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Abstract. Natural Language Inference (NLI) focuses on ascertaining the logical 

relationship (entailment, contradiction, or neutral) between a given premise and 

hypothesis. This task presents significant challenges due to inherent linguistic 

features such as diverse phrasing, semantic complexity, and contextual nuances. 

While Pre-trained Language Models (PLMs) built upon the Transformer archi-

tecture have yielded substantial advancements in NLI, prevailing methods pre-

dominantly utilize representations from the terminal layer. This reliance on final-

layer outputs may overlook valuable information encoded in intermediate layers, 

potentially limiting the capacity to model intricate semantic interactions effec-

tively. Addressing this gap, we introduce the Cascaded Interactive Reasoning 

Network (CIRN), a novel architecture designed for deeper semantic comprehen-

sion in NLI. CIRN implements a hierarchical feature extraction strategy across 

multiple network depths, operating within an interactive space where cross-sen-

tence information is continuously integrated. This mechanism aims to mimic a 

process of progressive reasoning, transitioning from surface-level feature match-

ing to uncovering more profound logical and semantic connections between the 

premise and hypothesis. By systematically mining latent semantic relationships 

at various representational levels, CIRN facilitates a more thorough understand-

ing of the input pair. Comprehensive evaluations conducted on several standard 

NLI benchmark datasets reveal consistent performance gains achieved by CIRN 

over competitive baseline approaches, demonstrating the efficacy of leveraging 

multi-level interactive features for complex relational reasoning. 

Keywords: Neural Language Inference, Deep Learning, Neural Language Pro-

cess. 

1 Introduction 

Natural Language Inference (NLI), often framed as Recognizing Textual Entailment 

(RTE), seeks to discern the logical connection between a pair of sentences, classifying 

it as "entailment," "contradiction," or "neutral." As a foundational task in natural lan-

guage understanding, NLI presents significant hurdles. Its difficulty arises not just from 

recognizing diverse linguistic constructions but also from the necessity of capturing 

underlying commonsense knowledge and performing nuanced reasoning. 

mailto:1limin@springer.com


The attention mechanism has proven highly effective across numerous NLP do-

mains. It enhances cross-lingual semantic mapping in machine translation, aids in iden-

tifying crucial content for text summarization [3], and directs models towards relevant 

passages for accurate question answering. As formalized by [27], attention calculates 

weighted context representations based on query-key similarities, adeptly modeling de-

pendencies irrespective of distance in the sequence. Building on this success, we posit 

that developing more sophisticated attention-derived representations, which capture 

richer interaction patterns, can further elevate performance on complex reasoning tasks 

like NLI. 

Conventional attention mechanisms typically compute an alignment matrix repre-

senting word-level correspondences between sentences. While multi-head attention 

[27] enriches this by offering multiple alignment perspectives, these often focus on 

pairwise token interactions. In this work, we aim to model more complex, higher-order 

dependencies that span beyond individual words to encompass phrase-level and struc-

tural relationships. We propose a method to generate intermediate representations en-

coding these intricate interactions, moving beyond simple lexical matching to capture 

structural configurations and combinatorial semantics between the sentence pair. Our 

experimental findings suggest that leveraging these enriched semantic features mark-

edly improves logical reasoning accuracy and enhances model robustness in challeng-

ing scenarios involving paraphrases, antonyms, and lexical ambiguities. 

To realize this, we introduce a novel architecture termed the Cascaded Interactive 

Reasoning Network (CIRN). CIRN is specifically designed to model intricate semantic 

interactions hierarchically. It operates by progressively extracting and integrating fea-

tures across multiple layers of representation within an interactive space, simulating a 

gradual refinement of understanding from surface-level cues to deeper logical connec-

tions. We validate CIRN extensively on standard NLI benchmarks, including SNLI and 

MultiNLI [8]. Furthermore, to assess its versatility, we adapt CIRN for paraphrase iden-

tification, treating matched pairs as entailment and non-matching as neutral, and test it 

on the large-scale Quora Question Pair (QQP) dataset and seven other datasets. Across 

these diverse evaluations, CIRN consistently surpasses strong baseline models, under-

scoring its effectiveness and broad applicability. 

The primary contributions of this work can be outlined as follows: 

─ Introduction of the Cascaded Interactive Reasoning Network (CIRN), a general 

framework designed for hierarchical aggregation and interactive reasoning over 

multi-level semantic information pertinent to NLI. 

─ A method embedded within CIRN to explicitly model complex, higher-order seman-

tic dependencies and interactions between sentence pairs, extending beyond tradi-

tional token-level alignment approaches. 

─ Comprehensive empirical validation on multiple public datasets (including NLI and 

paraphrase identification), demonstrating consistent and significant performance im-

provements achieved by CIRN over competitive baseline methods. 
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2 Related Work 

Traditional Neural Network-based Methods. Early approaches to Natural Language 

Inference (NLI) primarily relied on handcrafted syntactic features, transformation rules, 

and relation extraction techniques, which performed well on small-scale datasets but 

struggled with generalization and scalability [7].The introduction of large-scale da-

tasets [8] and the development of deep learning frameworks triggered a major shift in 

the field. Attention mechanisms, in particular, revolutionized NLI by enabling models 

to explicitly capture alignment and dependency relationships for enhanced semantic 

reasoning [9,10,29]. Sentence-encoding architectures [9] as well as joint models lever-

aging cross-attention mechanisms improved performance by learning hierarchical 

word- and phrase-level interactions [11]. Innovations like residual networks further en-

hanced model depth while retaining lower-layer information [16,33]. Neural network 

architectures have been widely applied for comprehensive sentence-level semantic 

modeling in NLI settings. Sequential dependencies and contextual semantic relation-

ships are better modeled using Recurrent Neural Networks (RNNs) [12,21,30,32], 

while convolutional frameworks capture critical local features through sliding-window 

operations [13]. Attention-based mechanisms further improve upon this by identifying 

salient components, aligning key phrases, and distilling semantic relevance [14,31,39]. 

Techniques such as bidirectional Long Short-Term Memory (Bi-LSTM) networks offer 

a deeper representation of feature differences by incorporating contextual information 

at multiple levels [15,38]. Similarly, other architectures, including CNNs and RNNs, 

focus on either local sensitivity [17] or sequential semantics [17]. Recently, Graph Neu-

ral Networks (GNNs) have gained traction for leveraging sentence structural infor-

mation and modeling global connections [18]. Additionally, some models adhere to the 

principle of encoding independent sentence representations without cross-interaction 

during feature extraction, relying on classifier layers for downstream tasks [10]. 

Pre-trained Language Model-based Approaches. The emergence of pre-trained lan-

guage models such as BERT [3] fundamentally transformed NLI tasks by introducing 

versatile representations obtained through pretext self-supervised objectives. These 

representations, fine-tuned on downstream tasks, led to significant gains in accuracy 

and robustness. Follow-up models such as XLNet [19], RoBERTa [4], and CharBERT 

[20] further refined pretraining methodologies, thereby shrinking the performance gap 

between pretraining and fine-tuning. Cross-feature attention modules within these mod-

els allow them to explicitly focus on granular word- and phrase-level alignments, im-

proving semantic reasoning [12,36,41]. Additionally, sentence interaction mechanisms, 

such as co-attentive DenseNets, further enhance multi-sentence relationships by inte-

grating multiple layers of dependencies [20,37]. A complementary avenue of progress 

involves incorporating linguistic knowledge to refine sentence representations. Meth-

ods introduce explicit syntactic and semantic attributes, such as leveraging part-of-

speech (POS) tags and named entities [22,40], syntactic dependency parsing [34], se-

mantic roles [5,42], word synonym relations [6,35], and syntax tree structures [23]. 



These augmentations help capture task-specific nuances, particularly for subtle distinc-

tions that are not evident in global sentence semantics. However, current methods tend 

to prioritize global semantic similarity, often neglecting fine-grained distinctions at the 

token or phrase level, limiting performance on tasks requiring precise semantic match-

ing. 

 

Fig. 1. The overall architecture of the Cascaded Interactive Reasoning Network (CIRN): 1) PLM 

Encoding: concatenates sentence pair (𝑆1, 𝑆2) as input to a pre-trained language model (e.g., 

BERT, RoBERTa), obtaining representations 𝐻(𝑙) from each Transformer layer; 2) Multi-layer 

Representation: separates 𝐻(𝑙) into sentence representations 𝐻1
(𝑙)

, 𝐻2
(𝑙)

, and computes interac-

tion matrices 𝑀(𝑙) ∈ ℝ𝑛×𝑚×𝑑 by element-wise multiplication; 3) Feature Extraction: stacks in-

teraction matrices across layers into an interaction tensor 𝑀 ∈ ℝ𝑛×𝑚×𝑑×𝐿, and applies DenseNet 

to extract deep interactive features; 4) Prediction Layer: aggregates extracted features through 

a fully connected layer followed by softmax to output classification probabilities. 

3 Model 

We frame the natural language inference (NLI) task as a multi-class classification prob-

lem aimed at predicting the relationship 𝑦 ∈ 𝒴 between a sentence pair, where 𝒴 =
{𝑒𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡, 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙}. To tackle this, we propose the Cascaded In-

teractive Reasoning Network (CIRN). The overall model architecture is depicted in 

the left panel of Figure 1. 

3.1 Input Preprocessing 

For a given sentence pair 𝑆1 = {𝑥1
1, 𝑥2

1, … , 𝑥𝑛
1} and𝑆2 = {𝑥1

2, 𝑥2
2, … , 𝑥𝑚

2 }, we introduce 

special tokens [CLS] and [SEP] to conform to BERT's input format. For BERT, the 

input embeddings are constructed as the sum of three components: 

 𝑋𝑖 = 𝑇𝑖 + 𝑆𝑖 + 𝑃𝑖 , (1) 
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where 𝑇𝑖 , 𝑇𝑖 , and 𝑃𝑖  correspond to the Token Embedding, Segment Embedding, and 

Positional Embedding for the 𝑖-th token, respectively. Here, Segment Embedding dif-

ferentiates the first text (Sentence A) from the second text (Sentence B). 

3.2 Multi-layer Transformer Representations 

The backbone of BERT is composed of 𝐿 stacked Transformer layers, each comprising 

Multi-Head Self-Attention and a Feed-Forward Network. Let 𝐻(0) = [𝑋1, 𝑋2, … , 𝑋𝑁′] 
denote the input embedding sequence, where 𝑁′ = 𝑛 + 𝑚 + 3 (including [CLS] and 

two [SEP] tokens). The output of the 𝑙-th Transformer layer can be expressed as: 

 𝐻(𝑙) = TransformerLayer𝑙(𝐻(𝑙−1)),  𝑙 = 1,2, … , 𝐿. (2) 

From 𝐻(𝑙), we extract the token embeddings for the first and second sentences, denoted 

as 𝐻1
(𝑙)

∈ ℝ𝑛×𝑑 and 𝐻2
(𝑙)

∈ ℝ𝑚×𝑑, where 𝑑 is the hidden dimension of the model. 

3.3 Interaction Matrices Across Layers 

Element-wise Interaction Representation. To explicitly model interactions between 

tokens from the two sentences, we compute an element-wise product between their em-

beddings. For the 𝑙-th Transformer layer, given token embeddings ℎ1
(𝑙,𝑖)

∈ ℝ𝑑 (from the 

first sentence) and ℎ2
(𝑙,𝑗)

∈ ℝ𝑑 (from the second sentence), the interaction tensor is de-

fined as: 

 𝐼𝑖,𝑗
(𝑙)

= ℎ1
(𝑙,𝑖)

⊙ ℎ2
(𝑙,𝑗)

,  ∀𝑖 ∈ [1, 𝑛],  𝑗 ∈ [1, 𝑚], (3) 

where ⊙ represents element-wise multiplication. This operation produces a layer-spe-

cific interaction tensor 𝐼(𝑙) ∈ ℝ𝑛×𝑚×𝑑, encoding token-level semantic dependencies for 

both sentences. 

Stacking Multi-layer Interactions. The layer-wise interaction matrices are stacked 

along a new dimension to form a comprehensive multi-layer interaction representation: 

 𝐼stack = [𝐼(1); 𝐼(2); … ; 𝐼(𝐿)] ∈ ℝ𝑛×𝑚×𝑑×𝐿, (4) 

where [⋅;⋅] denotes concatenation along the layer dimension. The aggregated tensor 

𝐼stack captures interactions at all layers, offering a detailed and hierarchical view of se-

mantic relationships between the two sentences. 

3.4 DenseNet for Feature Extraction 

DenseNet, originally designed for image processing, effectively enhances gradient flow 

and feature reuse through dense connections across layers. In our model, we adapt 

DenseNet to extract features from the stacked interaction tensor 𝐼stack. Convolutional or 



pooling operations are first applied to reduce dimensionality, followed by cascading 

dense blocks. 

Let the input of the first dense block be 𝑍0. Each layer in a dense block computes its 

output as: 

 𝑧𝑘 = 𝑓𝑘(Concat(𝑍0, 𝑧1, … , 𝑧𝑘−1)), (5) 

where 𝑓𝑘 represents the transformation function (e.g., convolution or fully connected 

operation) of layer 𝑘 . The final output of the Dense Block is obtained as: 

 𝑍𝑚 = Concat(𝑍0, 𝑧1, … , 𝑧𝑚−1) (6) 

where 𝑍𝑚 aggregates features across all layers within the block. 

DenseNet Output Representation. After passing 𝐼stack through multiple Dense Blocks 

and Transition Layers, the final feature tensor 𝐹 is derived: 

 𝐹 = DenseNet(𝐼stack) (7) 

where 𝐹 ∈ ℝ𝑑′
 encapsulates high-level semantic interactions and refined sentence pair 

representations. 

3.5 Classification Layer 

The extracted features 𝑭 are fed into a fully-connected layer, followed by a softmax 

classifier to predict the probability distribution over the relation categories 𝒴 =
{𝑒𝑛𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡, 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙}. Formally: 

 𝑝 = softmax(𝑊𝐹 + 𝑏), (8) 

where 𝑊 ∈ ℝ3×𝑑′
, 𝑏 ∈ ℝ3are trainable weights. The predicted label is selected as: 

 𝑦̂ = arg max
𝑖

𝑝𝑖 . (9) 

Training Objective. The training objective minimizes the cross-entropy loss between 

the true label 𝑦 (one-hot encoded) and the predicted probability distribution 𝑝: 

 ℒ = − ∑ 𝑦𝑖
3
𝑖=1 log(𝑝𝑖), (10) 

where 𝑦 represents the ground-truth label, and 𝑦𝑖 ∈ {0,1} denotes the label for class 𝑖. 

4 Experimental Configuration 

This section details the experimental methodology used to evaluate our proposed Cas-

caded Interactive Reasoning Network (CIRN). We describe the datasets employed, the 
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baseline models selected for comparison, and the specific implementation settings and 

hyperparameters used during training and evaluation. 

4.1 Evaluation Benchmarks 

To thoroughly assess the performance of CIRN, our experiments utilize ten large-scale, 

publicly accessible benchmark datasets commonly employed in natural language un-

derstanding research. A primary evaluation suite is the General Language Understand-

ing Evaluation (GLUE) benchmark [24], a standard testbed featuring diverse NLP tasks 

including sentence similarity and textual entailment assessment1. We focus on six sen-

tence-pair classification tasks within GLUE: MRPC, QQP, STS-B, MNLI, RTE, and 

QNLI. Complementing the GLUE tasks, we incorporate four additional widely-used 

datasets to gauge model generalizability across different domains and task nuances: 

SNLI [8], SICK [24], TwitterURL [25], and Scitail [26]. 

4.2 Comparative Baselines 

We benchmark CIRN against a representative set of existing models to demonstrate its 

relative effectiveness. Our main points of comparison are Pre-trained Language Models 

(PLMs), including the foundational BERT [3] architecture. We also compare against 

several PLM variants enhanced with external knowledge sources, namely SemBERT 

[5], SyntaxBERT [23], and UERBERT [6], allowing us to contextualize the gains from 

our specific interactive reasoning approach versus other knowledge integration tech-

niques. Furthermore, we include competitive models that do not rely on large-scale pre-

training. This category features architectures like ESIM [2], a standard Transformer 

encoder [27] trained specifically for the task, and other relevant models focusing on 

bilateral multi-perspective matching or compare-aggregate strategies [11,28]. These 

baselines help isolate the benefits derived from pre-training versus architectural inno-

vations like CIRN. For robustness evaluations (details potentially in another section 

referencing TextFlint), performance comparisons are primarily made against the stand-

ard BERT baseline under various input perturbations. Detailed architectural descrip-

tions of baseline models are omitted for conciseness and can be found in their respective 

publications. 

4.3 Implementation and Training Parameters 

Our implementation utilizes the PyTorch deep learning framework. Optimization of all 

trainable model parameters is performed using the Adadelta optimizer, configured with 

ρ =  0.95 and ϵ = 1 × 10−8. The initial learning rate is set to 0.5, and training proceeds 

with a batch size of 70. A learning rate adaptation mechanism is employed: if validation 

performance on the target task does not improve for 30,000 consecutive steps, the op-

timizer is switched to Stochastic Gradient Descent (SGD) with a reduced learning rate 

of 3 × 10−4 to potentially refine the solution towards a better local minimum. Dropout 

 
1 https://huggingface.co/datasets/glue 



layers are inserted before all linear transformation layers and following the word em-

bedding layer to mitigate overfitting. L2 weight decay is applied to all model weights 

for regularization. The effective L2 decay coefficient at training step 𝑡, denoted ℛℒ2(𝑡), 

is scheduled dynamically: 

 ℛℒ2(𝑡) = σ (
(𝑡−𝑇ramp/2)×8

𝑇ramp/2
) × 𝑅𝐿2

max (11) 

where 𝑅𝐿2
𝑚𝑎𝑥 represents the maximum L2 decay ratio, set to0.9 × 10−5, and 𝑇𝑟𝑎𝑚𝑝 de-

fines the number of steps over which the decay ramps up to its maximum, set to 

100,000. σ(⋅) signifies the sigmoid function. Additionally, a specific L2 penalty with a 

coefficient of 1 × 10−3 is applied to the squared difference between weights of corre-

sponding encoder layers (if a dual-encoder setup is relevant). Regarding the DenseNet-

based feature extraction component (as described in Section 3.4), architectural choices 

include setting the number of layers 𝑛 within each dense block to 8 and the growth rate 

𝑔 to 20. The initial feature map reduction ratio η is 0.3, and the transition layer com-

pression factor θ  is 0.5. To manage computational resources, maximum sequence 

lengths are enforced via truncation: 48 tokens for MultiNLI, 32 for SNLI, and 24 for 

QQP. Following established practice [21], the MultiNLI training incorporates 15% of 

the SNLI dataset. 

5 Results and Analysis 

5.1 Model Performance Evaluation 

Table 1 presents a performance comparison between CIRN and various competing ap-

proaches across 10 benchmark datasets. Consistent with expectations, methods based 

on pre-trained language models significantly surpass non-pretrained counterparts, ow-

ing to the extensive knowledge acquired during pre-training and sophisticated contex-

tual representation capabilities. Our proposed CIRN demonstrates notable improve-

ments over strong baseline models. When integrated with BERT-base, it achieves an 

average accuracy gain of 0.8%, and with BERT-large, the improvement is 0.7%. These 

results highlight the efficacy of CIRN for tasks requiring nuanced language under-

standing, such as neural language inference. Furthermore, CIRN surpasses the perfor-

mance of RoBERTa-base [4] by 1.5% and RoBERTa-large by 0.5% on average across 

the evaluated datasets. We attribute these performance enhancements to CIRN's effec-

tive modeling strategy, which concurrently analyzes sentence relationships from both 

fine-grained local interactions and broader global contexts. This multi-perspective ap-

proach enables the model to discern more subtle and intricate semantic connections that 

might be missed by methods focusing on only one level of analysis. The empirical ev-

idence strongly suggests that incorporating mechanisms to model both local difference 

information and global semantic context, as CIRN does, is advantageous for semantic 

analysis tasks. Overall, the experimental results position CIRN as a highly competitive 

method for evaluating semantic similarity and related tasks, empirically validating the 

effectiveness of our proposed architecture and approach across diverse benchmarks. 
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Table 1. The performance comparison of CIRN with other methods. 

Model  Pre-

train 

m/mm MRPC QQP STS-B QNLI RTE SNLI Sci SICK Twi MRPC 

BiMPM  72.3/72.1 79.6 85 - 81.4 56.4 - - - - - 

CAFE  78.7/77.9 82.4 88 - 81.5 56.8 88.5 83.3 72.3 - - 

ESIM  75.8/75.6 80.3 88.2 - 80.5 - 88 70.6 71.8 - - 

Transformer  72.3/71.4 81.7 84.4 73.6 80.3 58 84.6 72.9 70.3 68.8 74.4 

BiL+ELMo+Attnt  76.4/76.1 84.6 86.7 73.3 79.8 56.8 89 85.8 78.9 81.4 78.9 

OpenAI GPT  82.1/81.4 82.3 81.3 80 87.4 56 88.4 84.8 79.5 81.9 80.4 

UERBERT  84.2/83.5 88.3 90.5 85.1 90.6 67.1 90.8 92.2 87.8 86.2 86 

SemBERT  84.4/84.0 88.2 90.2 87.3 90.9 69.3 90.9 92.5 87.9 86.8 86.5 

SyntaxBERT  84.9/84.6 89.2 89.6 88.1 91.1 68.9 91 92.7 88.7 87.3 86.3 

DABERT  84.9/84.7 89.1 91.3 88.2 91.4 69.5 91.3 93.6 88.6 87.5 86.7 

BERT-Base  84.3/83.7 87.2 89.1 86.8 90.4 67.2 90.7 91.8 87.2 84.8 85.8 

BERT-Base-CIRN  85.1/84.9 89.3 89.1 87.1 91.2 68.5 91.2 92.1 87.8 86.6 86.8 

BERT-Large  86.8/86.3 88.9 89.3 87.6 92.7 70.1 91 94.4 91.1 91.5 88 

BERT-Large-CIRN  86.8/86.7 89.9 90.2 88.1 93 72 91.1 94.3 91.2 92.4 88.8 

5.2 Ablation Study 

To isolate and evaluate the contribution of individual architectural components within 

our proposed model, we conducted an ablation study on the MultiNLI dataset [8]. The 

results of this analysis are presented in Table 2. First, we assessed the impact of the 

interaction mechanism. Removing the component responsible for element-wise inter-

actions (specifically, the Hadamard product) resulted in a noticeable decrease in per-

formance, with accuracy dropping from 85.1% to 84.6% on MNLI. This finding under-

scores the utility of this interaction feature for capturing fine-grained semantic relation-

ships between the input sequences. Second, we examined the role of the DenseNet 

module. Excising DenseNet from the architecture led to a more significant performance 

decline, reducing accuracy by 1.2% on MNLI. This highlights DenseNet's crucial func-

tion in effectively extracting and consolidating high-level features and complex seman-

tic patterns derived from the text interactions. Third, the advantages of multi-layer 

representation integration were evaluated. When the model was restricted to using 

only the semantic information from the final layer of the underlying BERT encoder, 

performance degraded considerably compared to the full model which leverages repre-

sentations from multiple layers. This result confirms the importance of integrating hi-

erarchical semantic information captured across different depths of the Transformer 

architecture. Collectively, these ablation experiments validate that the superior perfor-

mance of our model is not attributable to a single component but arises from the syner-

gistic contribution of its key elements. Both the detailed interaction modeling (via the 

interaction matrix) and the deep feature extraction capabilities facilitated by DenseNet, 

built upon multi-layer semantic inputs, are integral to the model's effectiveness. 



Table 2. Results of ablation experiment of various composition functions. 

Ablation Experiments 
Dev Accuracy 

Matched Mismatched 

1. CIRNbert base 85.1 84.9 

2. CIRNbert base - Remove first 11 layer 84.6 83.9 

3. CIRNbert base - Remove interaction matrix 84.7 84.1 

4. CIRNbert base - Remove feature extraction 83.9 83.4 

6 Conclusion 

In this paper, we delve into multi-level semantic feature extraction and propose a Cas-

caded Interactive Reasoning Network (CIRN). By aggregating multi-level semantic in-

formation, CIRN improves the accuracy of natural language reasoning, while CIRN 

breaks away from the limitations of traditional alignment. It encodes high-order com-

plex relationships between sentence pairs, considering not only simple word-to-word 

connections, but also deeper lexical and semantic associations. This expands the recep-

tive field of the model and enhances its ability to capture complex semantics. The ex-

perimental results on 10 public datasets show consistent improvements, especially the 

significant improvement in robustness tests, highlighting the effectiveness of CIRN. 
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