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Abstract. In recent years, provenance graph-based approaches have become the 

standard approach for Advanced Persistent Threat (APT) detection and investi-

gation. However, existing studies face several challenges: (1) the high computa-

tional cost of the training process makes it difficult to update the model in a 

timely manner, leading to delayed attack detection; (2) the imbalance in training 

data results in a scarcity of attack samples, which negatively impacts model per-

formance; and (3) high false positive rates hinder practical deployment in real-

world applications. To address these challenges, we propose CLUE, a novel APT 

detection framework that enables high-quality, multi-granular detection. CLUE 

employs lemmatization techniques to normalize sequence data extracted from 

provenance graphs and then directly fine-tunes a pretrained Transformer model, 

significantly reducing both training time and dependence on scarce attack data. 

Furthermore, CLUE incorporates contrastive learning to enhance generalization 

capability in data-scarce scenarios by optimizing inter-sample distances while 

accelerating model convergence. Our evaluation of CLUE across 10 real-world 

APT attack scenarios demonstrates that compared to state-of-the-art methods, 

CLUE maintains superior detection performance while achieving a 7.4× reduc-

tion in average training time and requiring 45.2% less training data (particularly 

attack samples). These results validate CLUE's efficiency, robustness, and prac-

tical value in APT detection. 

Keywords: APT detection, Provenance graph, Contrastive learning, Pretrained 

Transformer. 

1 Introduction 

Advanced Persistent Threats (APTs) have emerged as one of the most formidable chal-

lenges in the field of cybersecurity due to their stealth, complexity, and persistence[1]. 



These attacks are typically orchestrated by highly skilled adversaries who meticulously 

plan multi-phase infiltrations targeting critical infrastructures of corporations and gov-

ernment agencies. Once successfully executed, APTs can remain undetected for ex-

tended periods, causing significant damage to sensitive data and systems, leading to 

severe economic and societal consequences. 

In recent years, data provenance technologies have found widespread application in 

the detection and investigation of APTs[2-17]. By analyzing audit logs to generate 

provenance graphs, these technologies enable the intuitive capture of causal relation-

ships between system entities. This approach provides rich contextual information for 

APT detection, demonstrating significant advantages in enhancing detection perfor-

mance and supporting post-attack investigations. Early research on APT detection[2-5]  

based on provenance graphs predominantly employed rule-based or signature-based 

methods, where audit data was matched against predefined rules to identify APT activ-

ities. However, as cyberattack techniques continue to evolve, these traditional methods 

have increasingly shown their limitations. They struggle to address the complex, dy-

namic nature of attack patterns and the rapidly shifting threat landscape, thus under-

scoring the urgent need for more advanced detection technologies. 

Recently, deep learning-based approaches[6-17] for detecting APTs have gained in-

creasing attention due to their powerful ability to model complex behaviors. These ap-

proaches significantly improve APT detection performance by modeling APT patterns 

or system behaviors and capturing the deep semantic relationships between system en-

tities through classification or anomaly detection techniques. However, despite the 

promising results achieved by deep learning-based approaches, their widespread appli-

cation remains constrained by three key limitations: 

High Computational Cost: Existing APT detection models require building from 

scratch to learn the complex causal relationships, which imposes high demands on 

training time and computational resources. However, the frequent emergence of zero-

day attacks necessitates rapid model updates. Prolonged training cycles can result in 

detection latency and increasing the risk of system exposure to threats. 

Scarcity of Attack Data: Malicious behavior data is significantly less abundant than 

normal activity data, resulting in highly imbalanced training datasets. Existing methods 

typically rely on a small amount of domain-specific data for training, or use manually 

defined rules for data augmentation[8]. This leads to a lack of sufficient and effective 

training samples for the model to learn, thereby limiting its detection capability and 

generalization performance. 

High False Positive Rate: Anomaly-based approaches[9, 10, 14], although not re-

liant on prior attack features, often yield high false positive rates. In practical applica-

tions, this high false alarm rate not only increases the workload of security analysts 

significantly but also risks overlooking actual attacks, which can further jeopardize sys-

tem security. 

To address these challenges, we propose CLUE, an APT detection approach based 

on the general pretrained Transformer. CLUE detects APT attacks through direct fine-

tuning of general pretrained models combined with contrastive learning. Specifically, 

CLUE employs lemmatization to convert sequential data from audit-log-generated 
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causal graphs into natural language sequences aligned with the RoBERTa model's vo-

cabulary for model input. This approach effectively leverages the pretrained model's 

rich semantic knowledge acquired from large-scale general corpora.Unlike previous 

methods that use randomly initialized models, CLUE's direct fine-tuning of RoBERTa 

substantially reduces training time while mitigating detection capability and generali-

zation issues stemming from scarce domain-specific data.  

Moreover, CLUE introduces a contrastive loss function on top of the cross-entropy 

loss. By optimizing inter-sample relative distances, CLUE learns more discriminative 

embeddings. The introduction of contrastive learning enhances generalization in few-

shot scenarios and accelerates convergence. 

We evaluated CLUE in scenarios comprising four single-host attacks and six multi-

host attacks[8], computing key evaluation metrics at three levels: event-level, entity-

level, and sequence-level. Experimental results demonstrate that CLUE significantly 

outperforms existing state-of-the-art approaches in both detection performance and ef-

ficiency. Notably, CLUE achieves an average training time of merely 233.5 seconds, 

representing a 7.4× reduction compared to current methods. More importantly, despite 

using 45.2% less attack data (which is already scarce in practice), CLUE maintains 

exceptional detection performance, achieving 99.92% precision and 99.97% recall. 

CLUE also significantly reduces the false positive rate while maintaining outstanding 

detection capabilities, aligning with the practical needs of real-world applications. 

In this work, we make the following contributions: 

• We propose CLUE, a novel APT detection framework based on the general pre-

trained Transformer. The framework enables multi-granularity APT detection 

through direct fine-tuning of the pretrained RoBERTa model augmented with con-

trastive learning.  

• We utilize lemmatization techniques to transform the raw sequences into natural lan-

guage representations that are highly consistent with the vocabulary of the general 

pretrained language model. This enables direct fine-tuning on the pretrained RoB-

ERTa model, significantly improving training efficiency while fully leveraging the 

rich semantic information embedded in the general pretrained Transformer, address-

ing the issue of domain-specific data scarcity. 

• We design and introduce a contrastive learning loss function specifically tailored for 

pretrained Transformer models, in addition to the conventional cross-entropy loss. 

This function optimizes the embedding distances between samples, learning more 

pronounced feature differences between attack and normal behaviors. As a result, it 

improves detection performance and accelerates the convergence of the model. 

• We perform a systematic evaluation of CLUE on ten real-world APT attack scenar-

ios. Experimental results show that CLUE not only effectively detects APT activi-

ties, but also reduces training time and training data requirements, demonstrating its 

practical value in real-world applications. 



2 Related Work 

CLUE is mainly applied in the field of APT detection. Existing APT detection methods 

can be classified mainly into the following categories. 

2.1 Rule-based Approaches 

Most early studies matched attacks using predefined rules. Holmes[2] achieved precise 

positioning of the attack chain by constructing a multi-layer semantic association 

framework and using graph matching and false alarm suppression mechanisms. How-

ever, rule-based approaches rely on a large amount of manual updates to the rule base 

and are difficult to adapt to dynamic threat environments. 

2.2 Learning-based Approaches 

Log-based approaches. DeepLog[6] uses an LSTM network to model system log se-

quences and realizes anomaly detection through the joint analysis of log key-value pairs 

and metric indicators. AIRTAG[14] pretrains a BERT model on log data for log-level 

attack detection and investigation. DrSec[17] converts endpoint event sequences into 

distributed representations of processes by pretraining a language model. 

Provenance-based Approaches. ATLAS[8] extracts normal and abnormal sequences 

from the provenance graph and uses LSTM to learn the relationships between se-

quences to identify attack events. Flash[16] achieves efficient and real-time APT de-

tection by combining Word2Vec semantic encoding, GNN structure learning and em-

bedding recycling techniques. 

Although the learning-based approaches have made remarkable progress, there are 

still some problems. Unsupervised approaches such as AIRTAG[14] generate a large 

number of false alarms and are difficult to apply in practical scenarios. Approaches like 

DrSec[17] and ATLAS[8] have a high training time cost, which may even last for sev-

eral days, potentially resulting in detection delays. The Word2Vec used by Flash[16] 

fails to dynamically capture context dependencies and has a relatively weak ability to 

model the temporal relationships of long-distance event sequences. 

3 CLUE Overview 

CLUE generates provenance graphs from audit logs and prunes them to capture the key 

causal relationships and operation sequences between subjects and objects. Subse-

quently, neighborhood graphs are constructed for both attack and non-attack entities 

within the provenance graph, with operations sorted in chronological order, resulting 

in attack and non-attack sequences that preserve causal relationships. 

To improve the generalization ability and training efficiency, CLUE applies lemma-

tization to the extracted sequences, converting numerous unique tokens into standard-

ized representations. This process ensures that the processed sequences are highly com-
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patible with the vocabulary of the general pretrained RoBERTa model, thereby effec-

tively utilizing its rich semantic information. Based on the processed sequence data, we 

propose a method that directly fine-tunes the general pretrained RoBERTa model with-

out requiring additional domain-specific pretraining. This approach substantially re-

duces training time while fully exploiting the pretrained model's semantic representa-

tion capabilities, ensuring high-quality feature embeddings and effectively mitigating 

domain data scarcity. 

Additionally, CLUE incorporates a contrastive learning loss function on top of the 

cross-entropy loss. By optimizing the relative distances between samples, the model 

learns more distinguishable embedding representations. This improvement signifi-

cantly enhances the model's generalization performance in few-shot scenarios and 

strengthens its adaptability to novel attack patterns. Fig. 1 gives an overview of CLUE 

architecture. 

 

Fig. 1. Overview of CLUE. 

4 Data Preprocessing 

4.1 Log Preprocessing 

CLUE first converts audit logs into causal graphs to capture the causal relationships 

and operation sequences between system entities (subjects and objects). It then prunes 

redundant nodes and edges from the graph to reduce computational overhead and ex-

tract key information[8]. The processed causal graphs effectively reveal the relation-

ships between events in the logs, thereby supporting the modeling and detection of at-

tacks and abnormal behaviors. 

Specifically, the nodes in the causal graph represent entities within the system, while 

the edges capture the operations performed by subjects on objects, defined by the op-

eration type (e.g., "read," "write") and timestamp, with the direction pointing from the 

          

            

                              

                                    

 

                           

                                                          

       

                                                            

 

 

 

 

 

      

  

  

  

  

  

  

       

          

       

          

           

            

           

          

      

    

        

    

   

    



subject to the object. During the pruning process, CLUE eliminates redundant edges by 

retaining only the first occurrence of an operation edge between a subject and an object, 

and merges similar nodes by combining multiple nodes with identical incoming and 

outgoing edges into a single node. This approach significantly reduces redundant infor-

mation in the graph and optimizes its structure to facilitate subsequent analysis. 

4.2 Sequence Construction 

After preprocessing the logs, a simplified causal graph containing both attack and non-

attack behaviors is obtained. Based on this causal graph, attack and non-attack se-

quences are extracted for model training. 

Attack Sequence Construction. First, all attack entity nodes in the causal graph are 

aggregated to generate subsets corresponding to different attack behaviors. For each 

attack subset, a neighborhood graph is extracted to capture the causal relationships with 

other entities, thereby obtaining contextual information regarding the attack. The oper-

ations in the neighborhood graph are then sorted by timestamps to ensure that the op-

eration order aligns with the actual temporal sequence. This process generates complete 

attack sequences. The process of constructing attack sequences is illustrated in parts C 

and D of Fig. 2. 

 

Fig. 2. Data preprocessing of CLUE. 

Non-Attack Sequence Construction. Since the goal is to learn the boundaries between 

attack and non-attack sequences, part of the non-attack entities is incorporated into the 

attack entities to create patterns that deviate from attack sequences, serving as the basis 

for extracting non-attack sequences. During non-attack sequence extraction, one non-

attack entity is added to each attack entity subset to form non-attack entity subsets. 

Subsequently, we employ the same methodology used for attack sequence extraction to 

construct the non-attack sequences. 
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5 Fine-tuning General Pretrained Transformer with 

Contrastive Learning 

5.1 Fine-tuning Pretrained RoBERTa 

Sequence Normalization and Embedding. To improve the model's generalization 

ability and prevent overfitting, CLUE utilizes lemmatization techniques to normalize 

sequences extracted from audit logs into domain-generic vocabulary forms[15], which 

abstract deeper semantic information. This process not only mitigates overfitting and 

generalization issues but also ensures that the tokens in the extracted sequences align 

closely with the vocabulary of the pretrained RoBERTa model. E of  Fig. 2 demon-

strates an example. 

Thanks to this strategy, CLUE can directly leverage the embedding representations 

of the open-source pretrained RoBERTa model (FacebookAI RoBERTa-base) by in-

putting the domain-specific attack and non-attack sequences. The rich semantic repre-

sentation capabilities of RoBERTa provide the foundation for effective sequence em-

bedding. Compared to previous studies using word2vec[16], Transformer embeddings 

through their dynamic word vector representations based on bidirectional context—

offer a more precise representation of complex patterns and semantic differences within 

sequences. This significantly enhances the classifier's ability to differentiate between 

attack and non-attack sequences. 

Fine-tuning a General Pretrained RoBERTa Model. In the APT detection field, pre-

vious works[14, 17] typically pretrain models using domain-specific data before fine-

tuning for specific tasks. However, this approach faces two critical issues: First, domain 

pretraining is computationally intensive (e.g., DrSec required 7 days of pretraining[17]. 

Once application scenarios or attack patterns evolve, retraining becomes necessary, 

leading to detection delays that compromise defense effectiveness. Second, high-qual-

ity data is scarce in APT detection, with attack samples significantly fewer than normal 

samples. Domain pretraining tends to cause overfitting, impairing model generalization 

capabilities. 

To address these challenges, we propose a strategy of directly fine-tuning a general 

pretrained model (FacebookAI RoBERTa-base). By leveraging lemmatized natural lan-

guage representations of attack and non-attack sequence data, we bypass domain pre-

training. This approach capitalizes on the existing deep linguistic capabilities of general 

language models, enabling rapid adaptation to specific detection tasks without domain-

specific initialization. 

5.2 Supervised Contrastive Learning Loss 

In this section, we discuss the approach for learning discriminative representations for 

attack detection. Traditional cross-entropy loss often results in inadequate generaliza-

tion ability and robustness in attack detection models[18-21], making them ineffective 

against novel attacks. To address this limitation, we introduce Supervised Contrastive 

Learning (SCL) and integrate it with the original cross-entropy loss. By optimizing the 

relative distances between samples through contrastive learning, we enhance feature 



discriminability, thereby significantly improving the attack detection performance in 

few-shot scenarios. 

Supervised Contrastive Learning Loss (SCL Loss). The contrastive learning loss 

function is designed to enhance the separability of embedding features. CLUE employs 

a contrastive learning loss function, ℒ𝑆𝐶𝐿, specifically optimized for fine-tuning pre-

trained language model[22]. This function not only ensures improved separability of 

embedding features but also integrates seamlessly with pretrained RoBERTa models. 

For a batch containing 𝑁 samples, the SCL loss is defined as follows: 

𝐿𝑆𝐶𝐿 = ∑ −

𝑁

𝑖=1

1

𝑁𝑦𝑖
− 1

∑ 𝟙𝑖≠𝑗

𝑁

𝑗=1

𝟙𝑦𝑖=𝑦𝑗
log

exp (
Φ(𝑥𝑖) ⋅ Φ(𝑥𝑗)

𝜏
)

∑ 𝟙𝑖≠𝑘
𝑁
𝑘=1 exp (

Φ(𝑥𝑖) ⋅ Φ(𝑥𝑘)
𝜏

)
 (1) 

Here, Φ(𝑥) represents the ℓ2-normalized output of the pretrained encoder for input 𝑥; 

𝜏 > 0 is the temperature parameter used to adjust the separation strength between dif-

ferent samples; 𝑁𝑦𝑖
 denotes the number of samples with the same label 𝑦𝑖  as sample 𝑥 

in the batch. 

The SCL loss encourages samples of the same class to cluster in the embedding 

space, while simultaneously pushing samples of different classes farther apart (see Fig. 

3). 

 

Fig. 3. Minimize intra-class distance and maximize inter-class distance with SCL loss. 

Cross-Entropy Loss (CE Loss). While incorporating the supervised contrastive learn-

ing loss, we retain the conventional cross-entropy loss ℒ𝐶𝐸  essential for model training 

to ensure classification accuracy. ℒ𝐶𝐸  is defined as follows: 

ℒ𝐶𝐸 = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑐

𝐶

𝑐=1

𝑁

𝑖=1

⋅ log𝑦̂𝑖,𝑐(2) 
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Final Joint Loss Function ℒ. During training, the model jointly optimizes the cross-

entropy classification loss ℒ𝐶𝐸  and the contrastive loss ℒ𝑆𝐶𝐿, achieving a dynamic bal-

ance between feature learning and classification performance. The final joint loss func-

tion is defined as follows: 

𝐿 = (1 − 𝜆)𝐿𝐶𝐸 + 𝜆𝐿𝑆𝐶𝐿(3) 

Implementation on Pretrained RoBERTa. We utilize a pretrained RoBERTa model 

as the encoder Φ(⋅) in ℒ𝑆𝐶𝐿, where the embedding of the [CLS] token is used as the 

representation of the input sequence. For each sequence in the batch, the CE and SCL 

losses are computed based on the output of the encoder. By adjusting the temperature 

parameter 𝜏 and the scalar weighting hyperparameter 𝜆, we achieve a balance between 

classification accuracy and feature representation learning, thereby enhancing the 

model’s discriminative capability for attack samples, generalization performance, and 

training convergence speed. 

6 Evaluation 

In this section, we provide a detailed description of the experimental setup and validate 

the effectiveness of the proposed method through extensive experiments. Subsequently, 

we evaluate the training efficiency and performance of the method and conduct ablation 

studies to analyze the importance of individual model components. 

6.1 Experimental Settings 

All experiments were performed on a computational server equipped with three 

NVIDIA Tesla V100 GPUs (each with 32GB memory), an Intel Xeon Gold 5218 CPU 

(64 cores, 2.30GHz), and 752 GB of RAM. 

Dataset. We utilized the public ATLAS dataset (S1-S4 and M1-M6), a widely adopted 

benchmark in APT research, which covers diverse Advanced Persistent Threat (APT) 

attack scenarios. The dataset contains single-host attacks (S1-S4), multi-host attacks 

(M1-M6), and normal user activities. Each attack was simulated based on detailed APT 

activity reports to generate high-quality audit logs. Single-host attacks focused on one 

victim host, while multi-host attacks involved two hosts, with the second host simulat-

ing lateral movement targets. Attacks were performed in Windows 7 virtual machines, 

lasting approximately 1 hour each, followed by 24-hour audit log collection. 

Model Configuration. Our classifier was implemented using Hugging Face's RoB-

ERTa-base architecture[23]. All models were optimized via the Adam optimizer[24] 

with an initial learning rate of 1 × 10−5 and a linear decay schedule to zero. We em-

ployed a batch size of 32 and conducted fine-tuning for five epochs. Through extensive 

hyperparameter tuning, we determined that 𝜏 = 0.3 and 𝜆 = 2 yielded optimal perfor-

mance with ℒ𝑆𝐶𝐿, and consequently applied these values uniformly across all experi-

ments. 

Evaluation Metrics. We evaluated the performance of CLUE using widely adopted 

metrics in attack detection, including accuracy, precision, recall (True Positive Rate, 



TPR), False Positive Rate (FPR), and F1 score. Additionally, we incorporate efficiency 

metrics, such as training time, to holistically assess the model's performance. 

6.2 Detection Performance 

To evaluate CLUE’s detection performance, we conducted comprehensive testing at 

three levels: event-level, entity-level, and sequence-level. It should be emphasized that 

the test data was completely independent from the training data, encompassing previ-

ously unseen attack types and activities. This experimental setup effectively validates 

the model’s generalization capability on unseen test data, which holds significant im-

portance for practical applications. Table 1 presents CLUE’s detection results at the 

entity-level and event-level. Even with a 45.2% reduction in training data, CLUE 

achieved precision, recall and F1-score of 99.92%, 99.97% and 99.95% respectively in 

event-level detection, performing comparably to ATLAS and significantly outperform-

ing AIRTAG (see Fig. 4). These results fully demonstrate the robustness and efficiency 

of our approach. 

Table 1. Entity-based and event-based investigation results. 

ID 
Entity-based Investigation Results Event-based Investigation Results 

Precision(%) Recall(%) F1-score(%) Precision(%) Recall(%) F1-score(%) 

M1 90.32 100.00 94.92 99.96 100.00 99.68 

M2 97.30 100.00 98.63 99.96 100.00 99.98 

M3 97.22 97.22 97.22 99.97 100.00 99.98 

M4 100.00 96.43 98.18 100.00 99.82 99.91 

M5 90.91 100.00 95.24 99.99 100.00 99.99 

M6 93.18 97.62 95.35 99.68 99.99 99.84 

S1 100.00 100.00 100.00 100.00 100.00 100.00 

S2 92.31 100.00 96.00 99.97 100.00 99.99 

S3 95.83 95.83 95.83 99.94 99.88 99.91 

S4 80.77 100.00 89.63 99.75 100.00 99.88 

Avg. 93.78 98.71 96.18 99.92 99.97 99.95 

 

 

Fig. 4. Precision and recall of ATLAS, AIRTAG and CLUE. 
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Furthermore, unlike ATLAS and AIRTAG which focus solely on event-level eval-

uation, our work introduces additional sequence-level assessment. This capability con-

nects multiple attack events to provide more comprehensive attack chain information, 

enabling security personnel to better understand and investigate complete attack sce-

narios. The sequence-level evaluation results are shown in Table 2. 

Table 2. Training time for M1 to S4. 

ID M1 M2 M3 M4 M5 M6 S1 S2 S3 S4 Avg. 

Accuracy 99.92 99.58 98.48 98.11 98.68 97.10 99.68 99.72 96.70 94.23 98.22 

TPR(%) 95.18 96.34 93.83 96.20 94.87 95.71 95.24 95.35 95.24 93.75 95.17 

FPR(%) 0.07 0.41 1.51 1.88 1.31 2.90 0.31 0.27 3.30 5.77 1.77 

6.3 Efficiency Analysis 

To evaluate CLUE’s efficiency, we analyzed its time cost (see Table 3) and compared 

the training time requirements among CLUE, ATLAS, and AIRTAG (see Fig. 5). The 

results show that while maintaining comparable or superior detection performance, 

CLUE’s training time is substantially shorter than both ATLAS and AIRTAG, requir-

ing only 17.6% of ATLAS’s and 51.8% of AIRTAG’s training duration, which conclu-

sively demonstrates CLUE’s computational efficiency. 

Table 3. Training time for M1 to S4. 

ID M1 M2 M3 M4 M5 M6 S1 S2 S3 S4 Avg. 

Times(s) 164.9 227.6 274.9 475.6 106.8 261.7 296.4 171.3 202.9 153.6 233.5 

 

 

Fig. 5. Average time costs of ATLAS, AIRTAG and CLUE. 

The enhanced training efficiency of CLUE confirms its suitability for APT detection 

scenarios that require frequent model updates. In practical enterprise applications where 

data volumes typically exceed experimental levels, CLUE’s time-cost savings are even 

more pronounced for large-scale data scenarios. 



6.4 Ablation Study 

Comparison of Domain-Specific Pretraining and General Fine-Tuning. To evalu-

ate the impact of domain-specific pretraining, we compared two methods: (1) directly 

fine-tuning the general pretrained RoBERTa model (FacebookAI RoBERTa-base) and 

(2) pretraining on domain-specific data (lemmatized attack and non-attack sequences) 

followed by fine-tuning. Results, as shown in Table [tab:comparison_models], demon-

strate that the detection performance of the domain-specific pretrained model is nearly 

identical to that of directly fine-tuned general RoBERTa, indicating that the CLUE 

framework effectively leverages the semantic representations of general pretrained 

RoBERTa without requiring additional domain-specific pretraining. Efficiency analy-

sis further highlights the advantage of direct fine-tuning, which achieved approximately 

17.9× faster training speed compared to the domain-specific pretraining approach. 

Table 4. Table captions should be placed above the tables. 

Model Training Time(s) Accuracy(%) Recall(%) 

Fine-tuning General Large Model 144.02 97.10 95.17 

Domain Pretraining + Fine-tuning 2572.51 97.88 95.71 

 

These results demonstrate that directly fine-tuning the general pretrained RoBERTa 

model is an efficient and feasible solution for APT detection. By eliminating the do-

main-specific pretraining step, CLUE not only significantly reduces training time but 

also mitigates the risk of overfitting to domain-specific data. In dynamic environments 

where frequent model updates are required to address emerging APT attacks, the pro-

posed CLUE method demonstrates exceptional adaptability and practical value. 

Impact of Contrastive Loss. To evaluate the impact of the proposed contrastive learn-

ing loss, we compared the model’s performance using only the cross-entropy loss with 

that when combining cross-entropy loss and contrastive learning loss. We selected the 

S4 dataset, which exhibits relatively low baseline performance, to provide a more intu-

itive analysis of the performance improvements introduced by the contrastive learning 

loss. 

The experimental results demonstrate that incorporating the contrastive learning loss 

significantly improves the model’s performance across all metrics (see Table 5). In the 

sequence-level evaluation, TPR improved by 3.12% and FPR decreased by 7.29%, in-

dicating that the model’s ability to distinguish between attack and non-attack sequences 

was notably strengthened, while false positives were significantly reduced. This im-

provement is particularly crucial for practical attack detection applications, as a lower 

false positive rate translates to higher detection reliability and reduced resource wast-

age. Furthermore, the experiments showed that incorporating the contrastive learning 

loss reduced training time by 11.31%, indicating that our approach not only improves 

model performance but also significantly enhances training efficiency. 
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Table 5. Table captions should be placed above the tables. 

Metric CE Loss CE+SCL Loss Improvement 

Accuracy (%) 86.95 94.23 7.28 

TPR (%) 90.63 93.75 3.12 

FPR (%) 13.06 5.77 7.29 

Training Time (s) 521.72 475.59 46.13 

 

Comparison of Contrastive Learning Methods. We further compared the impact of 

different contrastive learning methods on model performance by evaluating two com-

monly used contrastive loss functions: Margin Loss[25,26] and our SCL Loss, as 

shown in Table 6. The results demonstrate that the proposed SCL Loss outperforms 

Margin Loss in terms of detection performance, further validating the effectiveness and 

applicability of the contrastive learning approach used in this study. 

Table 6. Comparison of contrastive loss functions. 

ID M1 M2 M3 M4 M5 M6 S1 S2 S3 S4 

Margin Loss(%) 99.62 99.58 99.24 97.57 98.31 96.54 99.58 99.34 97.80 86.95 

SCL Loss(%) 99.92 99.58 98.48 98.11 98.68 97.10 99.68 99.72 96.70 94.23 

7 Conclusion 

We propose an APT detection framework, CLUE, which enables multi-granularity de-

tection at the entity, event, and sequence levels. CLUE leverages lemmatization tech-

niques to normalize sequence data extracted from provenance graphs into forms con-

sistent with the vocabulary of general pretrained models, thereby utilizing the embed-

ding representations and pretrained parameters of the general RoBERTa model to di-

rectly fine-tune it. Additionally, we introduce a contrastive learning loss function to 

further enhance feature separability. 

We evaluated CLUE on 10 real-world APT attack scenarios. Experimental results 

demonstrate that, compared to state-of-the-art methods, CLUE achieves superior detec-

tion performance while significantly reducing training time and data requirements. 

These results highlight CLUE’s excellent balance between efficiency and performance, 

showcasing its strong practical value in real-world applications. 
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