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Abstract. The accurate segmentation of brain tumor is important not only for 

treatment planning, but also for follow-up evaluations. However, the inadequacy 

of annotated medical images poses challenges in training the brain tumor seg-

mentation models. This paper addresses this issue by presenting a new method 

called Deformation Tumor Synthesis with Model-Data Adaptive Supervision 

(DSMA). DSMA consists of data synthesis and weight allocation. The Defor-

mation Tumor Synthesis (DTSS) strategy combines the morphological features 

of real tumors and adopts a unique iteration synthesis and fusion mechanism to 

generate diverse derived synthetic data customized for each set of real data. The 

Model-Data Adaptive Supervision (MAS) strategy dynamically filters and allo-

cates the loss weights of synthetic data based on the real-time performance of the 

segmentation model to ensure the positive effects of adding synthetic data. The 

experimental results on the publicly available MRI brain imaging datasets 

BraTS2019 and BraTS2020 indicate that the proposed method achieves high-

quality data synthesis and effectively improves the performance of the segmen-

tation model. 

Keywords: brain tumor segmentation, Deformation Tumor Synthesis, iteration 

synthesis, Model-Data Adaptive Supervision. 

1 Introduction 

Using artificial intelligence methods for high-quality segmentation of medical images 

to delineate organs and lesion areas can greatly improve doctors' work efficiency and 

diagnostic reliability [1-4]. 

2D medical image segmentation is efficient and easy to implement, but it has limi-

tations in accurately capturing spatial information and handling complex anatomical 

structures. The significant advantage of 3D medical image segmentation lies in its abil-

ity to capture spatial information, making it possible to extract spatial relationships and 

contextual information [5-6]. However, to train the AI segmentation model to achieve 

the desired effect, a large amount of labeled data is needed. Compared to the field of 

natural images, labeling medical images not only relies on extensive medical expertise 



but also involves privacy protection and high data costs [7-8]. At this point, data syn-

thesis can alleviate the problem of scarce labeled data. 

Methods based on GAN have also been proposed for synthesizing medical images 

[9-13], capturing features that represent high-level semantic information of images 

through generator networks and discriminator networks. Diffusion models [14] have 

recently performed well in generating high-quality images, but their performance is 

highly dependent on sampling frequency, and the time cost of generating images is 

significantly higher than that of other generative models. Synthetic images, as new sam-

ples, broaden the scale, shape, and positional information, enhancing the feature distri-

bution covered by the original dataset and providing more training material for segmen-

tation networks [15]. 

Due to the diversity of tumor types, conventional methods struggle to limit the in-

formation of the affected areas, making it difficult to obtain synthetic images that meet 

the requirements for model training. Generating synthetic tumors [16-21] to expand 

data samples represents a synthetic strategy. The main challenge of synthetic tumors 

lies in integrating comprehensive information to narrow the gap with real data, which 

limits their application in model training. To obtain high-quality synthetic data for seg-

mentation model training, this paper proposes a Deformation Tumor Synthesis with 

Modal-Data Adaptive Supervision (DSMA) method. Inspired by the tumor generation 

strategy [16], we randomly micro-modify the tumors in real data through a unique iter-

ative synthesis and fusion mechanism, obtaining rich and realistic derived synthetic 

data based on real data to provide abundant training samples for the segmentation 

model. Then, by designing a mechanism for dynamically allocating loss weights, the 

model can assess the quality of synthetic data based on real-time performance, allowing 

it to better filter and utilize synthetic data, ensuring that the inclusion of synthetic data 

positively impacts model performance. The contributions of this paper are as follows: 

-We designed a Deformation Tumor Synthesis (DTSS) strategy. First, we con-

structed a deformation tumor entity by referencing the morphological characteristics of 

real tumors, and then obtained the deformation tumor through an iterative synthesis 

mechanism, which was then fused with real data to obtain diversified derived synthetic 

data. This synthesis strategy does not require annotation costs, and the randomness of 

iterative synthesis expands the characteristics of the derived synthetic data tumors. At 

the same time, since the synthetic data is based on real data, the generated data will be 

more realistic. 

-We designed a Model-Data Adaptive Supervision (MAS) strategy for dynamically 

screening and allocating loss weights for synthetic data. The quality of synthetic data 

is judged adaptively by the model, and the advantage of this strategy is that it can pre-

vent the model from learning towards overfitting, and it can selectively extract features 

from low-quality samples. The model can extract more features from derived synthetic 

data, thus achieving more effective model training. 

-The experimental results show that the method in this paper achieves high-quality 

data synthesis, and combined with the model data adaptive supervision strategy, effec-

tively improves the performance of the segmentation model. 
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2 Related work 

2.1 Medical image segmentation 

Çiçek et al. [22] expanded the U-Net [23] architecture by Ronneberger et al., replacing 

all 2D operations with 3D operations while implementing dynamic elastic deformation 

to effectively enhance data during the training process. Xing et al. proposed a novel 

nested modality-aware transformer called NestedFormer [24] to explicitly explore the 

intra-model and inter-modal relationships in brain tumor segmentation from multi-

modal MRI. Lin et al. introduced a new FCN architecture called RefineU-Net [25] to 

improve the performance of U-Net in medical image segmentation. Mecheter et al. pro-

posed a 3D CNN-based network [26] that includes channel squeeze and excitation 

(cSE) and spatial squeeze and excitation (sSE) modules, which are used to dynamically 

adjust and emphasize important features during the feature extraction process. Bruzadin 

et al. introduced a new deep learning method called "Learning Label Diffusion" (LLD) 

[27] for semi-automatic segmentation of lungs in CT images, particularly targeting lung 

infections from COVID-19. Medical image data synthesis. 

2.2 Medical image data synthesis 

Hong et al. expanded on StyleGAN2, called 3D-StyleGAN [28], which inherits the 

controllability and interpretability of the style vector research from the original Style-

GAN2, including projection and reconstruction of unseen real images in the latent space 

and style mixing. Sun et al. proposed a hierarchical GAN model [29] that generates 

low-resolution versions of images and randomly selected high-resolution image sub-

volumes while employing an encoder with a similar hierarchical structure to extract 

features from the images. Zia et al. introduced VANT-GAN [12], which combines the 

concept of residual GAN and utilizes the capabilities of cycle-consistent GAN to gen-

erate normal images related to anomalous input images. Bargshady et al. applied Cy-

cleGAN technology to achieve the mutual conversion generation of COVID-19 X-ray 

images and normal images [13]. Shin et al. proposed a framework utilizing Conditional 

Generative Adversarial Networks (Conditional GAN) and additional conditions, intro-

ducing a network for training composite input condition images based on edge filtering 

to synthesize polyp images [30]. Bai et al. proposed a new method called BSGAN-

ADD [31], which enhances the extraction of more representative high-dimensional 

brain features by generating augmented two-dimensional brain slice images, thereby 

improving diagnostic performance for early detection of Alzheimer's disease (AD). Lyu 

et al. used pseudo-labels to guide the synthesis of COVID-19 images, integrating syn-

thetic images into model training by combining single-stage synthetic auxiliary cross 

pseudo-supervision (SACPS) and multi-stage synthetic auxiliary self-training (SAST) 

methods [32]. Wang et al. introduced a novel Poisson mixture data augmentation 

(PBDA) algorithm [33] for generating synthetic diabetic retinopathy images to assist in 

segmentation tasks. Horvath et al. designed a dual-channel generator trained through 

cycle consistency to generate tumor image labels using real anatomical data [34]. 



3 Method 

DSMA uses deformation tumor fusion to expand data, combining Model-Data Adap-

tive Supervision to filter data, and applies it to 3D brain tumor segmentation. In terms 

of data expansion, deformation tumor monomers are created based on the basic mor-

phology of the tumor, and multiple iterations of synthesis are performed by combining 

the lesion locations and texture information from real data to obtain deformation tu-

mors. Finally, these are fused with real data to make minor modifications to the tumors, 

resulting in derived synthetic data. In terms of data filtering, the model adaptively su-

pervises the participation level of synthetic data in real-time based on its performance 

at different stages on real data during the training process, allowing the model to au-

tonomously and dynamically utilize the information from synthetic data and ensuring 

that the inclusion of synthetic data has a positive impact on the model's training. 

DSMA includes two parts: Deformation Tumor Synthesis (DTSS) and Model-Data 

Adaptive Supervision (MAS). The model training is divided into two stages. In the first 

stage, only real data is used to train the segmentation model to achieve a certain level 

of performance. In the second stage, the DTSS strategy is introduced, generating cor-

responding derived synthetic data while training with real data, and both are included 

in the training. At the same time, the MAS strategy is introduced, where the model 

dynamically selects and allocates the loss weights of synthetic data based on real-time 

segmentation performance. The training framework of the experiment is shown in Fig. 

1. 

 

Fig. 1. DSMA training framework. The entire training process is divided into two stages. 
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3.1 Deformation Tumor Synthesis 

The Deformation Tumor Synthesis mainly includes four steps: Deformation Area Se-

lection, Construction of Deformation Tumor Monomer, Tumor Iteration Synthesis, and 

Tumor Fusion. The DTSS process is shown in Fig. 2. 

 

 

Fig. 2. The process of Deformation Tumor Synthesis. 

Deformation Area Selection. The deformation area is a blank space used for the iter-

ative generation and collision of tumor monomers, mapping to the lesion location in the 

original data. We extract the lesion location information from the real data to construct 

the deformation area, which is determined by the following formula: 

 d(x, y, z) = l(x, y, z) × m(x, y, z), (1) 

where l(x, y, z) represents the annotated data and m(x, y, z) is a threshold mask whose 

threshold is determined by the lesion area of the annotated data. 

Construction of Deformation Tumor Monomer. Tumor cells are mostly close to a 

spherical shape, and then they continuously grow, gather, and spread from the center. 

Based on this principle, we choose an ellipsoid as the basic shape for constructing the 

deformation tumor monomer. The axis lengths of the ellipsoid in the x, y, and z direc-

tions are randomly selected from the given range (rm n, rmax) of the size r of the defor-

mation tumor monomer. Subsequently, a certain degree of elastic deformation is 
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applied to each generated ellipsoid to enhance the diversity of tumor textures, making 

them closer to the characteristics of real tumors [23,35], ultimately resulting in the de-

formation tumor monomer. 

Tumor Iterative Synthesis. We extract texture information from the lesion locations 

of real data and fill the tumor monomers at the pixel level. Then, we iteratively generate 

tumor monomers in the deformation area. When the real tumor collides with the defor-

mation tumor monomer in position, the texture of the conflict area is randomly retained, 

overlapped, or reduced, thereby affecting the morphology and texture of the tumor. 

Retention means no changes are made. Overlapping means adding at the pixel level. 

Reduction means subtracting or deleting at the pixel level. Finally, an iterative tumor 

prototype is generated, denoted as t(x, y, z). Subsequently, a Gaussian filter with a stand-

ard deviation of σ(g(x, y, z; σ)) is applied to blur the iterative tumor prototype to gener-

ate the deformation tumor T(x, y, z), where σ represents the standard deviation. The 

deformation tumor is given by the following formula: 

 T(x, y, z) = t(x, y, z) ⊗ g(x, y, z; σ). (2) 

Tumor Fusion. In order to obtain derived synthetic data, it is necessary to fuse the 

deformation tumor into the real data to modify the tumors. For the labels, the defor-

mation tumor are directly superimposed onto the labels to obtain a new label GL, which 

is fused by the following formula: 

 GL = L + Gt, (3) 

where L represents the label data, Gt represents the deformation tumor, and GL repre-

sents the synthesis label. For images, we first extract the texture i of the real image and 

the lesion area l in the label, then add Gaussian noise to Gt to obtain Gt
' , and obtain the 

fuzzy texture l
'
 of the lesion area through the following formula: 

 l
'
 = (i – Gt

') ⊙ l, (4) 

where ⊙ represents point-wise multiplication. Then l
'
 is fused to the lesion area of the 

real image through the following formula: 

  ' = i ⊙ (1 – l) + l
'
. (5) 

Finally, replace the lesion part in the real data with the fused lesion data  ', thereby 

obtaining the derived synthetic image data. The actual synthesis effect comparison ex-

ample is shown in Fig. 3. 
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Fig. 3. Example of comparing synthesized data with real data. 

3.2 Model-Data Adaptive Supervision 

We enrich tumor features by constructing derived synthetic data through random itera-

tions of tumor synthesis, which gives the model a chance to learn more features with 

limited data, thus improving segmentation performance. However, the differences be-

tween the derived synthetic data and the real data are not explored from a specialized 

perspective, so it is difficult to ensure that the quality of the synthetic data is all optimal. 

For example, the real data may be overly modified so that it seriously deviates from the 

actual situation of the brain, or the real data may be too slightly modified so that it 

differs too little from the original data. Therefore, in order to maximize the positive 

impact of derived synthetic data on model training, we propose a Model-Data Adaptive 

Supervision (MAS) strategy that allows the model to autonomously choose the data to 

learn based on its own performance. The method dynamically adjusts the participation 

level of each synthetic data in different training stages, which is reflected in the adjust-

ment of weights in the loss function. The weight   
 
 assigned to the j-th synthetic data 

in the k-th epoch of training is determined by the following formula: 

   
 
 = 

{
 
 
 
 

 
 
 
 1, where Lk

 
∈[η

 
 – θ , η  + θ ],

(η
 
 – θ ) > 0, (η

 
 + θ ) < 1.

–
1

β(2θ  + β)
[L 
 
 – (η

 
 – θ  – β)][L 

 
 – (η

 
 + θ  + β)],

where L 
 
∈(max(0, η

 
 – θ  – β) , η

 
 – θ ),

or L 
 
∈(η

 
 + θ , m n(η  + θ  + β, 1)).

0, where L 
 
 ≤ (η

 
 – θ  – β)

or L 
 
 ≥ (η

 
 + θ  + β).

, (6) 

where L 
 
 represents the segmentation accuracy of the model on the j-th synthetic data 

after k epochs of training. η
 
 represents the average segmentation accuracy of the model 

on real data during the k-th epoch of training, which is determined by the following 

formula: 

FLAIR T1 T1CE T2
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ata
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 η
 
 = 

∑ L 
'n

 =1

n
, (7) 

where n represents the scale of the real data involved in training, and L 
'  represents the 

segmentation accuracy of the model on the j-th real data after the k-th epoch of training. 

θ  represents the expansion width in the k-th epoch of training, used to broaden the 

model's acceptance range for data quality. It is determined by the following formula: 

 θ  = 
L max – L m n

2
 + c, (8) 

where L max and L m n represent the maximum and minimum segmentation accuracy of 

the model on the real data participating in the k-th epoch of training, respectively. The 

parameter c is an adjustable hyperparameter that can be further adjusted based on actual 

conditions to refine the expansion width. 

The weight function we designed is a piecewise function that is centrally symmetric, 

composed of constant functions and quadratic functions. The constant function is used 

to determine high-quality data that is suitable for the current model training iteration. 

η
 
 determines the midpoint of the constant function, and θ  expands the model's adapt-

ability range. Synthetic data corresponding to the segmentation accuracy interval within 

[η
 
 – θ , η  + θ ] will fully participate in training, with a loss weight allocation of 1. 

Considering that the learning value of low-quality synthetic data is low, adding it to 

the training may reduce the model's performance, and high-quality data should not tend 

to be memorized, which may lead the model towards overfitting. Therefore, the model's 

segmentation accuracy for synthetic data in the k-th training epoch is adaptively 

weighted using the properties of a concave function when it is in the ranges (max(0, 

η
 
 – θ  – β), η

 
 – θ ) or (η

 
 + θ , min(η

 
 + θ  + β, 1)). In this weight function, a down-

ward-opening quadratic function is used for adaptation, with its shape determined by 

η
 
, θ , and β. The coefficients of the quadratic function are mainly determined by three 

data points: the adaptation midpoint m, the adaptation boundary point u, and the discard 

point q. There is only one adaptation midpoint m, and the weight function does not pass 

through this point, but the corresponding quadratic function does, with its value being 

η
 
, representing the model's average segmentation accuracy for real data in the k-th 

training round, determined by the following formula: 

 η
 
 = –

b

2a
, (9) 

where a and b represent the coefficients of the quadratic term and the linear term of the 

quadratic function, respectively. The boundary point u corresponds to the point where 

the loss weight allocation is 1, and there are two such points, representing the boundary 

points of the high-quality interval identified by the current stage model, reflected in the 

function as u1((η
 
 – θ ), 1) and u2((η

 
 + θ ), 1). The discarded point q corresponds to 

the point where the loss weight allocation is 0, and there are also two such points, indi-

cating that the quality of the samples is low and should not be included in training, 

serving as the boundary for evaluating whether data should be included in training, 

reflected in the function as q
1
((η

 
 – θ  – β), 0) and q

2
((η

 
 + θ  + β), 0). Whether these 
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two points can be reached on the weight function depends on whether (η
 
 – θ  – β) is 

greater than 0 and whether (η
 
 + θ  + β) is less than 1. β is an adjustable parameter that 

can adjust the sampling range for including synthetic data in training and the rate at 

which weights decrease as data quality declines. Through the above three sets of data, 

the shape and parameters of the quadratic function can be determined. At this point, let 

this quadratic function be: 

 y = a(x – (η
 
 – θ  – β))(x – (η

 
 + θ  + β)). (10) 

By substituting any adaptive boundary point u into the following equation, the undeter-

mined coefficients of the quadratic function can be determined: 

 a((η
 
 – θ ) – (η

 
 – θ  – β))((η

 
 – θ ) – (η

 
 + θ  + β)) = 1. (11) 

This yields a: 

 a = –
1

β(2θ  + β)
. (12) 

Finally, we can obtain the weight function of the quadratic function model in the seg-

mentation accuracy interval (max(0, η
 
 – θ  – β ), η

 
 – θ ) and (η

 
 + θ , min(η

 
 + 

θ  + β, 1): 

   
 
 = –

1

β(2θ  + β)
[L 
 
 – (η

 
 – θ  – β)][L 

 
 – (η

 
 + θ  + β)]. (13) 

In the low accuracy range, as the data quality decreases, the rate of decline in the as-

signed weight values also becomes faster, until the discard point q is reached and data 

is discarded. The advantage of this approach is that it can fully utilize data of varying 

quality. A similar effect is observed in the high accuracy range, which can to some 

extent prevent the model from excessively memorizing data and thus shifting towards 

overfitting. 
When the segmentation accuracy of the model in the k-th epoch of training is lower 

than (η
 
 – θ  – β) or higher than min((η

 
 + θ  + β), 1), the synthetic data does not 

participate in training, and the loss weight allocation is 0. The weight function model is 
shown in Fig. 4. 



 

Fig. 4. Weighting function model diagram 

3.3 Loss function 

We use the Dice loss as the loss function. Let the model's prediction be represented by 

P and the true label by G. The Dice loss is defined as: 

       = 1 – 
2∑ Pvv Gv

∑ (Pv + Gv)v
, (14) 

where Pv and Gv represent the predicted result and the true label value of the v-th pixel 

point, respectively. According to the method proposed in Section 3.2, dynamic loss 

weights are assigned to each synthetic data for each training epoch. The loss function 

     
   

 of the j-th synthetic data in the k-th training epoch is defined as: 

      
    =   

 
     . (15) 

4 Experiments 

4.1 Datasets and evaluation metrics 

To verify the effectiveness of this method, this study evaluated the performance of 

DSMA on two publicly available 3D multimodal datasets, BraTS2019 and BraTS2020 

[36,37]. We randomly divided each dataset into two parts: 80% for training and 20% 

for testing. DSMA was applied to the training part of the dataset, and the comparative 
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methods were also applied to the training part of the dataset. To obtain labels for the 

comparative methods, an additional teacher model identical to the training model was 

constructed during actual training. The teacher model updates the network parameters 

through exponential moving average (EMA), and synthetic data is processed through 

the teacher model to obtain pseudo-labels. Each synthetic data generated by the com-

parative methods was subjected to different random noise to obtain four noisy datasets, 

simulating the quantity of multimodal data. The experiments used the Dice similarity 

coefficient (DSC) as the evaluation metric. 

BraTS2019. This dataset contains MRI data from 259 cases of high-grade glioma 

(HGG) and 76 cases of low-grade glioma (LGG), with four modalities: FLAIR, T1, 

T1CE, and T2. The task involves segmenting three regions: whole tumor (WT), en-

hancing tumor (ET), and tumor core (TC). In this study, only HGG data was used for 

the experiments. 

BraTS2020. This dataset contains MRI data of 369 cases of brain tumors, with 4 mo-

dalities: FLAIR, T1, T1CE, and T2. Similarly, the task is to segment the WT, ET, and 

TC regions. 

4.2 Implementation details 

The experiment was conducted on PyTorch 2.0, CUDA 12.2, the Monai framework, 

and the NVIDIA GTX 3090 GPU. To ensure a fair comparison, the experiments were 

executed on the same codebase, using consistent evaluation methods and training pro-

cedures. The initial parameters of the segmentation model remained unchanged 

throughout the experiment. Training phase 1 used only real data, and after 800 epochs, 

it entered training phase 2, introducing the DSMA method and evaluating it. 

The key parameter settings include using the AdamW [38] optimizer with a weight 

decay set to 10-5. The learning rate for training phase 1 is set to 10-4, and it is reduced 

to 10-5 in training phase 2. The range for deformation tumor monomer size r is set to 

[3,5]. Each time a tumor monomer is generated, its size in the x, y, and z directions is 

randomly selected from r, with the number of iterations set to [3,10], and the number 

of iterations required to generate deformation tumors is randomly selected within this 

range. The c in MAS is set to 0.00002, which is used to adjust the expansion width of 

the weight function. The settings of the key parameters are determined based on exper-

imental testing and experience. 

4.3 Result 

The experiment validates the DSMA method of this paper on the 3D U-Net [22] and 

NestedFormer [24] segmentation models, and compares it with GAN synthesis meth-

ods: 3D-StyleGAN [28] and HA-GAN [29], as well as diffusion model synthesis meth-

ods: Wu et al. [39] and Yu et al. [40]. The experimental results are shown in Table 1 

and Table 2. The segmentation results are shown in Fig. 5. 



 

Fig. 5. Visualization of the segmentation results of each method 

The results in Table 1 indicate that when using 3D U-Net [22] as the segmentation 

network, the proposed method DSMA effectively improves the model's segmentation 

performance on two datasets. In the BraTS2019 and BraTS2020 datasets, the average 

Dice Similarity Coefficient (DSC) of the proposed method DSMA reached 88.49% and 

83.59%, respectively, which is an average increase of 0.59% and 0.96% compared to 

training with only real data. For the methods that introduced 3D-StyleGAN [28] and 

HA-GAN [29], the average DSC results did not show significant improvement, mainly 

due to the limited accuracy of the generative networks and the constraints of the training 

data, which resulted in insufficient recovery of various details in the anatomical struc-

tures of the generated images, affecting the training effectiveness of the model. For the 

methods introduced by Wu et al. [39] and Yu et al. [40], there was a slight increase in 

the average DSC results, mainly because the diffusion models have better sampling 

performance and can generate higher quality synthetic data. However, they are still rel-

atively dependent on the training data, and the pathological features of the synthetic 

data are still difficult to expand, leading to limited improvement in model performance. 

Table 2 uses the same dataset as Table 1, but Table 2 employs NestedFormer [24] as 

the segmentation network, achieving a higher DSC in various segmentation tasks com-

pared to Table 1, mainly due to the more advanced segmentation network architecture 

having better feature extraction capabilities. In the BraTS2019 and BraTS2020 datasets, 

the average DSC of the proposed method DSMA reached 91.45% and 87.81%, respec-

tively, which is an improvement of 1.37% and 1.84% compared to training with only 

real data. In contrast, the proposed method DSMA is more effective in enhancing the 

performance of the segmentation model. 

In summary, the method DSMA in this paper can further enhance the model when its 

performance reaches or approaches a bottleneck. At the same time, the derived syn-

thetic data is generated one-to-one in combination with real data, allowing it to exhibit 

textures and features similar to the dataset to a certain extent. By randomly micro-mod-

ifying tumors, the derived synthetic data can construct rich tumor features that real data 

does not possess while maintaining a certain level of data quality. Furthermore, the 

MAS strategy of this method enables the model to dynamically filter and learn from the 

derived synthetic data at different stages, fully utilizing its data characteristics and en-

suring that the inclusion of derived synthetic data can effectively improve the model's 

performance. 
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Table 1. Comparative experimental results between BraTS2019 and BraTS2020 on 3D U-Net 

Dataset BraTS2019 BraTS2020 

Methods 
DSC(%) 

WT TC ET AVE WT TC ET AVE 

3D U-Net[22] 88.39 90.15 85.14 87.90 88.94 80.75 78.21 82.63 

3D-StyleGAN[28] 88.43 90.01 85.15 87.86 88.68 80.36 77.86 82.30 

HA-GAN[29] 88.39 90.07 85.16 87.88 88.82 80.43 77.81 82.35 

Wu et al.[39] 88.69 90.34 85.34 88.12 89.15 80.94 78.09 82.72 

Yu et al.[40] 88.84 90.45 85.42 88.24 89.25 81.12 77.98 82.79 

DSMA(Ours) 89.17 90.75 85.54 88.49 89.43 82.62 78.73 83.59 

Table 2. Comparative experimental results between BraTS2019 and BraTS2020 on Nested-

Former 

Dataset BraTS2019 BraTS2020 

Methods 
DSC(%) 

WT TC ET AVE WT TC ET AVE 

NestedFormer[24] 91.29 92.62 87.09 90.33 90.90 86.54 80.47 85.97 

3D-StyleGAN[28] 91.24 92.53 87.18 90.32 90.72 86.04 81.18 85.98 

HA-GAN[29] 91.27 92.48 87.22 90.32 91.26 86.26 81.23 86.25 

Wu et al.[39] 91.47 93.07 87.80 90.78 91.79 87.31 82.21 87.10 

Yu et al.[40] 91.85 93.33 87.72 90.93 91.90 87.63 82.49 87.34 

DSMA(Ours) 92.21 93.68 88.46 91.45 92.06 88.34 83.03 87.81 

4.4 Ablation studies 

The method DSMA mainly consists of two parts: Deformation Tumor Synthesis 

(DTSS) and Model-Data Adaptive Supervision (MAS), which are used for deriving 

data synthesis to expand data features and for data selection and weight allocation, re-

spectively. DTSS generates derived synthetic data by merging the designed defor-

mation tumor with real data. MAS dynamically selects and allocates the loss weights 

of the derived synthetic data through a designed weight function. For the evaluation of 

the DTSS method, no methods were applied, and only simple data augmentation tech-

niques such as translation, random rotation, and center cropping were applied to the 

real data before adding it to the training, and MAS was removed separately. The results 

of the ablation experiments obtained are shown in Table 3 and Table 4. 

Table 3 and Table 4's ablation experiments indicate that compared to simple data aug-

mentation, incorporating derivative synthetic data generated by DTSS into training can 

further improve the model's segmentation performance. When combined with the MAS 

strategy, the model's segmentation performance is further enhanced, which suggests 

that due to the lack of design and selection of professional metrics, it is difficult to avoid 



the inclusion of low-quality derivative synthetic data generated by DTSS in training, 

thereby affecting the model's performance. Through the supervision strategy provided 

in this paper, the synthetic data is reasonably selected and assigned loss weights, which 

can further ensure that the inclusion of derivative synthetic data positively contributes 

to the improvement of model performance. 

Table 3. Ablation study of DSMA in the 3D U-Net model on BraTS2020 

Model DTSS MAS DSC(%) 

3D U-Net[22] 

  WT TC ET AVE 

  88.94 80.75 78.21 82.63 

√  89.08 81.51 78.43 83.01 

√ √ 89.43 82.62 78.73 83.59 

Table 4. Ablation study of DSMA in the NestedFormer model on BraTS2020 

Model DTSS MAS DSC(%) 

NestedFormer[24] 

  WT TC ET AVE 

  90.90 86.54 80.47 85.97 

√  91.76 87.68 82.09 87.18 

√ √ 92.06 88.34 83.03 87.81 

5 Conclusion 

This article proposes a method for generating synthetic data of deformed tumors and 

combines model data adaptive supervision to expand the data and enhance the perfor-

mance of segmentation models, addressing the issue of scarce medical images. The 

characteristics of the research method in this article are: constructing deformed tumors 

through iterative synthesis, obtaining derived synthetic data by merging with real data, 

and filtering and selectively learning from the derived synthetic data through dynamic 

allocation of loss weights to ensure that the introduction of the method has a positive 

impact on the model's segmentation performance. Experimental results show that the 

method in this article can generate derived synthetic data, providing the possibility for 

the model to learn potential features that are not present in the original data, thereby 

effectively improving model performance; adjusting the participation level of derived 

synthetic data of different qualities in training through the filtering strategy of model 

data adaptive supervision further enhances the performance of the segmentation model. 

In future research, we will further explore the application of image synthesis strategies 

on more organs to generate richer and higher-quality synthetic data to comprehensively 

assist segmentation tasks. 
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