76 153.30 

5 Conclusion 

In this paper, we design a fully automated, multi-functional smart water meter sys-

tem comprising three layers: the IoT layer, the edge layer, and the cloud layer. 

The IoT layer is responsible for image capture, compression, and uploading, with 

the HC32F460 chip handling these tasks efficiently. The edge layer, powered by the 

NCT3568 chip, deploys the YOLO-METER algorithm, which improves water meter 

image recognition accuracy through the FastC3k2 and MRFBlock modules, signifi-

cantly enhancing feature extraction and detection accuracy while reducing model pa-



rameters.The cloud layer aggregates data from the edge, enabling users and adminis-

trators to monitor water consumption and manage the system effectively. This layered 

architecture ensures high efficiency, reliability, and optimized power usage. 

 

 

Fig. 10. (a)Original images;(b)heat maps of YOLO11n;(c)heat maps of YOLO11+FastC3k2 
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