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Abstract.  The exponential progress in machine learning has created an 

unprecedented need for diverse and high-quality datasets. However, efficiently 

extracting meaningful insights from confidential information remains a 

significant hurdle, as improper handling of sensitive user data can compromise 

privacy—a cornerstone of reliable data-driven systems. Modern data collection 

practices, fueled by ubiquitous digital devices, frequently generate mixed-

format datasets combining continuous numerical variables and discrete 

categorical attributes. While such heterogeneous data enhances analytical depth 

by revealing complex feature-label relationships, its usefulness is often 

undermined by non-informative variables that contribute more to noise than to 

predictive accuracy. To overcome these limitations, we present a privacy-aware 

synthetic data generation framework that dynamically evaluates feature 

relevance, even in low-data regimes. Leveraging rigorous differential privacy 

mechanisms, our approach injects mathematically structured noise to obfuscate 

personal identifiers while preserving dataset integrity. The synthesized output 

demonstrates enhanced statistical diversity without sacrificing analytical utility. 

Comprehensive benchmarking confirms that classifiers trained on our 

synthesized data achieve superior performance compared to conventional 

methods, all while maintaining strict privacy guarantees. This dual advantage 

addresses critical gaps in secure machine learning pipelines. 

Keywords:Mixed data, Feature selection, Feature ranking,  Privacy-preserving. 

1 Introduction 

With the rapid development of machine learning in recent years, the scale of models 

has been gradually increasing, and models have been widely adopted across various 

industries. However, the current models have increasingly high requirements for real-

world datasets[25]. Collecting data and analyzing data has incurred serious privacy 

issues since such data contain various sensitive information of users. Even worse is 

that driven by advanced data fusion and analysis techniques[48], the real-world data 

of users are more vulnerable to attack and disclosure in the big data era[22,23]. 



 

 

Synthetic data can provide anon-real dataset similar to the original data and avoid 

exposing users’ sensitive information while collecting and analyzing 

data[27,28,12,29]. 

Additionally, classification algorithms are practical and effective tools in data 

analysis. It is a challenging problem to capture valuable information in the trained 

classifier. Their accuracy heavily relies on the features that describe the training data. 

In practice, the increase in types of data collection devices results in heterogeneous, 

correlated, redundant, and irrelevant label features. Ir- relevant features may not 

significantly impact the analysis results, but they can be exploited through association 

attacks to infer user information, which poses a security threat to users [43,16,38]. 

However, irrelevant features can be not as useless as expected. We can 

appropriately utilize these features to expand the size of the dataset while 

safeguarding the user information present in the original data without causing 

significant loss of information. In deep learning, adding Gaussian noise to the input 

data during training is common to enhance models’ robustness and generalization 

capabilities[20,21,24]. This technique is known as data augmentation. Generative 

Adversarial Networks (GANs) can also generate data and introduce noise to the input 

data, improving the model’s robustness [46,32]. However, such deep learning 

methods require substantial amounts of data, ample computational re- sources, and a 

strict definition of privacy. 

Based on the above discussion, it is essential to identify the features in the mixed 

data unrelated to the labels to synthesize privacy-protected data from a limited 

amount of original data. By altering the values of these features, new data can be 

generated, effectively expanding the dataset. In differential privacy [31], adding 

unbiased noise ensures that data privacy is mathematically constrained while 

preserving good data utility without affecting the data structure. Therefore, this paper 

analyzes the structure and relationships of heterogeneous features to perform feature 

selection from a homogeneous perspective. 

Hence, this study leverages the characteristics of graph structures in data 

representation to compute the correlation between heterogeneous features and labels. 

Furthermore, suitable differential privacy perturbation methods are employed for 

different types of features. Extensive experiments on the benchmark datasets have 

demonstrated the superiority of the proposed approach. The main contributions of this 

paper are summarized in the following. 

-  Our proposed feature selection method utilizes the graph structure of features to 

calculate the correlation between the labels and heterogeneous features. We eliminate 

the requirement of pre-allocated parameters for correlation estimation. 

- We propose a heterogeneous differential privacy perturbation framework that 

applies to different features. This framework balances privacy preservation and data 

utility. It ensures that private information is protected while maintaining the 

usefulness of the data. 

–  Our method has been applied to public and personal datasets, including music 

emotion classification, breast cancer, and credit card data. In particular, we generated 

synthetic datasets using our method and utilized them to train two commonly used 

classifiers. The proposed method is competent to synthetic data and shows its efficacy 
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in comparison with the original data. 

2 Related Work 

This section overviews the representation learning methods, data synthesis and 

differential privacy. 

 

2.1 Representation Learning Methods 

Representation learning methods include the conventional approaches that learn the 

importance of a whole attribute. Advanced methods [37,39] first informatively 

represent categorical values, then learn the represented inter-value distances and 

attribute importance. However, they are still based on hand-crafted    encoding and 

measures. Most recently, nested cluster distribution learning approaches[8,10,26,41], 

ordinal attribute value relationship mining methods[26,35,44], and distributed 

clustering algorithms[6,15,40,48] have been proposed. Since they focus on addressing 

the other complexity in the clustering field, they are relatively incompetent in solving 

our focused metric space and attribute subspace learning problems. 

 

2.2 Data Synthesis 

In recent years, Generative Adversarial Networks (GANs) have been widely applied 

in data synthesis, specifically for generating tabular data. Many studies have 

improved the architecture, loss functions, and optimization strategies of GANs to 

address specific limitations. For example, improved GAN architectures such as 

WGAN [3] and WGAN-GP [13] have significantly progressed in training stability 

and convergence time. PacGAN [16] addresses mode collapse issues in traditional 

GAN architectures. However, challenges still exist in handling data heterogeneity, 

which includes numerical and categorical features. 

CTGAN [30] is an advanced method that has progress. It can synthesize 

heterogeneous tabular data. However, CTGAN requires extensive experimentation for 

optimizing hyperparameters, especially for datasets with different features. For small 

datasets, insufficient records would make CTGAN perform badly for training and 

convergence. The training and convergence processes may also demand significant 

computational resources and time, especially for large datasets.   

Regarding synthesizing private data, probabilistic graphical models have become the 

most promising methods for privately generating synthetic datasets. PrivBayes [34] 

utilizes Bayesian networks to determine the network structure and obtain noise 

margins for the conditional probability distributions of each node. Another PGM-

based method, based on Markov Random Fields [34], also performs well. These 

methods offer advantages in terms of computational efficiency or empirical 

performance compared to non-PGM-based synthesis methods [1,5]. However, once a 

graph structure is fixed, they impose assumptions of conditional independence that 

may not hold in the dataset. The PrivSyn [42] method makes weaker assumptions 



 

 

about the conditional independence between features and attempts to capture the 

relevant relationships in the dataset. However, these methods, including PGM and 

PrivBayes, need to adequately discuss leveraging the heterogeneous information in 

tabular data and quantifying the relationships between various features and labels. 
Furthermore, when dealing with datasets containing many features, these 

methods require significant storage space to store the graph structure and search for 

the optimal one. Computing the correlations between features also consumes a 

substantial amount of computational resources. In this study, we focus on two 

frequently utilized techniques in differential privacy: Information Gain and Chi-

square. [7,2]. 

 

2.3  Differential Privacy 

Differential privacy refers to the concept where a trusted data curator collects data 

from individual users, processes it in a way that satisfies the principles of differential 

privacy, and then releases the results. In essence, the concept of differential privacy 

requires that the influence of any individual element in the dataseton the output is as 

small as possible. 

 
Definition 1.   Differential Privacy: An algorithm A satisfies (ϵ, δ)-differential 

privacy ((ϵ,δ)-DP), where ϵ > 0, δ ≥ 0, if and only if for any two neighboring datasets 

D and D’ , we have: 

 
∀S ⊆ Range(A): Pr[A(D) ∈ S] ≤ e ϵ Pr[A(D0) ∈ S] + δ, 

 

where Range(A) denotes the set of all possible outputs of the algorithm A. 

Differential privacy can be applied to various data processing scenarios, 

including data mining, machine learning, and statistical analysis. It can protect 

personal identities, sensitive features, and private information while allowing 

meaningful data analysis and inference. 

The concept and techniques of differential privacy have been extensively 

researched and applied in academia and industry. Many mechanisms and algorithms 

for differential privacy have been proposed, such as the Laplace mechanism, 

exponential mechanism, and confusion matrices. 

Furthermore, differential privacy has been incorporated into some privacy laws 

and regulations, becoming an important standard for privacy protection. 

In summary, differential privacy provides a powerful method for privacy 

protection in individual data processing. It not only safeguards individuals’ privacy 

but also supports meaningful data analysis. It seeks to balance privacy protection and 

data utility, supporting data-driven societal and technological advancements. 

3 Proposed Method 

In this section, we first define the symbols representing data components, 
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heterogeneity measures, feature dependencies, and the differential privacy algorithm 

used for data synthesis. Then, we construct the spatial structure for heterogeneous 

features and propose a metric that measures the correlation between features and 

labels. Finally, we present a comprehensive data synthesis frame- work. 

 

3.1  Problem Formulation 

In most real-world datasets, variations in feature values have different impacts on data 

labels. Each feature type has a unique graph structure representing its feature 

values.Our objective is to analyze the impact of attribute changes on classification 

while preserving the graph structure of the original data attributes. We aim to 

minimize the influence of subsequent noise addition on the original labels. 

Additionally, we strive to maintain unbiased mean estimation during the noise 

addition process, ensuring that the overall distribution of the dataset remains unbiased. 

A heterogeneous feature dataset D can be represented as a tuple D = ⟨X ,F ,V  ⟩, 
where X= {xi |  i =  1, 2,..., n}  represents n users or data samples. F = {fr | r = 1, 2,..., 

d} is the feature set composed of d features, including dn nominal, do  ordinal, and du  

numerical features. V = {Vr  |  r = 1, 2,..., d} is the collection of unique value sets of 

each feature, where Vr  = {vr1, vr2,...,vrk }  is the unique value set of fr . Compared to 

nominal data, numerical data and ordinal data have exhibited a progressive 

relationship, where vr1  < vr2  < ... < vrk . 

Therefore, we construct separate graph structures for the three data types, as 

shown in Figure 1. 

We can observe that ordinal data is similar to numerical data. If we assume there 

is ordinal data with infinite feature values, it can be considered a special numerical 

data type. Similarly, ordinal data and nominal data also share similarities. In ordinal 

data, two feature values with a large span may exhibit contradictory characteristics, 

similar to nominal data. For example, in an ordinal feature describing breast cancer, 

the menstrual period and cancer occurrence have four feature values: ⟨No 

menstruation, menstruation under 40, menstruation above 40, menopause ⟩. "No 

menstruation" and "menopause" can be viewed as special nominal data. 

We establish bins with the same number of labels C or numerical data, using 

equal-frequency partitioning. The bins’ boundary values, denoted as M, are 

determined as 𝑀 =  𝐶 +  1. Subsequently, we construct node matrix Ur for three 

different types of features as follows: 𝑈𝑟  =  {uri  |  𝑖 =  1, 2, . . . . , 𝑚} . It implies 

 



 

 

 

Fig. 1. Numerical and ordinal data have a progressive relationship between values, 

but numerical data can use Euclidean distance to express dissimilarity 

that the boundary value, obtained from binning the numerical data, is used as anode. 

Similarly, the feature values are directly used as nodes for nominal and ordinal data.  

Specifically, in the case of numerical data, each data from the original dataset is 

assigned to the nearest node.For each label in the label set C = {cj  |  j = 1, 2,..., t}, we 

define the 𝑈𝑗
𝑟of each label value Cj  in feature F as follows: 

𝑈𝑗
𝑟 = [𝑝(𝑐𝑗|𝑓1), 𝑝(𝑐𝑗|𝑓2), . . . , 𝑝(𝑐𝑗|𝑓𝑑)], 

The matrix 𝑈𝑟stores the probabilities of label values cj appearing, given each feature 

value in feature r.When there are two label values, g and h, we define ∆𝑈𝑔ℎ
𝑟 , which 

indicates how the nodes corresponding to labels g and h on feature r undergo graph 

transformations and the differences that require offset transmission: 

∆Ugh
r = Ug 

r − Uh
r   , 

Simultaneously, we construct the vector 𝐶𝑜𝑠𝑡∆Ugh
r

𝑟 to store the minimum cost for 

transmitting node transformations [36]: 

𝐶𝑜𝑠𝑡∆Ugℎ
r

𝑟 = [𝐷𝑖𝑠(𝑣𝑟𝑝, 𝑣𝑟𝑞)1, . . . , 𝐷𝑖𝑠(𝑣𝑟𝑝, 𝑣𝑟𝑞)𝑑]. 

The cost is calculated based on the extent of dissimilarity between the feature values 

of each feature. The calculation method for dissimilarity in different types of features 

is defined as follows: 

𝐷𝑖𝑠(𝑣𝑟𝑝 − 𝑣𝑟𝑞) = {

|𝑣𝑟𝑝 − 𝑣𝑟𝑞| , 𝑓𝑟 ∈  𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

     1          , 𝑓𝑟 ∈  𝑛𝑜𝑚𝑖𝑛𝑎𝑙

        |𝑝 − 𝑞|       , 𝑓𝑟 ∈  𝑜𝑟𝑑𝑖𝑛𝑎𝑙            

                            (1) 

Obtaining  Cost∆Ugh
r

r  will become a straightforward optimization problem in 

operations research. We can define the following method to calculate whether we can 

distinguish between label g and label h well in feature fr: 
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∅r(g, h) = |Ug 
r − Uh

r | ∙ Cost∆Ugh
r

r                                                        (2) 

 

Finally, we define the calculation method for the correlation between heterogeneous 

features and labels as follows: 

 

𝑤(𝑓𝑟 , Label) =
∑ ∑ ∅𝑟(𝑔,ℎ)𝑡

ℎ=𝑔+1
𝑡−1
𝑔=1

𝑡−1
                                                  (3) 

 

The complete process example of w (fr, Label) calculation is shown in Figure 2. The 

current feature can effectively distinguish between labels if w(fr, Label) is large. 

Conversely, if w(fr, Label) is small, it suggests that utilizing this feature may not 

contribute significantly to distinguishing labels in the classification task. 

 

3.2 Perturbation mechanism 

After obtaining the weights w(fr, Label), we apply the perturbation mechanism to the 

feature with the minimum weight. The purpose is to prevent users from being 

attacked by adversaries exploiting background knowledge or differential attacks to 

obtain sensitive information. Additionally, since the feature with the minimum weight 

has a relatively smaller impact on the classification task, perturbing this feature 

ensures that the synthetic data can retain the utility of the original data. We will 

implement corresponding perturbation methods for each feature to address the 

challenge of adding noise to heterogeneous features. For numerical features, we will 

use the Laplace mechanism. 

Laplace Mechanism: The Laplace mechanism [11] is commonly utilized in 

differential privacy algorithms for numerical data. Given a dataset D, exist a function 

f that operates  

on D 

                                                                𝑓: 𝐷 →  𝑅𝑑,                                                (4) 

 

the Laplace mechanism adds noise that is scaled to the sensitivity of ∆f, which is 

defined as: 

 

∆𝑓 = 𝑚𝑎𝑥𝐷,𝐷′:‖𝐷−𝐷′‖
1

=1‖𝑓(𝐷) − 𝑓(𝐷′)‖1                    (5) 

Randomized Response Mechanism: Assuming that the user’s data comes from a 

categorical feature fr, the true categorical data value of the user is denoted as 𝑣𝑟𝑘, the  



 

 

 

Fig. 2. Sample dataset with only four records, the sample dataset has numerical feature f1 and 

Label set with three categories. 

perturbed value after applying the mechanism is denoted as 𝑔𝑟𝑘 , we define the 

following perturbation mechanism [45], 

 

                   𝑃𝑟 = [𝑔𝑟𝑘 = 𝑣𝑟𝑘
′ ] = {

𝑒𝜖

𝑒𝜖+𝑘−1
, 𝑣𝑟𝑘

′ = 𝑣𝑟𝑘                        

1

𝑒𝜖+𝑘−1
, 𝑣𝑟𝑘

′ ∈  𝑉𝑟 | 𝑣𝑟𝑘
′  ≠ 𝑣𝑟𝑘 .

                       (6) 
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4 Experiment 

 
We can categorize data into personal and public data based on the application domain 

and the entities from which data is collected. Personal data refers to data collected 

from specific users’ devices, such as medical information and credit card records. 

This type of data contains sensitive information about the users. On the other hand, 

public data refers to data collected from social or public devices, such as emotion 

recognition in music, without including personal information. 

Table 1. Breast Cancer Data and Different Privacy Budgets 

ϵ in Random Forest Algorithm 0.2 0.4 0.6 0.8 1 

Accuracy-original dataset 0.75 0.75 0.75 0.75 0.75 

Accuracy-synthesis dataset 0.75 0.75 0.75 0.75 0.75 

ϵ in Mixed Naive Bayes Algorithm 0.2 0.4 0.6 0.8 1 

Accuracy-original dataset 0.76 0.76 0.76 0.76 0.76 

Accuracy-synthesis dataset 0.76 0.76 0.76 0.76 0.76 

To demonstrate the feasibility of our method, we conducted experiments on 

personal and public datasets. Specifically, in the public dataset, we utilized two music 

emotion recognition datasets: Turkish Music (TM)Emotion[9] and 

MER500(MER)[14]. It is worth  

Table 2. Credit Approval Data and Different Privacy Budgets 

ϵ in Random Forest Algorithm 0.2 0.4 0.6 0.8 1 

Accuracy-original dataset 0.87 0.87 0.87 0.87 0.87 

Accuracy-synthesis dataset 0.87 0.87 0.86 0.86 0.86 

ϵ in Mixed Naive Bayes Algorithm 0.2 0.4 0.6 0.8 1 

Accuracy-original dataset  0.80 0.80 0.80 0.80 0.80 

Accuracy-synthesis dataset 0.83 0.83 0.83 0.83 0.83 

 

Table 3. Turkish Music Emotion Data and Different Privacy Budgets 

ϵ in Random Forest Algorithm 0.2 0.4 0.6 0.8 1 

Accuracy-original dataset 0.73 0.73 0.73 0.73 0.73 

Accuracy-synthesis dataset 0.73 0.73 0.73 0.73 0.73 

ϵ in Mixed Naive Bayes Algorithm 0.2 0.4 0.6 0.8 1 

Accuracy-original dataset  0.73 0.73 0.73 0.73 0.73 

Accuracy-synthesis dataset 0.74 0.74 0.74 0.74 0.74 

 



 

 

Table 4. MER500 Data and Different Privacy Budgets 

ϵ in Random Forest Algorithm 0.2 0.4 0.6 0.8 1 

Accuracy-original dataset 0.71 0.71 0.71 0.71 0.71 

Accuracy-synthesis dataset 0.70 0.70 0.70 0.70 0.70 

ϵ in Mixed Naive Bayes Algorithm 0.2 0.4 0.7 0.8 1 

Accuracy-original dataset  0.65 0.65 0.65 0.65 0.65 

Accuracy-synthesis dataset 0.66 0.66 0.65 0.65 0.65 

Table 5. In the Mixed Naive Bayes Algorithm, comparing accuracy with the two commonly 

used methods within the same privacy budget. 

Dataset CA MER TM BC 

Accuracy- Proposed method 0.83 0.65 0.74 0.76 

Accuracy-Information Gain 0.80 0.65 0.74 0.76 

Accuracy-Chi-square 0.80 0.65 0.74 0.76 

Table 6. In the Random Forest algorithm, comparing accuracy with the two commonly used 

methods within the same privacy budget. 

Dataset CA MER TM BC 

Accuracy- Proposed method 0.86 0.71 0.73 0.75 

Accuracy-Information Gain 0.85 0.71 0.73 0.75 

Accuracy-Chi-square 0.85 0.69 0.73 0.75 

noting that music emotion data often contains subjective information during 

annotation, leading to lower classification accuracy when using conventional 

classification algorithms. Therefore, we aimed to test our method’s ability to preserve 

the utility of the original data without compromising its effectiveness. 

In the personal dataset, we employed the Breast Cancer (BC) [49] and Credit 

Approval (CA)dataset [19], which contain significant sensitive information. These 

datasets are composed of heterogeneous data, making them suitable for demonstrating 

the versatility of our method. 

We employed two common classifiers, Random Forest [4] and Mixed Data 

Bayesian [18]. We used the accuracy of the classifiers as a metric to evaluate the 

utility of the data under different privacy budgets. By comparing the utility of the 

original and synthesized data, we aimed to assess the impact of different privacy 

budgets on the effectiveness of our proposed method. Table 1-4 shows the changes in 

accuracy for different datasets under different privacy budgets. 

Based on the experimental results, we observed that despite injecting random 

noise into the original data to synthesize a new dataset, the classifier trained on the 

synthetic data exhibited a similar accuracy to the one trained on the original data. 

There was no significant decrease in utility. Additionally, by introducing random 

noise to features unrelated to the labels in the dataset, we improved the utility of the 

originally low-utility data. Compared to the two commonly used methods, 
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Information Gain and Chi-square, our approach synthesizes data that allows the 

classifier to achieve higher accuracy within the same privacy budget (Table 5-6). 

5    Conclusion 

Today, classification data can be divided into public datasets and personal datasets. 

Personal datasets carry the risk of exposing sensitive information, while public 

datasets may have lower accuracy due to subjective annotations. This paper proposes 

a novel data synthesis method to address two critical challenges in clas-sification 

data: the threat of user information leakage in personal datasets and the difficulty of 

training high-performance classifiers due to insufficient training samples. By applying 

our method to heterogeneous data, we have found that it can handle various types of 

feature data. By injecting noise into features with low correlation to the labels, we can 

obtain synthetic datasets that have similar utility to the original data. In some low-

utility original datasets, our random noise provides diversity to the samples, resulting 

in classifiers trained on our synthesized data achieving higher classification 

accuracy.Compared to the previously commonly used feature selection methods, 

within the same privacy budget and classifier conditions, using our proposed method 

to synthesize data can result in a classifier with better performance. 
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