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Abstract. Multi-hop Reading Comprehension (RC) has become a critical task in 

Natural Language Processing (NLP), requiring models to perform multiple rea-

soning steps and aggregate dispersed clues across multiple paragraphs to answer 

complex questions. Unlike single-hop RC, multi-hop RC aims to bridge infor-

mation across diverse contexts and provide interpretable supporting facts, mak-

ing it closer to human-like reasoning. To address these challenges, we propose a 

novel approach, Multi-grained Semantic Fusion Retrieval (MgSFR), which inte-

grates semantic information from multiple granularities (word, phrase, sentence, 

and document). This fusion enhances the semantic relevance between questions 

and paragraphs, improving retrieval accuracy and efficiency. Additionally, 

MgSFR proposes a fine-grained semantic interaction mechanism that computes 

semantic similarity between different granularities, further boosting the model's 

performance. To complete the multi-hop RC pipeline, we introduce a multi-task 

reader that leverages this semantic fusion to enhance the model's reasoning capa-

bilities. Experimental results on the HotpotQA benchmark dataset demonstrate 

that MgSFR significantly outperforms existing retrieval methods and provides 

high-quality context for multi-hop reasoning. Additionally, MgSFR achieves 

competitive performance compared to current state-of-the-art models in multi-

hop reasoning tasks, validating its effectiveness in complex multi-hop tasks. 

Keywords: Information Integration, Multi-grained Semantic Fusion, Multi-hop 

Reading Comprehension, Semantic Reasoning. 

1 Introduction 

1.1 A Subsection Sample 

Machine Reading Comprehension (MRC) has gained significant attention in the field 

of Natural Language Processing (NLP), aiming to enable machines to read and answer 

questions based on textual information. With recent advancements in Deep Learning 

(DL), MRC has seen significant improvements, attracting attention from both academia 

and industry [1-3]. Datasets like SQuAD [4,5], TriviaQA [6], and CoQA [7] have be-

come crucial benchmarks for MRC model development. 



Question:  What other political position did the person who introduced the DISCLOSE Act hold?

Answer:  United States Senator

Supporting_Facts:  [ "DISCLOSE Act",0 ], ["Chris Van Hollen", 0 ]

Paragraph1:  "DISCLOSE Act"

Sentence0:  "The Democracy Is Strengthened by Casting Light On Spending in Elections Act, commonly known as the 
DISCLOSE Act and also known as H.R. 5175 (S.3628-Senate), was a bill introduced in the U.S. House of 
Representatives by Chris Van Hollen (D-Maryland) on April 29, 2010 and in the U.S. Senate by Charles Schumer (D-
New York) on July 21, 2010."

Paragraph2:  "Chris Van Hollen"

Sentence0:  "Christopher Van Hollen Jr. (born January 10, 1959) is the junior United States Senator from Maryland, 
serving since January 3, 2017.",

Sentence1:  " From 2003 to 2017, he served as the U.S. Representative for Maryland 's 8 congressional district .",

Sentence2:  " He is a member of the Democratic Party."

Paragraph10: "Campaign finance reform in the United States"
·······

·······

 

Fig. 1. An example from the HotpotQA dataset illustrating the multi-hop reasoning process. 

The model needs to predict the answer and supporting facts by reasoning across multiple sen-

tences and paragraphs. 

While early MRC research focused on single-hop reasoning [4-7], challenges arise 

when models need to reason across multiple paragraphs—an essential skill for answer-

ing complex, multi-hop questions where a single paragraph is insufficient [2,8,9]. To 

address this, multi-hop datasets such as NarrativeQA [10] and HotpotQA [11] have 

been developed, which require models to extract answers by reasoning across several 

supporting paragraphs. Among them, HotpotQA stands out as a widely used and chal-

lenging benchmark, featuring both relevant and irrelevant candidate paragraphs for 

each question. Fig. 1 presents an example from HotpotQA to demonstrate multi-hop 

reasoning. 

Mainstream models for multi-hop RC typically adopt the "Retriever-Reader" archi-

tecture [12], where the retriever identifies candidate golden paragraphs relevant to the 

question while minimizing distracting information, and the reader jointly predicts sup-

porting facts and extracts the answer span from the selected paragraphs. This architec-

ture has achieved notable success, with models such as SAE [13], S2G [14], FE2H [15], 

Smoothing 𝑅3 [8], and SuAN [9] leading the field. However, these approaches often 

rely on coarse-grained paragraph retrieval, offering word-level or document-level clues 

and failing to capture finer semantic dependencies, which may result in low-quality 

context for downstream tasks. 

The primary challenge in multi-hop paragraph retrieval lies in selecting relevant par-

agraphs from a pool of candidates, where supporting facts are dispersed and often sur-

rounded by noisy data. Traditional Sparse Retrieval (SR) methods, such as TF-IDF [16] 

and BM25 [17], focus on term matching and fail to account for semantic relationships 

between paragraphs. With the rise of deep learning and semantic-aware representations, 

several semantic retrieval models have been proposed with promising results. For ex-

ample, DFGN [18] uses BERT-score as the relevance metric. HGN [19]introduces a 

paragraph ranker. FE2H [15]adopts a two-step approach to selecting relevant para-

graphs. S2G [14] and Smoothing 𝑅3 [8] focuses on a coarse-to-fine stepwise paragraph 

selection. While existing clue extraction methods exhibit strong performance in 
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retrieval, their limitations lie in providing only word-level or document-level clues and 

coarse-grained paragraph selection.  

To overcome these limitations, we propose Multi-grained Semantic Fusion Retrieval 

(MgSFR), a novel model that enhances multi-hop paragraph retrieval by fusing seman-

tic information across multiple granularity levels—word, phrase, sentence, and docu-

ment—from both the question and the paragraphs. MgSFR addresses the challenge of 

identifying high-quality, noise-free context for downstream tasks and can serve as a 

powerful plugin in multi-hop RC systems. We integrate MgSFR into a "Retriever-

Reader" architecture [12], where a multi-task reader jointly predicts supporting facts 

and extracts the answer span. We validate MgSFR extensively on the HotpotQA da-

taset, using the distractor setting for rigorous evaluation. Our experimental results 

demonstrate that MgSFR outperforms existing retrieval methods, significantly enhanc-

ing retrieved-context quality and boosting the performance of downstream reading 

comprehension tasks. Additionally, MgSFR achieves competitive results with current 

state-of-the-art models in multi-hop reasoning tasks. 

We highlight the main contributions of our work as follows: 

• We propose Multi-grained Semantic Fusion Retrieval (MgSFR), a novel paragraph 

retrieval method that fuses semantic information across multiple granularity levels 

(word, phrase, sentence, and document), improving retrieval performance. 

• We introduce a Fine-grained Semantic Interaction Mechanism (FgSIM), which effi-

ciently captures semantic similarities across different granularity encodings of ques-

tions and paragraphs to improve paragraph retrieval efficiency. 

• We conducted comprehensive evaluations on the HotpotQA dataset to validate the 

effectiveness of the MgSFR model. The experimental results show that MgSFR sig-

nificantly outperforms existing retrieval methods, providing high-quality context for 

multi-hop reasoning. Additionally, MgSFR achieves competitive results with current 

state-of-the-art models in multi-hop reasoning tasks. 

2 Related Work 

2.1 Multi-hop Reading Comprehension 

Multi-hop Reading Comprehension (RC) is an advanced form of Machine Reading 

Comprehension (MRC) that requires models to integrate information from multiple 

paragraphs to answer complex questions [2,20]. This mirrors human reasoning and pre-

sents significant challenges in Natural Language Processing (NLP). Datasets like Hot-

potQA [11], NarrativeQA [10], ℛ4𝒞  [21], and 2WikiMultiHopQA [22] exemplify 

these challenges, with HotpotQA being the most representative and challenging. It not 

only tests the model’s ability to extract answer spans but also its capability to provide 

supporting facts for reasoning. 

Multi-hop RC models are typically categorized into three types based on their rea-

soning strategies: (i) Graph-based Models, which use graphs and GNNs to propagate 

information across entities and sentences (e.g., DFGN [18], HGN [19], SAE [13], 

AMGN [23], and SuAN [9]). While powerful, they suffer from high complexity and 



error propagation due to techniques like Named Entity Recognition (NER) and graph 

construction, making them computationally expensive. (ii) Question Decomposition 

Models, which break down complex questions into simpler sub-questions for single-

hop models (e.g., DecompRC [24], ONUS [25], RERC [26], and GenDec [27]).  How-

ever, generating high-quality sub-questions remains challenging. (iii) Clue Extraction 

Models, which iteratively or non-iteratively extract relevant clues to bridge the seman-

tic gap between questions and context (e.g., QFE [28], S2G [14]). These models address 

the semantic gap between the question and context, making them more aligned with 

human reasoning. Consequently, we adopt the clue-based reasoning approach, utilizing 

the "Retriever-Reader" architecture [12] for our novel multi-hop RC model, which aims 

to overcome these limitations while enhancing scalability and retrieval accuracy. 

2.2 Paragraph Retrieval for Multi-hop RC 

The primary goal of paragraph retrieval is to minimize redundant and noisy information 

while selecting question-relevant paragraphs for downstream tasks. Previous work has 

demonstrated that effective paragraph retrieval significantly improves the performance 

of RC systems. DFGN [18] and QUARK [29] respectively used BERT-score and sen-

tence relevance scoring to rank paragraphs. However, these models overlook the se-

mantic relationships between paragraphs, which limits their retrieval effectiveness. 

HGN [19] introduced a paragraph ranker to improve paragraph cascading. FE2H [15] 

proposed a two-stage retrieval method that iteratively selects paragraphs. S2G [14] and 

Smoothing 𝑅3 [8] employed Coarse-to-Fine cascade retrieval approach to step-by-step 

select relevant paragraphs. Despite these advances, most existing methods are restricted 

to retrieval at the word or document level, which limits their ability to capture the se-

mantic depth of the context. 

To overcome these limitations, we introduce the Multi-grained Semantic Fusion Re-

trieval (MgSFR) framework. MgSFR enhances paragraph retrieval by fusing semantic 

information across multiple granularities—word, phrase, sentence, and document—

captured from both the question and the paragraphs. This multi-grained approach en-

sures a more comprehensive and contextually relevant retrieval, ultimately improving 

performance in multi-hop RC tasks. By integrating semantic content from varying gran-

ularities, MgSFR significantly boosts retrieval accuracy, providing a more robust foun-

dation for reasoning and answer prediction in multi-hop RC. 

3 Proposed Model 

In multi-hop RC tasks, each question 𝑄 is typically paired with a set of paragraphs 

𝑃𝑎𝑟𝑎 = {𝑃𝑎𝑟𝑎
1 , ⋯ , 𝑃𝑎𝑟𝑎

𝑀 }, where 𝑀 denotes the total number of paragraphs. However, not 

all paragraphs are relevant to the question, so an efficient retrieval mechanism is essen-

tial for identifying relevant paragraphs. As illustrated in Fig. 2, our approach follows 

the "retrieve-and-reader" pipeline [12], where the paragraph retriever first filters the 

relevant paragraphs to form high-quality context 𝐶. This context is then processed by 

the multi-task reader to jointly predict the answer and supporting facts. 
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Fig. 2. Overview of the mainstream pipeline for Multi-hop RC tasks. 

Paragraph Retrieval: Given a question 𝑄 and a set of paragraphs 𝑃𝑎𝑟𝑎, the goal is 

to filter out irrelevant information and identify the relevant golden paragraphs, denoted 

as 𝑃𝑎𝑟𝑎
′ = {𝑃𝑎𝑟𝑎

𝑔𝑜𝑙𝑑1
, 𝑃𝑎𝑟𝑎

𝑔𝑜𝑙𝑑2
, ⋯ }, which will provide a high-quality context 𝐶 for down-

stream processing. 

Multi-Task Reader: Given a question 𝑄 and its relevant golden paragraphs 𝑃𝑎𝑟𝑎
′ , 

the task is to predict both the answer span and the supporting fact sentences that are 

related to the question 𝑄. 

3.1 MgSFR Paragraph Retrieval 

As shown in Fig. 3, we propose a novel and effective Multi-grained Semantic Fusion 

Retrieval (MgSFR) approach that enhances paragraph retrieval by fusing semantic in-

formation across multiple granularity levels (word, phrase, sentence, and document) in 

both questions and paragraphs, ensuring high-quality context for improved multi-hop 

reasoning. The MgSFR model consists of several key components: Multi-grained Se-

mantic Encoder: Encodes the question and paragraph at four granularities (word, 

phrase, sentence, and document) using pre-trained models. Multi-head attention mech-

anisms are applied across granularities to enhance semantic interactions. Multi-

grained Semantic Interaction: Computes the relevance between question and para-

graph at each granularity using the Fine-grained Semantic Interaction Mechanism 

(FgSIM), which calculates similarity scores at the word, phrase, sentence, and docu-

ment levels. Multi-grained Semantic Fusion: Aggregates the relevance scores from 

all granularities into a final score that reflects the overall relevance between the ques-

tion and the paragraph. 

Multi-grained Semantic Encoder. In the multi-grained semantic encoding process, 

we extract semantic units at four levels(word, phrase, sentence, and document) in both 

questions and paragraphs. Special tokens are added to distinguish between the question 

and the paragraph: token [𝑄] is prepended to the question, and token [𝑃𝑎𝑟𝑎] is pre-

pended to the paragraph. 
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Fig. 3. Overview of the MgSFR model architecture. The architecture integrates semantic infor-

mation across multiple granularities: word (W), phrase (P), sentence (S), and document (D). 

Question Semantic Encoder. For the question 𝑄, we extract semantic units at the four 

granularity levels. The multi-grained semantic unit for the question is constructed as 

follows: 

 𝑊𝑞 = [𝐶𝐿𝑆][𝑄]𝑤1𝑤2 ⋯ 𝑤𝑙𝑤
### (1) 

 𝑃𝑞 = [𝐶𝐿𝑆][𝑄]𝑝1𝑝2 ⋯ 𝑝𝑙𝑝
### (2) 

 𝑆𝑞 = [𝐶𝐿𝑆][𝑄]𝑠1𝑠2 ⋯ 𝑠𝑙𝑠
### (3) 

 𝐷𝑞 = [𝐶𝐿𝑆][𝑄]𝑑### (4) 

where 𝑊𝑞, 𝑃𝑞 , 𝑆𝑞 , and 𝐷𝑞  represent the word, phrase, sentence, and document-level se-

mantic unit sequences of the question. [𝐶𝐿𝑆] denotes the start token, and 𝑄 denotes the 

input sequence is a question. 𝑤1𝑤2 ⋯ 𝑤𝑙𝑤
 denotes that the WordPiece model [30] to-

kenized word sequences, 𝑝1𝑝2 ⋯ 𝑝𝑙𝑝
 denotes the sequence of phrases extracted by the 

phrase extractor, 𝑠1𝑠2 ⋯ 𝑠𝑙𝑠
 stands for the sequence of sentences, and 𝑑 represents the 

document sequence. # denotes the [mask] token used for question enhancement. Spe-

cifically, we define a fixed query length 𝑙𝑞. If the actual question is shorter than 𝑙𝑞, we 

pad it with special [mask] tokens to reach the standard length. These [mask] tokens 

serve a dual purpose. First, they act as placeholders to ensure uniform input dimensions 
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for batched processing. More importantly, they function as semantic expansion mark-

ers. During training, the model learns to interpret the [mask] tokens as cues for query 

augmentation, allowing it to implicitly infer common suffix patterns or contextual ex-

tensions that often follow such queries. This mechanism enhances the expressiveness 

of shorter questions, mitigates semantic ambiguity, and ultimately improves their se-

mantic alignment with relevant document content. 

To enhance the semantic representation of input text, we incorporate a CNN layer 

that captures local n-gram features from the embeddings generated by RoBERTa and 

refined by multi-head self-attention. This process allows the model to focus on mean-

ingful patterns within the text while suppressing irrelevant noise. The multi-grained 

semantic units are encoded as follows: 

 𝐸𝑊𝑞 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑁𝑁(𝑀𝐻𝑆𝐴(𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝑊𝑞)))) (5) 

 𝐸𝑃𝑞 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑁𝑁(𝑀𝐻𝑆𝐴(𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝑃𝑞)))) (6) 

 𝐸𝑆𝑞 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑁𝑁(𝑀𝐻𝑆𝐴(𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝑆𝑞)))) (7) 

 𝐸𝐷𝑞 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑁𝑁(𝑀𝐻𝑆𝐴(𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝐷𝑞)))) (8) 

where 𝐸𝑊𝑞 , 𝐸𝑃𝑞 , 𝐸𝑆𝑞 , and 𝐸𝐷𝑞 denote the embedding representations of the question at 

the word, phrase, sentence, and document levels, respectively. 

Paragraph Semantic Encoder. The paragraph encoding follows a similar process. Un-

like the question, no [mask] tokens are added because the paragraph length does not 

need expansion. The multi-grained semantic unit for the paragraph is constructed as 

follows: 

 𝑊𝑝 = [𝐶𝐿𝑆][𝑃𝑎𝑟𝑎]𝑤1𝑤2 ⋯ 𝑤𝑙𝑤
 (9) 

 𝑃𝑝 = [𝐶𝐿𝑆][𝑃𝑎𝑟𝑎]𝑝1𝑝2 ⋯ 𝑝𝑙𝑝
 (10) 

 𝑆𝑝 = [𝐶𝐿𝑆][𝑃𝑎𝑟𝑎]𝑠1𝑠2 ⋯ 𝑠𝑙𝑠
 (11) 

 𝐷𝑝 = [𝐶𝐿𝑆][𝑃𝑎𝑟𝑎]𝑑 (12) 

where 𝑊𝑝, 𝑃𝑝, 𝑆𝑝, and 𝐷𝑝  respectively denote the word, phrase, sentence, and docu-

ment-level semantic unit sequences for the paragraph. [𝐶𝐿𝑆] denotes the start token, 

and [𝑃𝑎𝑟𝑎] denotes that the input sequence belongs to a paragraph. Unlike questions, 

we do not append [mask] tokens to the paragraph because the paragraph does not face 

the issue of being too short in length; hence, semantic expansion is not required. 

For paragraph inputs, we introduce a punctuation filtering step before applying the 

CNN layer. This step eliminates unnecessary punctuation marks, ensuring that the mod-

el's attention is directed towards the core content, improving both retrieval efficiency 

and the overall accuracy of the model in capturing relevant information. The embed-

dings for the paragraph are encoded similarly to the question: 

 𝐸𝑊𝑝 = 𝐹𝑖𝑙𝑡𝑒𝑟(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑁𝑁(𝑀𝐻𝑆𝐴(𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝑊𝑃))))) (13) 



 𝐸𝑃𝑝 = 𝐹𝑖𝑙𝑡𝑒𝑟(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑁𝑁(𝑀𝐻𝑆𝐴(𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝑃𝑃))))) (14) 

 𝐸𝑆𝑝 = 𝐹𝑖𝑙𝑡𝑒𝑟(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑁𝑁(𝑀𝐻𝑆𝐴(𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝑆𝑃))))) (15) 

 𝐸𝐷𝑝 = 𝐹𝑖𝑙𝑡𝑒𝑟(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑁𝑁(𝑀𝐻𝑆𝐴(𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝐷𝑃))))) (16) 

where 𝐸𝑊𝑝, 𝐸𝑃𝑝, 𝐸𝑆𝑝, and 𝐸𝐷𝑝 denote the embedding representations of the paragraph 

at the word, phrase, sentence, and document levels, respectively. 

This encoding process ensures both question and paragraph are represented with rich 

semantic information across multiple granularities, which is essential for effective 

multi-hop reasoning in downstream tasks. 

Multi-grained Semantic Interaction. In the multi-grained semantic interaction stage, 

we perform semantic relevance calculations on embeddings from different granularities 

obtained in the previous encoding phase. The primary objective of this stage is to com-

pare and align the semantic representations extracted at various granularities, thereby 

facilitating more effective retrieval. We employ the Fine-grained Semantic Interaction 

Mechanism (FgSIM), which computes relevance scores between the question and par-

agraph at the word, phrase, sentence, and document levels. The interaction is based on 

cosine similarity between the embeddings, which measures the strength of the match 

between the question and paragraph. 

 𝑆𝑐𝑜𝑟𝑒∗ = ∑ 𝐹𝑔𝑆𝐼𝑀
𝑗≤𝑛

(𝐸𝑞𝑖 ∙ 𝐸𝑝𝑗)𝑚
𝑖  (17) 

where 𝑆𝑐𝑜𝑟𝑒∗ denotes the relevance score between the question and paragraph at dif-

ferent levels. When ∗= 𝑊, it indicates the score of the question and paragraph at the 

word level, 𝑚 and 𝑛 respectively indicate the number of semantic units in the question 

and paragraph at the word level. When ∗= 𝑃, it indicates the score at the phrase level, 

with 𝑚 and 𝑛 representing the number of semantic units in the question and paragraph 

at the phrase level. When ∗= 𝑆 or ∗= 𝐷, they represent the scores at the sentence and 

document levels, respectively. 

This multi-grained interaction mechanism significantly improves the model's ability 

to retrieve paragraphs that are most relevant to the question, thereby providing a better 

foundation for subsequent reasoning and understanding. 

Multi-grained Semantic Fusion. Relying on a single-granularity semantic representa-

tion for paragraph retrieval may lead to the omission of critical relevance signals, as 

different questions and contexts may align more strongly with different semantic levels. 

To address this, we design a multi-grained semantic fusion mechanism that aggregates 

relevance scores computed at four granularity levels—word, phrase, sentence, and doc-

ument—into a final retrieval score. 

Rather than assigning fixed weights to each granularity, we introduce an adaptive 

fusion strategy based on learnable parameters. Specifically, we assign trainable raw 

scores α, β, and γ to the word-, phrase-, and sentence-level representations, respec-

tively. These scores are normalized using a softmax function to obtain the final fusion 
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weights α̃, β̃, and γ̃, while the residual weight is automatically allocated to the docu-

ment level. The fused relevance score is computed as follows: 

 𝑆𝑐𝑜𝑟𝑒 = α̃ ⋅ 𝑆𝑐𝑜𝑟𝑒𝑊 + β̃ ⋅ 𝑆𝑐𝑜𝑟𝑒𝑃 + γ̃ ⋅ 𝑆𝑐𝑜𝑟𝑒𝑆 + (1 − α̃ − β̃ − γ̃) ⋅ 𝑆𝑐𝑜𝑟𝑒𝐷, (18) 

[α̃, β̃, γ̃] = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([α, β, γ]) 

where 𝑆𝑐𝑜𝑟𝑒 denotes the final fused relevance score. The parameters 𝛼, 𝛽, and 𝛾 are 

learnable scalar values that capture the model’s preference for each semantic level. The 

normalized weights 𝛼̃, 𝛽, and 𝛾̃ reflect the relative contribution of each granularity and 

are dynamically adjusted during training to optimize retrieval effectiveness. This adap-

tive fusion mechanism enables the model to learn task- and query-specific weighting 

patterns, thereby improving both flexibility and generalization across diverse multi-hop 

reasoning scenarios. 

Inspired by works like S2G [14] and FE2H [15], we adopt a two-step retrieval strat-

egy. First, the question and each candidate paragraph are processed by MgSFR to iden-

tify the most relevant paragraph. Then, this selected paragraph is combined with the 

question to form a new query, which is re-entered into MgSFR to retrieve the second-

hop relevant paragraphs. The final high-quality context is formed by concatenating the 

retrieved paragraphs and is passed to the downstream reader module. 

3.2 Multi-task Reader 

The Multi-task Reader module utilizes a multi-task learning framework to simultane-

ously extract answer spans and predict supporting fact sentences. 

Question and Context Encoding. For encoding, we first construct the input sequence 

for RoBERTa. Since the HotpotQA dataset includes both "Yes/No" questions and span-

based questions, we prepend special tokens for "yes" and "no" to the sequence. The 

input format is as follows: "[CLS]+yes+no+question+ [SEP]+context+[SEP]". This se-

quence is passed through RoBERTa, generating initial representations. The resulting 

output is represented as 𝐻 = [ℎ1, ⋯ , ℎ𝑙] ∈ 𝑅𝑙×𝑑1, where 𝑙 is the sequence length and 

𝑑1 is the hidden vector dimension. The context and question embeddings are denoted 

by 𝐻𝑐 = [ℎ1, ⋯ , ℎ𝑙𝑐
] ∈ 𝑅𝑙𝑐×𝑑1  and 𝐻𝑞 = [ℎ𝑙𝑐+1, ⋯ , ℎ𝑙] ∈ 𝑅𝑙𝑞×𝑑1 , respectively, where 

𝑙𝑐 is the context length and 𝑙𝑞 = 𝑙 − 𝑙𝑐 is the question length. 

 𝐻𝑞 , 𝐻𝑐 = 𝑅𝑜𝐵𝐸𝑅𝑇𝑎(𝑄, 𝐶) (19) 

To further enhance performance, we apply a bi-attention mechanism to model inter-

actions between the question and the context, refining the representations. The final 

output representations are denoted as 𝐻̂ ∈ 𝑅𝑙×𝑑2 , with the context and question repre-

sentations as 𝐻̂𝑐 ∈ 𝑅𝑙𝑐×𝑑2 and 𝐻̂𝑞 ∈ 𝑅𝑙𝑞×𝑑2 , where 𝑑2 is the output embedding dimen-

sion. 

 𝐻̂𝑞 , 𝐻̂𝑐 = 𝐵𝑖 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻𝑞 , 𝐻𝑐) (20) 



This bi-attention mechanism is crucial for enabling multi-hop reasoning across par-

agraphs, allowing the model to learn richer interactions between the question and con-

text. 

Multi-task Prediction. Inspired by methods like DFGN [18], HGN [19], and FE2H 

[15], we use multi-task learning to jointly predict the answer span and supporting facts. 

The prediction task is divided into three sub-tasks: (i) Answer Start Position Extraction: 

identifying the start position of the answer span; (ii) Answer End Position Extraction: 

identifying the end position of the answer span; (iii) Supporting Facts Prediction: de-

termining whether a sentence in the selected paragraph is a supporting fact. 

For answer span extraction, we apply linear prediction layers to predict the start and 

end positions of the answer. We use the cross-entropy loss for these tasks, denoted as 

𝐿𝑠𝑡𝑎𝑟𝑡 and 𝐿𝑒𝑛𝑑 . For supporting facts prediction, we use a binary classifier, with cross-

entropy loss denoted as 𝐿𝑠𝑢𝑝. 

 𝐿𝑠𝑡𝑎𝑟𝑡 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑜𝑠𝑡𝑎𝑟𝑡 , 𝑜̂𝑠𝑡𝑎𝑟𝑡) (21) 

 𝐿𝑒𝑛𝑑 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑜𝑒𝑛𝑑 , 𝑜̂𝑒𝑛𝑑) (22) 

 𝐿𝑠𝑢𝑝 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑜𝑠𝑢𝑝, 𝑜̂𝑠𝑢𝑝) (23) 

where 𝑜̂𝑠𝑡𝑎𝑟𝑡 and 𝑜̂𝑒𝑛𝑑  denote the predicted probability distributions for the start and 

end positions, and 𝑜̂𝑠𝑢𝑝  denotes the predicted probability distribution for supporting 

fact sentences. 

The final loss function is a weighted sum of the individual losses: 

 𝐿𝑗𝑜𝑖𝑛𝑡 = λ1𝐿𝑠𝑡𝑎𝑟𝑡 + λ2𝐿𝑒𝑛𝑑 + λ3𝐿𝑠𝑢𝑝 (24) 

where λ1, λ2, and λ3 are hyperparameters that control the relative importance of each 

task. Typically, we set λ1 = λ2 = λ3 = 1 to treat all tasks equally. 

4 Experiments 

4.1 Experimental Settings 

Dataset. We evaluated our method on the distractor setting of the HotpotQA [11] da-

taset. HotpotQA is a popular multi-hop RC dataset and the first interpretable multi-hop 

RC dataset with sentence-level evidence. HotpotQA comprises 113K question-answer 

pairs sourced from Wikipedia and crowdsourcing. In the distractor setting, each ques-

tion has two golden paragraphs with ground-truth answers and supporting facts and 

eight "distractor" paragraphs retrieved from Wikipedia via bigram TF-IDF [31] based 

on the question.} HotpotQA also provides supporting facts for each question, encour-

aging models to explain the reasoning paths in multi-hop RC. Table 1 shows the details 

of the dataset, which contains 90,564 examples in the train set, 20% of which are easy 
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single-hop questions, 80% of which are hard multi-hop questions, and 7,405 questions 

and multi-hop examples in both the dev and test sets. 

Table 1. Statistics of dataset. 

Name Level Description Usage Examples 

 easy single-hop  18089 

Train medium multi-hop training 56814 

 hard multi-hop  15661 

Dev hard multi-hop dev 7405 

Test hard multi-hop test 7405 

Evaluation Metrics. The HotpotQA dataset consists of two sub-tasks: Answer Span 

Prediction (Ans) and Supporting Facts Prediction (Sup). For each sub-task, model per-

formance is evaluated using Exact Match (EM) and Partial Match (F1) scores. We also 

use Joint EM and F1 scores to measure the overall performance of the model, encour-

aging accuracy in both sub-tasks for each example. Since the test set is unavailable, the 

reported performance is obtained by submitting our best model on the development set. 

Baseline Models. To evaluate the effectiveness of our proposed MgSFR model, we 

compare it with two categories of baseline models: 

Graph-based reasoning models: DFGN [18] proposes a dynamic fusion graph for 

multi-hop reasoning along entity connections. SAE-large [13] constructs an inference 

graph with sentence nodes, where contextual sentence embeddings are used as graph 

nodes. KIFGraph [32] integrates structured knowledge and contextual information 

across multiple granularity levels using asynchronous node updates. BFR-Graph [33] 

proposes a breadth-first reasoning graph that propagates reasoning step-by-step through 

sentence nodes. HGN-large [19] constructs a hierarchical graph that integrates multiple 

granularity levels (question, paragraph, sentence, and entity) for reasoning. SuAN [9] 

proposes a subgraph-based attention network that sequentially updates nodes based on 

the subgraph order. AMGN+ [23] utilizes an asynchronous multi-grained graph with 

entity, sentence, and paragraph nodes to simulate human-like multi-hop reasoning. 

Clue extraction-based reasoning models: C2F Reader [34] points out that graph 

attention is a special form of self-attention, validating that graph structures are not nec-

essary for multi-hop reasoning. FE2H [15] adopts a two-stage paragraph retriever and 

reader from easy to hard. S2G+EGA [14] applies a Coarse-to-Fine paragraph retrieval 

process with Sentence-aware Self-Attention and evidence-guided attention for reason-

ing. Smoothing 𝑹𝟑 [8] employs the Coarse-to-Fine retrieval and label-smoothing tech-

nique to extract both answer spans and supporting facts. 



4.2 Implementation Details 

The model is implemented based on Pre-trained Language Models (PLMs) from the 

Hugging Face Transformers library [35]. The framework is built on Pytorch and trained 

on Tesla A40 GPUs. The following provides implementation details for the paragraph 

retrieval and multi-task reader modules. 

MgSFR Paragraph Retrieval. For the paragraph retrieval module, we utilize both the 

base (-base) and the large (-large) versions of RoBERTa [36] to obtain contextual em-

beddings for questions and paragraphs at multiple granularity levels. Due to resource 

constraints, ablation studies on paragraph retrieval are conducted solely using RoB-

ERTa-base. All experiments are run on Tesla A40 GPUs, with the maximum number 

of epochs set to 16 and the batch size set to 8. For the optimizer, we use the BERT-

Adam optimizer with a learning rate of 2e-5. We employ the WordPiece [30] tokenizer 

to tokenize words and T5 [37] (trained for phrase extraction tasks) to recognize phrases 

in questions and paragraphs. 

Multi-task Reader. For the multi-task reader module, we employ the large (-large) 

version of RoBERTa [36] and the XXLarge (-xxlarge) version of DeBERTa [38] as 

PLMs. Experiments are conducted on Tesla A40 GPUs, using the AdamW optimizer 

with a learning rate of 1e-5, a warm-up rate of 0.1, and an L2 weight decay of 1e-2. For 

the RoBERTa-large model, we set the number of epochs to 16 and the batch size to 8. 

For the DeBERTa-v2-xxlarge model, due to its larger number of parameters, we set the 

number of epochs to 12 and the batch size to 4. 

4.3 Experimental Results 

MgSFR Retrieval Performance. We compared our MgSFR retrieval method with sev-

eral previous retrieval models, including HGN [19], SAE [13], S2G [14], FE2H [15] 

and Smoothing 𝑅3 [8], on the distractor setting of the development set in the multi-hop 

dataset HotpotQA. These models also employed carefully designed retrieval techniques 

to identify relevant paragraphs required for downstream tasks from the set of candidate 

paragraphs. The retrieval module was trained using the base and large versions of RoB-

ERTa as PLMs and evaluated using EM and F1 scores. As shown in Table 2, the ex-

perimental results indicate that our MgSFR method significantly outperformed all other 

methods across all metrics, validating its effectiveness in enhancing retrieval perfor-

mance through a multi-grained semantic fusion strategy. Notably, even the base version 

of MgSFR achieved competitive performance comparable to state-of-the-art retrieval 

methods, further confirming its practicality and effectiveness in multi-grained semantic 

retrieval tasks. 
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Table 2. Comparison of retrieval performance on the HotpotQA dev set with previous work. 

Models 
Retrieval 

EM F1 

HGN [19] - 94.53 

SAE-large [13] 91.98 95.76 

S2G-large [14] 95.77 97.82 

FE2H-large [15] 96.32 98.02 

Smoothing R3 [8] 96.85 98.32 

MgSFR on RoBERTa-base(Ours) 96.65 98.21 

MgSFR on RoBERTa-large(Ours) 97.32 98.56 

Table 3. Performance comparison on HotpotQA dataset in the distractor setting. MgSFR 

achieves overall competitive performance and outperforms all graph-based reasoning models. 

Models 
Ans Sup Joint 

EM F1 EM F1 EM F1 

Official Baseline 

Baseline Model [11] 45.60 59.02 20.32 64.49 10.83 40.16 

Graph-based Reasoning Models 

DFGN [18] 56.31 69.69 51.50 81.62 33.62 59.82 

SAE-large [13] 66.92 79.62 61.53 86.86 45.36 71.45 

KIFGraph [32] 69.53 82.42 61.79 87.98 46.49 74.12 

BFR-Graph [33] 70.06 82.20 61.33 88.41 45.92 74.13 

HGN-large [19] 69.22 82.19 62.76 88.47 47.11 74.21 

SuAN [9] 69.55 82.71 63.43 88.82 47.44 74.92 

AMGN+ [23] 70.53 83.37 63.57 88.83 47.77 75.24 

Clue Extraction-based Reasoning Models 

C2F Reader [34] 67.98 81.24 60.81 87.63 44.67 72.73 

FE2H on ELECTRA [15] 69.54 82.69 64.78 88.71 48.46 74.90 

S2G+EGA [14] 70.92 83.44 63.86 88.68 48.76 75.47 

𝑅3 [8] 71.27 83.57 65.25 88.98 49.81 76.02 

FE2H on ALBERT [15] 71.89 84.44 64.98 89.14 50.04 76.54 

Smoothing 𝑅3 [8] 72.07 84.34 65.44 89.55 49.73 76.69 

MgSFR on RoBERTa(ours) 71.35 84.13 65.94 90.12 49.36 76.16 

MgSFR on DeBERTa(ours) 71.95 84.36 66.85 90.51 49.92 76.61 

Multi-task Reading Comprehension Performance. We conducted a comprehensive 

evaluation of the MgSFR model on the development set of the HotpotQA dataset in the 

distractor setting (since the test set is not publicly available) and compared its perfor- 



mance against other strong multi-hop RC models listed in Table 3. As shown in the 

experimental results in Table 3, the MgSFR model achieved improvements of 1.41 and 

0.96 in EM and F1 scores for supporting facts prediction, respectively, surpassing the 

previously best-performing Smoothing 𝑅3 [8] model and achieving state-of-the-art per-

formance. These results demonstrate that MgSFR effectively enhances multi-hop RC 

tasks by improving retrieval performance and providing higher-quality context for 

downstream reasoning. Furthermore, MgSFR consistently outperformed existing multi-

hop graph reasoning models across all evaluation metrics, further validating the effec-

tiveness of the multi-grained semantic fusion strategy in capturing complex semantic 

relationships and improving reasoning capabilities. Utilizing DeBERTa-v2-xxlarge 

[38] as the PLM further enhanced performance, highlighting the pivotal role of power-

ful pre-trained models in addressing complex retrieval and reasoning tasks and under-

scoring the applicability of our approach in multi-hop RC scenarios. 

4.4 Ablation Studies 

To evaluate the contribution of each semantic granularity in our MgSFR framework, 

we perform an ablation study using RoBERTa-base [36]. We remove each granularity 

(word, phrase, sentence, document) individually and measure its impact on retrieval 

performance. 

As shown in Table 4, the removal of any granularity leads to a noticeable drop in 

performance, confirming the effectiveness of multi-granular semantic fusion. Notably, 

removing phrase-level semantics causes the most substantial performance decline 

(↓3.41 F1), significantly larger than the impact of removing any other level. This result 

underscores the central role of phrase-level representations in multi-hop paragraph re-

trieval. Unlike word-level embeddings, which may lack context, or sentence/document-

level semantics, which can be overly coarse, phrases provide semantically compact and 

contextually meaningful units—such as named entities, noun phrases, and short rela-

tional expressions—that are often directly aligned with the question’s focus and critical 

for bridging reasoning steps. In this sense, phrase-level information forms a semantic 

pivot between fine-grained and coarse-grained signals, playing a unique and indispen-

sable role in identifying supporting evidence. 

Table 4. Ablation study results on the dev set of HotpotQA. 

Models 
Retrieval 

EM F1 

MgSFR on RoBERTa-base(Ours) 96.65 98.21 

w/o word-level 96.24   ↓0.41 97.96   ↓0.25 

w/o phrase-level 90.61   ↓6.04 94.80   ↓3.41 

w/o sentence-level 94.44   ↓2.21 96.96   ↓1.25 

w/o document-level 96.12   ↓0.53 97.83   ↓ 0.38 
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4.5 Analysis of Adaptive Fusion Weights 

To further evaluate the effectiveness of our proposed adaptive fusion strategy, we con-

ducted an empirical analysis of the learned fusion weights across different types of 

questions in the HotpotQA development set. Specifically, we grouped questions based 

on their leading interrogatives (e.g., “Who”, “What”, “When”, “Yes/No”), and recorded 

the average values of the normalized weights α̃, β̃, and γ̃ for the word-, phrase-, and 

sentence-level semantics, respectively. The remaining weight was assigned to the doc-

ument level. As shown in Table 5, the model consistently assigned the highest weights 

to phrase-level semantics across most question types, particularly for “Who” and 

“What” questions that rely heavily on fine-grained entity and attribute matching. Inter-

estingly, Yes/No questions tended to place greater emphasis on sentence-level repre-

sentations, reflecting the need for more contextual or logical consistency in such cases. 

These results demonstrate that the adaptive fusion mechanism allows the model to dy-

namically prioritize semantic granularities that are most relevant to the question type, 

thereby improving both retrieval accuracy and interpretability. This observation aligns 

with our ablation study, which showed that removing phrase-level semantics led to the 

largest performance drop, confirming the importance of phrase-level signals in multi-

hop reasoning. 

Table 5. Average learned fusion weights by question type. 

Question Type Word (α̃) Phrase (β̃) Sentence (γ̃) Document 

Who 0.23 0.45 0.21 0.13 

When 0.29 0.37 0.18 0.16 

What 0.25 0.41 0.22 0.12 

Yes/No 0.19 0.34 0.33 0.14 

5 Conclusion 

In this paper, we propose a novel and effective Multi-grained Semantic Fusion Re-

trieval (MgSFR) model to tackle the challenges of multi-hop RC. The MgSFR model 

significantly enhances the semantic relationships between questions and paragraphs by 

fusing semantic information across different granularities (word, phrase, sentence, and 

document). This approach mitigates the risk of semantic information loss by ensuring 

a comprehensive understanding of both the question and the context, improving re-

trieval accuracy and multi-hop reasoning performance. Experimental results on the 

HotpotQA benchmark dataset demonstrate that the MgSFR model not only enhances 

paragraph retrieval performance in multi-hop reasoning tasks but also excels in multi-

task reading comprehension, particularly in supporting fact prediction. These results 

highlight the model's superior semantic reasoning capabilities. In the future, we plan to 

explore joint optimization and answer-aware refinement strategies to enable dynamic 

interaction between the retriever and reader, thereby further improving the synergy be-

tween retrieval and reasoning. 
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