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Abstract. Graph contrastive learning has significantly advanced unsupervised 

graph representation learning, achieving performance comparable to supervised 

models. However, the robustness of graph contrastive learning models remains a 

major challenge. Most existing adversarial attacks are designed for supervised 

settings, making them inapplicable when label information is unavailable in un-

supervised scenarios. To address this limitation, we propose D2AGCL, a distri-

bution-aware unsupervised attack specifically designed for graph contrastive 

learning models. Our approach poisons graph data to degrade the overall quality 

of graph contrast learning embeddings by dynamically adjusting attack zones and 

gradient aggregation strategies, thus compromising the performance of down-

stream tasks. Extensive experiments on multiple benchmark datasets demonstrate 

that D2AGCL outperforms existing unsupervised attack methods and even 

achieves comparable or superior performance against supervised adversarial 

baselines. 

Keywords: Graph Contrastive Learning, Unsupervised Attack, Distribution 

Shift. 

1 Introduction 

Graphs are a flexible and powerful data structure that naturally represent complex rela-

tionships and interactions. In recent years, with the exponential growth of data and the 

widespread application of complex systems, graph-structured data has been extensively 

used in various domains. With the rapid advancement of deep learning, researchers 

have proposed a range of graph-based machine learning models to extract structural 

information from graphs. Notable models include Graph Neural Networks (GNNs), 

DeepWalk [5], and Node2Vec [11], which embed graph data into a low-dimensional 

space to facilitate downstream tasks such as classification, regression, clustering, and 

recommendation[15]. The quality of these embeddings directly impacts the perfor-

mance of downstream tasks. 

However, recent studies have shown that these models exhibit significant vulnera-

bility to adversarial attacks [16, 17, 18], such as node feature perturbations, topological 

manipulations, and fake node injections, which can substantially degrade model 

 
 



performance and pose security risks in real-world applications. Therefore, developing 

robust graph learning models against adversarial attacks is a critical research direction. 

Existing robustness studies, however, have predominantly focused on supervised and 

semi-supervised models [12, 14], despite the fact that many real-world graphs lack la-

beled data [14], and manual annotation is often impractical. This limitation has driven 

the development of unsupervised models, such as DeepWalk [5] and Node2Vec [11]. 

Nevertheless, a significant performance gap remains between these unsupervised meth-

ods and their supervised counterparts. The emergence of Graph Contrastive Learning 

(GCL) has bridged this gap, enabling unsupervised models to achieve performance 

comparable to supervised methods while exhibiting greater resilience against adversar-

ial attacks[4, 19, 21, 22]. This robustness advantage arises because most existing ad-

versarial attack methods rely on label information, which contradicts the fundamental 

setting of unsupervised contrastive learning. As a result, validating the robustness of 

graph contrastive learning models requires unsupervised attack strategies. Despite the 

recent advances in graph adversarial attacks, existing methods either rely on label in-

formation or fail to effectively exploit distribution shift, limiting their applicability to 

unsupervised GCL models. 

To address this challenge, Bojchevski et al. [7] proposed an unsupervised attack spe-

cifically targeting DeepWalk. However, experimental results indicate that this method 

is ineffective against graph contrastive learning models. Later, Zhang et al. [1] intro-

duced CLGA, an unsupervised attack on graph contrastive learning, which leverages 

gradient backpropagation to identify and perturb edges with the highest gradients in the 

adjacency matrix. While CLGA achieves promising attack performance, its gradient-

based edge selection strategy, which perturbs the highest-gradient edges across the en-

tire graph, results in a notable performance gap compared to supervised attacks, such 

as Metattack [8]. Li et al. [2] further improved CLGA and proposed PAGCL. PAGCL 

first performs node injection attacks before flipping edges based on gradient infor-

mation. While this approach indeed enhances attack effectiveness, the introduction of 

fake nodes significantly increases the attack budget, potentially reducing the stealthi-

ness of the attack. 

To narrow the gap between unsupervised and supervised attacks under the same 

budget constraints, we propose D2AGCL, which integrates distribution shift theory 

with gradient-based perturbation strategies, ensuring a more effective and efficient at-

tack without additional computational overhead. By dynamically adjusting the attack 

budget allocation, our approach prioritizes perturbations in regions that contribute the 

most to distribution shift. Notably, D2AGCL achieves performance comparable to su-

pervised attacks without leveraging label information, and in some cases, even sur-

passes them. 

Our Main Contributions Are as Follows: 

• We propose D2AGCL, an unsupervised attack method designed for graph contras-

tive learning. This method does not rely on label information and perturbs the graph 

structure by dynamically allocating the attack budget based on gradient information, 

thereby degrading the performance of various downstream tasks. 
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• We introduce a novel attack budget allocation strategy based on distribution shift 

theory, which enables our attack to strategically perturb critical regions of the graph, 

significantly improving attack efficiency without increasing computational over-

head. 

• We conduct extensive experiments on three benchmark datasets, evaluating both 

node classification and link prediction tasks to demonstrate the effectiveness of 

D2AGCL. The results reveal that D2AGCL achieves performance comparable to 

supervised attack methods in both structural inference scenarios. Besides, We visu-

alize the learned embeddings to show how D2AGCL influences the quality of them. 

2 Preliminary 

2.1 Graph Contrastive Learning 

In graph-based machine learning, we consider a graph structure ( , )G V A= , where V  

is  the set of nodes and A  is  the set of edges. The topological structure of the graph 

can be mathematically represented by the adjacency matrix N NA  , where N V=  

denotes the total number of nodes. can also be used to describe the edge relationships. 

Here, N denotes the total number of nodes. Each node carries feature information, 

which is described by the feature matrix N dX  , where d  represents the feature 

dimension. The objective of graph contrastive learning (GCL) is to train an encoder 

( , )f A X  to generate node embeddings that can be effectively utilized in downstream 

tasks such as link prediction and node classification. 

Currently the most widely used methods, such as the GCA framework proposed by 

Zhu et al. [4], primarily follow a three-stage node-level contrastive learning paradigm: 

1. Multi-View Augmentation. To introduce structured variations, two augmented graph 

views 
1v  and 

2v  are by applying independent random augmentation operators 
1t and 

2t  to the original graph.  

2. Shared Encoder Representation. The augmented views 
1v  and 

2v  are processed by a 

shared-parameter encoder ( , )f A X , producing node embeddings for each node in 

different views.  

3. Contrastive Loss Optimization. A symmetric contrastive loss function is employed 

to pull embeddings of the same node (positive pairs) closer while pushing apart em-

beddings of different nodes (negative pairs). The contrastive loss for node i  in view  

1v is formulated as follows: 

 

1 2

1 11 2 1 2

( , )/
1 2

( , )/( , )/ ( , )/
( , ) log

( )

i i

i ji i i i
i i

j i

e
L

e e e

   

          
 



= −
+ +

 (1) 

Where   denotes the similarity function (e.g., cosine similarity, bilinear similarity, or 

multi-head attention similarity), and  denotes the temperature parameter controlling 



distribution sharpness. Since the loss function is directionally asymmetric, a bi-direc-

tional symmetric loss is adopted to balance both views: 
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by forcing the model to distinguish between embeddings of the same node across dif-

ferent augmented views and negative samples from other nodes, this contrastive 

learning paradigm significantly enhances representation robustness against random 

perturbations, outperforming traditional graph representation learning methods in 

terms of generalization capability. 

2.2 Distribution Shift in Graph Adversarial Attacks 

In gradient-based graph adversarial attacks, Metattack has been widely adopted as a 

baseline model due to its strong performance. Metattack formulates the adversarial at-

tack problem as a bilevel optimization problem and solves it using meta-learning tech-

niques. Studies on Metattack have revealed that gradient-based perturbations are not 

uniformly distributed across the graph. From the perspective of distribution shift [13], 

it has been mathematically demonstrated that perturbations applied to the smaller par-

tition of the dataset can be more effective in amplifying distribution shift, thereby im-

proving the attack’s success rate. 

The concept of distribution shift is prevalent in machine learning and refers to the 

performance degradation of a model when the training and test data distributions dif-

fer[3, 23, 24]. The core issue lies in the fact that distribution shift arises when the dis-

tribution learned during training fails to generalize to the actual test distribution, leading 

to misaligned decision boundaries. There are two highly significant distributions in the 

distribution offset, namely ( , )trainp x y  and ( , )testp x y , which represent the joint proba-

bility distribution of train data and test data. x denotes the input variable, and y denotes 

the output variable. For instance, in graph classification, x  consists of structural infor-

mation, including node attributes and graph topology, while y corresponds to node la-

bels. In unsupervised graph adversarial attacks, the attacker has the ability to modify 

the entire graph structure, including both training and test nodes. Thus, graph adversar-

ial attacks can selectively manipulate local structures, exacerbating the distribution shift 

between training and test nodes, thereby systematically degrading the model’s infer-

ence capability. For a clean graph, we assume that ( , )trainp x y  and ( , )testp x y match the 

true distribution ( , )p x y . However, in an attacked graph, adversarial perturbations di-

rectly alter the corresponding probability distributions. After applying perturbations,  

( , )trainp x y  and ( , )testp x y  may deviate from ( , )p x y , leading to distribution shift. By 

factorizing the joint distribution ( , )p x y , we obtain the following result: 

 ( , ) ( ) ( | )p x y p y p x y=  (3) 
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x  means structural perturbation of the graph. Eq. 3 implies that when node labels re-

main unchanged, and only the graph structure is perturbed, the primary impact on the 

true distribution stems from modifications to ( | )trainp x y  and ( | )testp x y . Therefore, the 

distribution shift in graph adversarial attacks can be quantified as follows: 

 
1

( ( | ), ( | ))
| |

KL train i test i

y C

D p x y c p x y c
C 

= =  (4) 

C represents the total number of classes, 
ic denotes the class of i , and 

KLD  is the Kull-

back-Leibler (KL) divergence, which measures the difference between two probability 

distributions. ( | )train ip x y c= and ( | )test ip x y c= refer to the distribution of node em-

beddings within class 
ic for training and test nodes, respectively. This formula com-

putes the average KL divergence across all classes, quantifying the effectiveness of 

adversarial attacks by measuring how much the distribution of training and test embed-

dings diverges after perturbation. Based on Eq. 4, Li et al. demonstrated that in graph 

adversarial attacks, when the training set is small, uniformly inserting heterophilic 

edges within the training set results in a larger distribution shift. 

3 The Proposed Method 

3.1 Method Overview 

We propose a distribution-aware unsupervised graph contrastive learning attack frame-

work (D2AGCL), designed to poison graph data by dynamically adjusting attack re-

gions and gradient aggregation strategies, thereby degrading the overall quality of graph 

contrastive learning embeddings and ultimately impairing downstream task perfor-

mance. The framework structure is illustrated in Fig. 1.   

D2AGCL integrates adaptive data partitioning and gradient-based information. First, 

it categorizes edges into three regions (Train-Train, Train-Test, Test-Test) based on the 

partitioning of the training and test sets. Attack budgets are allocated from the perspec-

tive of distribution shift, ensuring a targeted perturbation strategy. Within each region, 

nodes with degrees lower than the average are selected to form a candidate edge set, 

enhancing the effectiveness of the attack.  Subsequently, adaptive data augmentation is 

applied to the original graph to generate two contrastive views, which are then pro-

cessed by a shared graph neural network to compute the contrastive loss. The gradient 

of the adjacency matrix is obtained via backpropagation. 

Unlike uniform gradient aggregation, D2AGCL dynamically weights gradients 

based on regional importance—for instance, when the training set size is small, higher 

weight is assigned to Train-Test region gradients—to maximize the distribution shift 

between training and test embeddings.  Finally, the edges with the largest absolute gra-

dient values are iteratively perturbed until the predefined perturbation budget is 

reached. Experimental results demonstrate that D2AGCL significantly outperforms 

baseline methods in node classification and link prediction tasks. Additionally, the ef-

fectiveness of the distribution-aware attack mechanism has been verified. 
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Fig. 1. The overall framework of D2AGCL. It is a single iteration of the attack. The clean graph 

is taken as input, and the output is a perturbed adjacency matrix Â where one edge has been 

modified. In the next iteration, Â is used as input for further attacks.  

3.2 Distribution-Aware Attack Budget Allocation Strategy 

Existing studies indicate that gradient-driven malicious modifications on graphs are not 

uniformly distributed. From the perspective of distribution shift, perturbing nodes in 

the smaller partition of a dataset can significantly amplify the distribution shift, thereby 

enhancing attack efficiency. Given a limited attack budget, dynamically adjusting the 

attack ratio across different partitions based on dataset distribution can effectively im-

prove attack performance. 

we partition the graph edges into three categories based on the division of the train-

ing and test sets: Train-Train (TT), Train-Test (Tt), and Test-Test (tt). The Train-Train 

(TT) region consists of edges connecting two training nodes, the Train-Test (Tt) region 

consists of edges connecting training nodes and test nodes, and the Test-Test (tt) region 

consists of edges connecting two test nodes. Based on this, we define a sensitivity 

weight for each region:  
TTW ,

TtW and
ttW . These weights are computed according to the 

proportion of intra-region edges relative to the total number of edges. Specifically, for 

each region, we denote this proportion as 
i .These weights reflect the contribution of 

different regions to distribution shift and are calculated as follows: 

  
0.5

1
, , { , , }

i
i i

Ei
W i TT Tt tt

E e



−

= = 
+

 (5) 

iE represents the number of edges that can be modified within the corresponding re-

gion, and E is the total number of edges in the dataset.  is a smoothing factor. Specif-

ically, when the training set is small (datasets typically follow a 10%/10%/80% split 

for training, validation, and testing), 
TTW has the highest weight. In this case, the at-

tacker should prioritize perturbing edges within the training set to maximize the em-

bedding discrepancy between the training and test sets. As the training set proportion 
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increases to 50%, the weights across different regions become more balanced, leading 

to a more evenly distributed attack. When the test set proportion is small, 
ttW reaches 

its highest value, causing the attack to be concentrated around the test set. 

Finally, the attack budget is allocated based on the normalized sensitivity weights. 

Therefore, when the dataset is unevenly partitioned, the attack budget is primarily fo-

cused on the smaller partitions, where perturbations have a greater impact on the distri-

bution shift [3]. 

3.3 Gradient-Guided Edge Perturbation 

Efficiently selecting perturbation target edges is crucial in untargeted poisoning attacks 

against graph contrastive learning. In the previous section, we allocated the attack 

budget unevenly based on the dataset distribution. In this section, we focus on selecting 

specific edges to perturb within the allocated budget. We aim to reduce the overall per-

formance of node embeddings learned by the graph contrastive learning model by poi-

soning the graph structure. In contrastive learning, the model employs a contrastive loss 

function to measure embedding quality. The core idea of contrastive loss is to learn 

embeddings by optimizing the distance between positive samples (similar samples) and 

negative samples (dissimilar samples). Specifically, contrastive learning enhances em-

bedding quality by minimizing contrastive loss, which involves reducing the similarity 

between negative samples while increasing the similarity between positive samples. 

This process improves both the discrimination and overall quality of the learned em-

beddings. Consequently, to poison the graph data, we aim to maximize the contrastive 

loss function. This problem can be formulated by Eq. 6:  
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where  represents the contrastive loss function in graph contrastive learning, and f

denotes the encoder.   and    denotes the learnable parameters of the shared encoder 

before and after perturbation. A and X are the adjacency matrix and feature matrix of 

the clean graph, while Â  is the poisoned adjacency matrix. The functions 
1t and 

2t rep-

resent two random graph augmentation operations, yielding the adjacency matrices 
1A

and 
2A corresponding feature matrices 

1X and 
2X . The last constraint in the equation 

limits the number of perturbed edges within a given threshold  . 

Since Eq. 6 represents a bilevel optimization problem with a discrete adjacency ma-

trix, direct gradient computation is infeasible. Following the meta-gradient theory [8], 

we approximate the gradient by back-propagating the contrastive loss and update the 

adjacency matrix accordingly to maximize the loss. For differentiable encoders, such 

as Graph Convolutional Networks (GCNs), the gradient can be computed by Eq. 7. 
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Edges that contain more informative structural signals tend to have a greater impact on 

graph learning models, which is reflected in their larger gradient values. To conduct a 

more effective attack, we prioritize perturbing these high-information edges, as disrupt-

ing them can significantly impair the model's ability to extract meaningful graph repre-

sentations. Our primary goal is to identify and target these crucial edges. 

However, not all random augmentation operations are differentiable. Operations 

such as node addition, node removal, or subgraph sampling introduce randomness, 

making the gradient of the original graph  difficult to compute directly. However, the 

gradients of the two augmented views 
1v  and 

2v , obtained through transformations  

1t  and 
2t , can be computed efficiently. We can’t approximate the gradient of the orig-

inal graph using augmented views, because we cannot determine whether the largest 

gradients in the augmented views result from meaningful structural information or ar-

tifacts of the augmentation process. 

To address this issue, let us revisit traditional graph contrastive learning. The goal 

of contrastive learning is to minimize the difference between augmented views by up-

dating model parameters. Suppose that two contrastive views were identical, in this 

case, their adjacency matrix gradients would be zero. Now, if we introduce augmenta-

tions to generate two distinct views
1v  and 

2v , and an edge exists in 
1v  but is missing 

in 
2v , we expect the gradient in 

1v to be negative and the gradient in 
2v  to be positive. 

This is consistent with the contrastive learning objective, which seeks to reduce the 

differences between views. Thus, to mitigate augmentation-induced noise, we propose 

summing the gradients of corresponding edges across both views, effectively balancing 

positive and negative gradients and minimizing augmentation-related bias. The final 

gradient computation is as follows: 

 
1 2

1

K
i i

i=

 =  +  (8) 

where for each i ,
1

i and 
2

i are the gradients computed from the two augmented views. 

We use  as the final selection criterion for edge perturbation. In the first iteration, we 

train the contrastive model on the input graph to obtain the initial gradient. Using this 

gradient, we select and flip a single edge to maximize the contrastive loss. We then 

update the adjacency matrix and repeat the process in the next iteration. Algorithm 1 

provides a step-by-step overview of the entire attack procedure. A more intuitive illus-

tration can be found in Fig. 1. 

3.4 Complexity 

Our attack method only sorts the gradients based on GCA and filters some nodes, so its 

time complexity is low. The main time is the training process of the model, because we 

only choose to perturb one edge in one iteration. For different models, you can choose 
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to select more than one edge at a time. In addition, the spatial complexity of D2AGCL 

is 2( )O N , where N represents the number of nodes, which is terrible in large graphs. 

However, we can calculate the gradient only for a subset of the graph rather than for 

the whole graph, which is widely used in unsupervised learning. 

 

Algorithm 1:  D2AGCL 

Input: Adjacency matrix of clean graph A, feature matric X, shared differentiable 

encoder f , random augmentation set T, iterations K, total attack budget δ, 

training set split ratio α1, test set split ratio α2. 

Output: Poisoned adjacency matrix Â. 

4. Initialization: 0
i

p = , { , , }i TT Tt tt ; Â A= ; 

5. 1 0.5
1 ( )

TT
w e




−
= + , 1 21 0.5

1 ( )
Tt

w e
 


− − −

= +  , 2 0.5
1 ( )

tt
w e




−
= + ; 

6. Normalize weights , ,
TT Tt tt

w w w ; Allocate attack budgets 
i i

w =  ; 

7. while
ii

p   do:  

8. Train f with  Â  and X ;  

9. 0 = ; 

10. for k = 1 to K do 

11. Sample two stochastic augmentations 
1 2,k kt t T ; 

12. Obtain two views 1 1 1
ˆ( , ) ( , )k k kA X t A X= , 2 2 2

ˆ( , ) ( , )k k kA X t A X= ; 

13. Forward propagate 
1 1 2 2( , ),( , )k k k kA X A X through f  and compute contrastive 

loss ; 

14. Obtain the gradients of 
1

kA and
2

kA : 
1 1 2 2

,
k k k k

A A  =   =  ; 

15. 
1 2

k k =  + ; 

16. end for 

17. Flip one edge with both the largest absolute gradient in  and the correct direc-

tion, i.e., if the index of the edge is [𝑚, 𝑛], then it should satisfy either ˆ[ , ] 1A m n = ,

[ , ] 0m n   or ˆ[ , ] 0A m n = , [ , ] 0m n  ; 

18. ˆ ˆ[ , ] 1 [ , ]A m n A m n= − ; 

19. 1
i i

p p= + ; 

20. end while 

4 Experiments  

4.1 Setup 

Datasets. To evaluate the effectiveness of our attack method D2AGCL, we conduct 

experiments on three widely used benchmark datasets: Cora, CiteSeer, and PolBlogs. 



These datasets are commonly used in graph-based learning tasks. Specifically, Cora 

and CiteSeer are citation networks, while PolBlogs is a political blog graph, which dif-

fers from the others and its nodes do not contain feature information. Table 1 provides 

a detailed summary of these datasets. 

Table 1. The detailed information about the datasets. 

Dataset Node Edges Classes Features 
Cora 2708 5278 7 1433 
CiteSeer 3327 4552 6 3703 
PolBlogs 1490 16715 2 None 

Baseline.  We compare D2AGCL against five untargeted poisoning attack baselines, 

including four supervised methods: PGD [9], DICE [10], MinMax [9], and Metattack 

[8], as well as three unsupervised methods: Node Embedding Attack (NEA) [7] , CLGA 

[1] and PAGCL[2]. Since supervised attack methods leverage label information as ad-

ditional knowledge, they are generally expected to perform better than unsupervised 

attacks. However, we demonstrate that D2AGCL achieves comparable performance 

and even outperforms certain supervised baselines in specific scenarios. 

Parameter Settings.  To ensure consistency across all attack models, we use a 2-layer 

GCN as a surrogate model to generate the poisoned graph. The poisoned graph is then 

used as the input for GCA [4]. We set three different attack budget thresholds: 0.01, 

0.05, and 0.10, which constrain the maximum number of perturbed edges. These thresh-

olds allow us to compare the attack performance of different models under varying 

attack budgets. For dataset splitting, we follow the standard settings used in [12] for 

Cora and CiteSeer, while for PolBlogs, we split the dataset into 10% for training, 10% 

for validation, and 80% for testing. In [12], the splitting criterion for Cora and CiteSeer 

is as follows: the number of training nodes is determined as 20 times the number of 

classes (e.g., Cora has 7 classes, so the training set contains 140 nodes). The validation 

set consists of 500 nodes, while the test set contains 1,000 nodes. Similarly, for 

PolBlogs, the training set comprises 10% of the total nodes, ensuring that it remains the 

smallest proportion of the dataset. Additionally, we allow dynamic random splits by 

adjusting the dataset ratio. We conduct experiments with different hyperparameter set-

tings, such as the learning rate, to ensure optimal model performance. To maintain fair-

ness in our experiments, we follow the recommendations of Zhu et al. [4] and fix the 

hyperparameters of GCA, including the temperature τ and random augmentation rates. 

Specifically, we set τ = 0.4, edge dropout rates to 0.3 and 0.4, and feature dropout rates 

for the two views to 0.1 and 0.0, respectively. 

4.2 Experimental Results and Analysis 

We validate and evaluate our attack method in node classification and link prediction, 

two common downstream tasks in graph neural networks. In node classification, we 

use the learned node embeddings to train a simple logistic regression model and report 

the classification accuracy. Furthermore, we employ a two-layer MLP (Multi-Layer 

Perceptron) as the projection head to map the embeddings into a new space. We train 
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the MLP using negative sampling and a margin-based loss, enabling the model to per-

form link prediction effectively. Each experiment is repeated 20 times, and we record 

the average accuracy across all runs. 

Table 2. Accuracy of node classification of GCA trained logistic regression model under three 

different attack budgets. The best attack methods are bold, while the second best is underlined. 

Type 
Attack 

Methods 

Cora CiteSeer PolBlogs 

1% 5% 10% 1% 5% 10% 1% 5% 10% 

Supervised 

Metattack 0.7586 0.6928 0.6168 0.5920 0.3986 0.2952 0.8208 0.8039 0.8011 

PGD 0.7680 0.7592 0.7402 0.6098 0.6198 0.6056 0.8100 0.8010 0.7987 

MinMax 0.7624 0.7218 0.6174 0.6302 0.5254 0.5618 0.8016 0.7913 0.7986 

Dice 0.7712 0.7642 0.724 0.6256 0.5774 0.5246 0.8107 0.7847 0.7394 

Unsupervised 

NEA 0.7490 0.7710 0.7670 0.6442 0.6448 0.6608 0.8187 0.8042 0.7892 

CLGA 0.7316 0.7188 0.6814 0.6368 0.5906 0.5368 0.8088 0.7944 0.7726 

PAGCL 0.6752 0.6429 0.5938 0.5410 0.5220 0.5010 0.7845 0.7724 0.7689 

D2AGCL 0.7131 0.6589 0.6464 0.5863 0.5194 0.4382 0.7139 0.6860 0.6605 

Table 3. Accuracy of link prediction of the MLP trained after GCA under three different attack 

budgets. The best attack methods are bold, while the second best is underlined. 

Type 
Attack 

Methods 

Cora CiteSeer PolBlogs 

1% 5% 10% 1% 5% 10% 1% 5% 10% 

Supervised 

Metattack 0.9010 0.8733 0.8500 0.9109 0.8853 0.8544 0.8617 0.8585 0.8635 

PGD 0.9143 0.9073 0.9073 0.9169 0.9248 0.9057 0.8605 0.8584 0.8625 

MinMax 0.9116 0.9004 0.8944 0.9145 0.8890 0.8981 0.9145 0.8890 0.8981 

Dice 0.9046 0.8828 0.8593 0.9137 0.8918 0.8679 0.8551 0.8450 0.8352 

Unsupervised 

NEA 0.9164 0.9099 0.9101 0.9239 0.9168 0.9196 0.8593 0.8543 0.8587 

CLGA 0.9012 0.8741 0.8420 0.9114 0.8911 0.8610 0.8584 0.8598 0.8563 

PAGCL 0.8078 0.7951 0.7769 0.7891 0.7782 0.7617 0.8469 0.8449 0.8379 

D2AGCL 0.8561 0.8228 0.7927 0.8805 0.8781 0.8396 0.7728 0.7730 0.7420 

Table 2 presents the classification accuracy of the logistic regression model on poisoned 

graphs generated by and baseline attack methods under different attack budgets. The 

results are reported using the default dataset splits. From the experimental results, 

D2AGCL outperforms all baselines except Metattack and PAGCL across all three da-

tasets. D2AGCL achieves the best performance on PolBlogs, and in Cora and CiteSeer, 

it almost always achieved suboptimal performance. PAGCL builds upon CLGA by in-

troducing a node injection attack. Before applying edge perturbations as in the original 

CLGA method, PAGCL first injects malicious nodes into the clean graph. This strategy 

achieves performance comparable to supervised attacks. However, it violates the 



assumption of equal attack budget. In their comparison, the authors only consider the 

perturbation ratio of edges, allowing PAGCL to introduce significantly more perturba-

tion under the same nominal budget, thus compromising the fairness of the evaluation. 

Therefore, if PAGCL is excluded from consideration, these results demonstrate that 

D2AGCL effectively degrades the performance of graph contrastive learning in node 

classification tasks, achieving a level comparable to supervised attack models. Table 3 

presents the accuracy on another downstream task: link prediction. Excluding PAGCL, 

D2AGCL consistently achieves the best performance, especially on PolBlogs. There-

fore our unsupervised attack D2AGCL is shown to be able to reduce both the down-

stream node classification performance and link prediction performance of graph con-

trastive learning. 

Fig. 2 compares the classification accuracy of D2AGCL and the unsupervised attack 

method CLGA under different dataset partition settings. D2AGCL consistently outper-

forms CLGA across all configurations. Moreover, as the dataset split ratio changes, 

D2AGCL exhibits a performance trend of an initial decrease followed by an increase, 

whereas CLGA's attack effectiveness continuously declines. This confirms that 

D2AGCL dynamically adjusts its attack budget based on the dataset distribution, 

thereby achieving a more effective poisoning attack. 

 

Fig. 2. Node Classification Accuracy of CLGA and D2AGCL on the Cora Dataset Under Dif-

ferent Data Splits. The x-axis represents the training set split ratio, while the y-axis denotes the 

accuracy of node classification under a 10% attack budget. 

       
(a)Clean graph          (b)Metattack                  (c)CLGA                (d) D2AGCL        

Fig. 3. Visualization of node embeddings learned by GCA under different attacks on Cora. Dif-

ferent Colors represent different classes of nodes. 

To evaluate the adversarial effectiveness, we conduct visual analysis of node embed-

dings under different attack scenarios using t-SNE dimensionality reduction. As shown 

in Fig. 3, we compare the embedding distributions of the original graph with those per-

turbed by Metattack, CLGA, and our proposed D2AGCL method. The visualization 

reveals distinct topological distortion patterns: While Metattack generates moderately 

compact clusters with overlapping boundaries, CLGA exhibits dispersed yet 
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structurally ambiguous formations. Notably, D2AGCL demonstrates superior adversar-

ial characteristics by creating tightly entangled embeddings in inter-cluster regions. 

This phenomenon is particularly evident in the boundary areas where node representa-

tions from different classes become inseparable, manifesting as a fused density core 

near cluster intersections. 

5 Conclusion 

In this paper, we propose D2AGCL, an unsupervised adversarial attack specifically 

designed for graph contrastive learning (GCL) models.  Unlike existing adversarial at-

tacks that rely on label information, D2AGCL effectively perturbs the graph structure 

by integrating distribution shift theory with gradient-based attack strategies.  Our ap-

proach dynamically allocates the attack budget to maximize distribution shift, ensuring 

that perturbations are strategically applied to the most critical regions of the graph. Ex-

tensive experiments on three benchmark datasets demonstrate that D2AGCL achieves 

attack performance comparable to supervised methods, despite operating in an unsu-

pervised setting. Our findings highlight the vulnerability of GCL models to adversarial 

perturbations, emphasizing the need for more robust unsupervised defense mecha-

nisms.  Future work will explore adaptive defenses against such attacks, as well as ex-

tending our approach to heterophilic graphs and dynamic graph settings. 

References 

1. Zhang, S., Chen, H., Sun, X., Li, Y., Xu, G.: Unsupervised Graph Poisoning Attack via Con-

trastive Loss Back-Propagation. In: Proceedings of the ACM Web Conference 2022, pp. 

1322–1330(2022) 

2. Li, Q., Wang, Z., Li, Z.: PAGCL: An Unsupervised Graph Poisoned Attack for Graph Con-

trastive Learning Model. In: Future Generation Computer Systems 2023, vol. 149, pp. 240–

249(2023) 

3. Li, K., Liu, Y., Ao, X., & He, Q.: Revisiting graph adversarial attack and defense from a data 

distribution perspective. In: The Eleventh International Conference on Learning Representa-

tions (2023) 

4. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph Contrastive Learning with Adaptive 

Augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080(2021) 

5. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: Online Learning of Social Representations. 

In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery 

and data mining, pp. 701–710(2014) 

6. Xu, K., Chen, H., Liu, S., Chen, P.-Y., Weng, T.-W., Hong, M., Lin, X.: Topology Attack 

and Defense for Graph Neural Networks: An Optimization Perspective. In: Proceedings of 

the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp. 3961–

3967(2019) 

7. Bojchevski, A., Günnemann, S.: Adversarial Attacks on Node Embeddings via Graph Poi-

soning. In: Proceedings of the 36th International Conference on Machine Learning, pp. 695-

704(2019) 

8. Zügner, D., Günnemann, S.: Adversarial Attacks on Graph Neural Networks via Meta Learn-

ing. In: International Conference on Learning Representation (2019) 



9. Xu K., Chen H., Liu S., Chen P., Weng T., Hong M., and Lin X.: Topology attack and defense 

for graph neural networks: an optimization perspective. In: Proceedings of the 28th Interna-

tional Joint Conference on Artificial Intelligence, pp. 3961–3967 (2019). 

10. Waniek, M., Michalak, T., Wooldridge, M. et al.: Hiding individuals and communities in a 

social network, pp. 139–147 (2018). 

11. Grover A., Leskovec J.: Node2vec: Scalable Feature Learning for Networks. In: Proceedings 

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining, pp. 855–864(2016). 

12. Yang, Z., Cohen, W.Cohen W., Salakhutdinov, R.: Revisiting Semi-Supervised Learning 

with Graph Embeddings. In: Proceedings of the 33rd International Conference on Machine 

Learning, pp. 40–48 (2016) 

13. Ding, R., Yang, J., Ji, F., Zhong, X., Xie, L.: FR-GNN: Mitigating the Impact of Distribution 

Shift on Graph Neural Networks via Test-Time Feature Reconstruction. In: IEEE Internet of 

Things Journal, pp. 23521–23531 (2024). 

14. Li, G., Yu, Z., Yang, K., Lin, M., Chen, C. L. P.: Exploring Feature Selection With Limited 

Labels: A Comprehensive Survey of Semi-Supervised and Unsupervised Approaches. In: 

IEEE Transactions on Knowledge and Data Engineering, pp. 6124–6144 (2024). 

15. Liu, X., Zhang, F., Hou, Z., Mian, et al.: Self-Supervised Learning: Generative or Contrastive. 

In: IEEE Transactions on Knowledge and Data Engineering, pp. 857–876 (2023). 

16. Wang, X., Chang, H., Xie, B., et al.: Revisiting Adversarial Attacks on Graph Neural Net-

works for Graph Classification. In: IEEE Transactions on Knowledge and Data Engineering, 

pp. 2166–2178 (2024). 

17. Wang, H., Xu, C., Shi, C., Zheng, P., Zhang, S., Cheng, M., Chen, H. Unsupervised Hetero-

geneous Graph Rewriting Attack via Node Clustering. In Proceedings of the 30th ACM 

SIGKDD Conference on Knowledge Discovery and Data Mining pp. 3057-3068. 

18. Yu, H., Liang, K., Hu, D., et al.: GZOO: Black-Box Node Injection Attack on Graph Neural 

Networks via Zeroth-Order Optimization. In: IEEE Transactions on Knowledge and Data 

Engineering, pp. 319–333 (2025). 

19. Huang, Y., Zhao, J., He, D., Jin, D., Huang, Y.: Does GCL Need a Large Number of Negative 

Samples? Enhancing Graph Contrastive Learning with Effective and Efficient Negative Sam-

pling. In: Proceedings of the AAAI Conference on Artificial Intelligence (2025). 

20. Zhang, X., Bao, P., Pan, S.: Maximizing Malicious Influence in Node Injection Attack. In: 

Proceedings of the 17th ACM International Conference on Web Search and Data Mining, pp. 

958–966 (2024). 

21. Xu, J., Yang, Y., Chen, J., et al.: Unsupervised Adversarially Robust Representation Learning 

on Graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 4, 

pp. 4290–4298 (2022). 

22. Deng, B., Chen, J., Hu, Y., Xu, Z., Chen, C., Zhang, T.: PROSPECT: Learn MLPs on Graphs 

Robust against Adversarial Structure Attacks. In: Proceedings of the 33rd ACM International 

Conference on Information and Knowledge Management, pp. 425–435 (2024). 

23. Wiles, O., Gowal, S., Stimberg, F., Rebuffi, S.-A., Ktena, I., Dvijotham, K., Cemgil, A.T.: A 

Fine-Grained Analysis on Distribution Shift. In: International Conference on Learning Rep-

resentations (ICLR) (2022). 

24. Kim, S., Im, H., Lee, W., Lee, S., Kang, P.: RobustMixGen: Data augmentation for enhancing 

robustness of visual–language models in the presence of distribution shift. In: Neurocompu-

ting, vol. 619, p. 129167 (2025). 


