

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Structure-Based Testing Criteria and Testing Case

Generation for Deep Learning Systems

Yining Chen, Jianghua Lv, Fengming Dong and Hexuan Li

 Beihang University, Beijing 100191, China
serchen@buaa.edu.cn

Abstract. Deep neural networks (DNN) are currently the basis of many modern

AI ap-plications has been widely applied in various domains. As more safety-

oriented fields (autonomous driving, medical diagnosis, etc.) begin to use DNN,

people have put forward new requirements for DNN. Not only the accuracy of

DNN and other objective indicators be excellent, but also have robustness and

ability to handle various corner cases. It is important to test the adequacy of the

deep neural network model, design appropriate evaluation indicators, build a

complete test evaluation system. However, deep neural network computing like

a black box, a slight disturbance to the input may cause errors in the final output

of the model. Therefore, it is important to test the adequacy of the deep neural

network model, design appropriate evaluation indicators, build a complete test

evaluation system. We prove that there are differences in the internal structure of

neural networks for different types of input. Based on this discovery, we proposed

Multi-Layer test criteria based on the neural network structure. To quantify and

analyze the changes in the internal structure of neural networks under different

types of input, this paper pro poses an algorithm for mapping the deep neural

network to tree structure data. Finally, a Multi-Layer test criteria based on the

neural network structure is proposed to guide the generation of test cases, which

can generate high-quality test cases.

Keywords: Deep neural network, White box testing, test case generation, test

effectiveness

1 Introduction

Deep learning[1,2] is part of machine learning. It belongs to artificial neural networks

based on data representation learning. Data can usually be represented in a variety of

ways. In the field of machine learning[3], developers need to manually extract effective

feature expressions from original data, which is a very complicated and skillful task. But

in the field of deep learning, users only need to process the data through unsupervised

or semi- supervised[4] feature learning methods[5] and leave the rest to the deep neural

network.

There are many excellent deep learning architectures[5,6], such as convolutional

neural networks, recurrent neural networks and deep belief networks. Deep learning

experiences significant progress over the past decades in achieving[7,8,9] competitive

performance of human intelligence in many cutting-edge applications such as image

processing , speech recognition [10], autonomous driving[11], medical diagnosis [12]

and pharmaceutical discovery[13], which until several years ago were still notoriously

difficult to solve programmatically. Most of the model structures only use gradient

descent to approach the optimal decision boundary and has no clear definition about

convergence problem, so deep learning is often regarded as an unexplainable model.

 Therefore, it is very important to properly test the deep neural network model [14],

design appropriate evaluation indicators, build a complete test evaluation system, and

then make appropriate adjustments and improvements to the model. The current testing

of deep neural networks has the following problems: 1) The neuron coverage index de-

sign is based on the output of a single neuron as the statistical standard, and does not

consider the relationship between multiple neurons and the distribution of multiple lay-

ers of neurons. 2) The previous use case generation method did not consider the rela-

tionship between the different levels of the neural network. The same use case generation

method was adopted for the DNN of different structures, and there was no difference; 3)

The lack of DNN under different use cases. The measurement method of the internal

changes of the model (the previous DNN testing method did not quantitatively analyze

the in-ternal behavior of the DNN) [15].

In response to the above problems: we proved that for different types of input, there

are differences in the internal structure of the neural network. Based on this discovery,

we proposed a Multi-Layer test criteria based on the neural network structure.

Our contribution mainly lies in:

We propose a Multi-Layer test case generation method based on neural net-work

structure. This test criteria verifies the coverage rate of the test case set for the model

state from the structural level, so as to verify the adequacy of the test.

We propose a Multi-Layer test case generation method based on neural net-work

structure. By transforming the problem of generating target test cases into a joint opti-

mization problem, the purpose of maximizing the difference of the predicted output of

the target neural network and maximizing the coverage index of Multi-Layer neurons

is achieved.

We have implemented the Multi-Layer deep neural network test framework system,

provided the multi-model joint framework test mode framework and the single-model

test mode framework based on the actual case display system report to verify the effec-

tiveness of the system.

2 Background

2.1 Neuron Coverage

With reference to the idea of code coverage in traditional software testing, Kexin Pei[1]

et al. proposed neuron coverage on deep neural networks as a measure of the test suffi-

ciency of the generated test set for the target deep neural network.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

The neuron coverage rate thinks that when using the test set to verify the neural

network, if the output value of the neuron in the neural network is higher than the set

threshold, then the neuron can be regarded as an activated state. The representative

logical structure part is considered to have been executed once, and the coverage rate

of a set of test cases to the logical structure of the neural net-work system can be meas-

ured by how many neurons in the neural network have been activated. If all the neurons

have been activated, then it can be considered that all the logic codes in the deep neural

network have been run at least once, and the neuron coverage rate can be considered to

reach 100%.

Fig. 1. Comparison of traditional white-box testing and white-box neural network-based

testing

Therefore, according to the idea of white box testing [16,17], if you want to fully

test the deep neural network, then the test set theoretically needs to execute all the logic

branches in the deep neural network at least one side [18], and all the neurons have

been activated, which can be considered fully tested.

2.2 Multitree and multitree edit distance

DNN forward propagation and back propagation are both directional, and the number

of neurons in the output layer is obviously smaller than the number of nodes in the

hidden layer, so we can abstract its internal structure into a tree structure [19].

Inside the DNN, different sample inputs will have a different structure of activated

neuron tree structure. In order to quantify the distance between different tree structures:

we introduce a multi-tree edit distance Tree edit distance Paaßen [20,21].

The edit distance of a tree is defined as the minimum cost sequence of the node

editing operations that transform one tree into another tree between ordered labeled

trees. It can be used to measure the similarity of the structure data of the tree. The

distance between two trees can be calculated by constructing the following three editing

operations on labeled ordered trees:

1. Delete the node and connect its child nodes to the parent node of the dimension

order.

2. Insert a node between the existing node and the successive children of the node.

3. Rename the label of the node.

3 Methodology

3.1 Multi-layer Neuron Structure Coverage

Layer Neuron Activation State

In this section, we design a set of DNN test coverage [22] standards from multiple

levels, aiming to be able to fully measure the behavioral connections between multiple

levels within the DNN network.

We describe the activation state of neurons in a layer of a deep neural network as the

number of possible activations of all neurons in this layer is used as the state [23,24],

and all possible states are collected. It contains information about the activation state

of a single neuron and the neurons in this layer. Through the activation state of the layer

of neurons, the distribution of the number of neurons in the layer of activated neurons

can be determined, and the upper and lower limits of the number of activated neurons

in the layer can also be known.

The definition of Layer Activate State (LSA) is that for a set of test cases 𝑇 =
𝑥1, 𝑥2, . . . , 𝑥𝑛, the output value out of a certain layer of neuron set is calculated, and t

is used as a judgment the threshold of whether a neuron is activated. If 𝑜𝑢𝑡(𝑛𝑖, 𝑥) >
𝑡 then neuron n is considered to be in an activated state, otherwise it is considered in-

active. Use the Enum function to record the number of neurons activated by each test

case and remove duplicates. The specific formula is defined as follows:

 𝐿𝐴𝑆(𝑇, 𝑥, 𝑁𝑙) = {𝐸𝑛𝑢𝑚(∑ 𝑛𝑖
𝑚
𝑖=1)|∀𝑛𝑖 ∈ 𝑁𝑙 , ∀𝑥 ∈ 𝑇, 𝑜𝑢𝑡(𝑛𝑖 , 𝑥) > 𝑡} (1)

Multi-Layer Neuron Coverage Test Criteria

Starting from the overall neuron structure of the deep neural network, this article con-

structs three coverage indicators to measure the overall neuron coverage:

Multi-Layer Neuron Coverage (MLNC)

For a set of test case T, calculate the layer neuron activation state (LSA) of this set of

test cases for each layer of the deep neural network, and then combine the LSA value

of each layer with all the possible activation states of the layer neurons in each layer

The ratio of the state is multiplied by the weight of the number of layers, and the final

weighted sum is used as the final calculated value of the Multi-Layer neuron coverage.

All possible states of the activation state of layer neurons in each layer are defined as:

the number of layer nodes plus one.

 The specific definition of Multi-Layer neuron coverage test criteria is as follows:

 𝑀𝐿𝑁𝐶(𝐷𝑁𝑁) = ∑
𝐿𝐴𝑆(𝐷𝑁𝑁𝑙)

𝑛×𝑁𝑢𝑚𝑠(𝐷𝑁𝑁𝑙)+1

𝑛
𝑙=1 (2)

 𝐷𝑁𝑁𝑙 refers to a certain layer of the deep neural network model 𝐷𝑁𝑁, n is the num-

ber of layers of the model 𝐷𝑁𝑁, 𝐿𝐴𝑆(𝐷𝑁𝑁𝑙) refers to the activation state of the layer

neurons in this layer, and 𝑁𝑢𝑚𝑠(𝐷𝑁𝑁𝑙) function refers to the number of neuron nodes

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

in this layer. Add 1 is to prevent the occurrence of no neuron activation in the current

layer.

Test in Train Multi-Layer Neuron Coverage (TTMLNC)

The second test coverage indicator is from the perspective of the training set and the

test set. The activation state of the layer neurons covered by the test cases constructed

in this paper accounts for the percentage of the activation state of the layer neurons in

the training set samples. Define Test in Train Multi-Layer Neuron Coverage test index

TTMLNC as:

 𝑇𝑇𝑀𝐿𝑁𝐶(𝐷𝑁𝑁) = ∑
𝐿𝐴𝑆𝑇𝑒𝑠𝑡(𝐷𝑁𝑁𝑙)∩𝐿𝐴𝑆𝑇𝑟𝑎𝑖𝑛(𝐷𝑁𝑁𝑙)

𝑛×𝐿𝐴𝑆𝑇𝑟𝑎𝑖𝑛(𝐷𝑁𝑁𝑙)
𝑛
𝑙=1 (3)

 𝐿𝐴𝑆𝑇𝑒𝑠𝑡(𝐷𝑁𝑁𝑙) represents the number of activation states of neurons in a layer

above the test set when the deep neural network model DNN is built, and

𝐿𝐴𝑆𝑇𝑟𝑎𝑖𝑛(𝐷𝑁𝑁𝑙) represents the deep neural network model DNN is built on the training

set. The number of activation states of layer neurons in a layer.

Test in New Multi-Layer Neuron Coverage (TNMLNC)

In order to measure the newly activated state in the test s-et as a percentage of the

training set state, the Test in New Multi-Layer Neuron Coverage (TNMLNC) test index

is defined as:

 𝑇𝑁𝑀𝐿𝑁𝐶(𝐷𝑁𝑁) = ∑
𝐿𝑆𝐴𝑇𝑒𝑠𝑡(𝐷𝑁𝑁𝑙)−𝐿𝑆𝐴𝑇𝑒𝑠𝑡(𝐷𝑁𝑁𝑙)∩𝐿𝑆𝐴𝑇𝑟𝑎𝑖𝑛(𝐷𝑁𝑁𝑙)

𝑛×𝐿𝑆𝐴𝑇𝑟𝑎𝑖𝑛(𝐷𝑁𝑁𝑙)
𝑛
𝑙=1 (4)

3.2 DNN Tree Structure distance

We take the highest activation state node in the output layer as the root node of the tree,

the neurons activated in the neural network with the same output are similar, and the

neurons activated in the internal neural network with different outputs are different.

Therefore, we proposed the concept of tree structure set distance.

 Through the TNMLNC test criteria, you can measure what percentage of the newly

constructed test case set is activated. The state of the previous neural network structure

that has not been activated. This is a state that has not been generated from the training

set, it can be covered These states that do not appear in the training set but should be

covered, so as to build the adequacy of the overall deep neural network white box test

process.

 For a set of tree structure data, define this set of 𝑡𝑥 ∈ 𝜎𝑙𝑒𝑏𝑒𝑙=𝑥(𝑥) Tree Structure Set

Internal Distance (TSSID) as:

 𝑇𝑆𝑆𝐼𝐷(𝑡𝑥, 𝑡𝑥) =
∑ ∑ 𝐴𝑃𝑇𝐸𝐷(𝑇𝑟𝑒𝑒(𝐷𝑁𝑁(𝑡𝑥)),𝑇𝑟𝑒𝑒(𝐷𝑁𝑁(𝑡𝑥)))𝑛

𝑗=𝑖+1
𝑛
𝑖=1

(
𝑛(𝑛−1)

2
)

 (5)

 Where x represents the tree structure data whose neural network output is x and the

label of the training sample is x, n represents the number of this set of tree structure

data, 𝑡𝑥, 𝑡𝑥means that the DNN output and label are both x samples 𝑡𝑥, 𝐴𝑃𝑇𝐸𝐷 means

tree edit distance algorithm, DNN represents the neural network being tested, and Tree

represents the neural network mapping tree structure algorithm. 𝜎𝑙𝑒𝑏𝑒𝑙=𝑥(𝑥) refers to

the tree structure data set in which both the input label and the neural network prediction

are x.

For different groups of tree structure data 𝑡𝑥 and 𝑡𝑦, they belong to different sample

sets, define these two groups of 𝑡𝑥 ∈ 𝜎𝑙𝑒𝑏𝑒𝑙=𝑥(𝑥), 𝑡𝑦 ∈ 𝜎𝑙𝑒𝑏𝑒𝑙=𝑦(𝑦) the outer distance

of the tree structure data (Tree Structure Set Outer Distance):

 𝑇𝑆𝑆𝑂𝐷(𝑡𝑥, 𝑡𝑦) =
∑ ∑ 𝐴𝑃𝑇𝐸𝐷(𝑇𝑟𝑒𝑒(𝐷𝑁𝑁(𝑡𝑥)),𝑇𝑟𝑒𝑒(𝐷𝑁𝑁(𝑡𝑦)))𝑛

𝑗=1
𝑛
𝑖=1

𝑛2 (6)

3.3 Test Case Generation Method

Referring to the idea of software white-box testing, testers need to fully under-stand the

running state and logic code of the program, so as to design special test cases to verify

the correctness of the software code. Compared with the deep neural network, when

designing and selecting new test cases, it is also necessary to fully understand the op-

erating state and internal structure of the deep neural network. Therefore, this paper

maps the neural network into a tree structure, and uses the tree structure to measure the

performance of the neural network in different inputs. changes below.

In the method of generating test cases for the DNN system through the white box

idea, two goals need to be achieved. The first objective is to change the original output

of the deep neural network. The second objective is to improve the coverage of Multi-

Layer neurons. We set up the two objectives together to con-struct a joint optimization

function, and solve the optimal solution of the joint optimization function through gra-

dient descent, and finally obtain the required Multi-Layer test case.

Maximize The Difference in Predicted Output

For objective 1, we guide the final output of multiple models of the same function to

be inconsistent, causing errors in the deep neural network, and the output label values

of different models are different.

Define 𝐴𝑝(𝑁𝑖) the output value of the activation function of the i-th neuron in the

Prediction layer (the last layer of the neural network) of the deep neural network. By

setting a hyperparameter w1 to control the degree of perturbation model output predic-

tion, it can be designed by constructing a loss function that maximizes the difference in

the predicted output of the target neural network.

By setting a hyperparameter 𝑤1 to control the degree of perturbation model output

prediction, it can be designed by constructing a loss function that maximizes the differ-

ence in the predicted output of the target neural network.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Fig. 2. Multi-layer deep neural network test case generation method

 𝑜𝑏𝑗1 = (∑ 𝐴𝑝(𝑛𝑖) − 𝑤𝑖 × 𝐴𝑝
𝑘
𝑖=2 (𝑁𝑐)) (7)

 For objective 2, we abstract the neural network into a tree structure and use the de-

signed loss function to push the activated nodes in the neural network to not activated

(deactivated), nodes that have not been activated can be activated, resulting in more

different structural combinations.

The generated test cases need to be able to activate the tree structure abstract-ed by

more different neural networks, because this can cover more neural net-work logic

branches, and it also represents a greater coverage of multi-layer neurons.

 𝑜𝑏𝑗2 = 𝑤2 × (𝑥 ∑ ∑ 𝐴𝐿(𝑁𝑖|𝑁𝑖 ∈ 𝐴𝑁𝑆)𝑎𝑛
𝑖=1

𝑛
𝐿=1 − 𝑦 ∑ ∑ 𝐴𝐿(𝑁𝑖|𝑁𝑖 ∈ 𝑈𝑁𝑆)𝑎𝑛

𝑖=1
𝑛
𝐿=1) (8)

 ANS refers to the activated neuron set (Activate Neuron Set), UNS refers to the

deactivated neuron set (Deactivate Neuron Set). 𝐴𝐿(𝑁𝑖) as the ith neuron in the L layer

of the neural network.

3.4 Joint Optimization

In this paper, the overall function of the joint optimization problem is constructed, and

the two objectives 𝑜𝑏𝑗1 and 𝑜𝑏𝑗2 are optimized simultaneously by the gradient descent

method.

From loss function 𝑤1 can measure the importance of the difference between the

sum of the maximum confidence score of the original output of the deep neural network

and the confidence scores of other output labels, and 𝑤2 can measure the importance of

the internal activated and inactive neuron output change of the neural network after the

input sample seed. Two optimizations can be customized by giving different propor-

tions of parameters to 𝑤1 and 𝑤2 the importance of the problem. Therefore, the joint

optimization function is fully defined as:

 𝑜𝑏𝑗𝑗𝑜𝑖𝑛𝑡 = 𝑤1 × 𝑜𝑏𝑗1 + 𝑤2 × 𝑜𝑏𝑗2 (9)

 𝑜𝑏𝑗𝑗𝑜𝑖𝑛𝑡 function can be differential operated in design. Therefore, this paper uses

gradient descent algorithm to solve the minimum value of 𝑜𝑏𝑗𝑗𝑜𝑖𝑛𝑡 function. The gra-

dient information obtained each time is transformed to obtain the generated test sample,

which interferes with the original input for many times until the generated test sample

meets the requirements.

4 Experiment

4.1 Comparison of tree structure distance in neural network

In order to verify whether there are structural differences in the tree structure data

mapped by activated neurons after different categories of samples are input into the

model. For the input of ten categories from 0 to 9 on the MNIST dataset, we use three

different models of LeNet-1, LeNet-4, and LeNet-5 to count the internal distance and

external distance of the internal activation node tree structure of the neural network.

directly calculate the specific value of the two distances, measure the similarity between

different types of tree structure data, and verify the difference in the distribution of

activated neurons in different types of input neural networks.

Table 1. Model samples the TSSID and TSSOD distance of 10 groups of ten kinds of tree

structure data

Model 1 2 3 4 5 6 7 8 9 10

1 1.58 6.66 4.69 4.61 5.56 3.27 5.1 5.71 4.35 4.73

2 6.66 1.97 5.05 5.41 6.14 6.49 5.58 3.76 5.98 4.45

3 4.69 5.05 2.39 4.36 6.59 4.64 4.97 4.72 4.88 4.92

4 4.61 5.41 4.36 2.3 6.98 3.93 5.4 3.45 4.63 4.18

5 5.56 6.14 6.59 6.98 2.53 6.57 6.19 6.06 6.72 5.67

6 3.27 6.49 4.64 3.93 6.57 2.4 4.64 5.43 3.74 4.71

7 5.1 5.58 4.97 5.4 6.19 4.64 2.39 5.05 4.83 4.75

8 5.71 3.76 4.72 3.45 6.06 5.43 5.05 2.2 5.33 2.88

9 4.35 5.98 4.88 4.63 6.72 3.74 4.83 5.33 2.3 5.02

10 4.73 4.45 4.92 4.18 5.67 4.71 4.75 2.88 5.02 2.26

The data on the diagonal of the table is the internal distance (TSSID) of each cate-

gory tree structure data, and the rest are the external distances (TSSOD) from different

categories to other category tree structure data.

 From the experimental data, as the complexity of the model increases, the difference

between samples also increases. In addition, it can be clearly seen that the data on the

diagonal line is significantly smaller than the other data in the column where it is lo-

cated that is, we verify that

 𝑇𝑆𝑆𝑂𝐷(𝑡𝑥, 𝑡𝑦) > 𝑇𝑆𝑆𝐼𝐷(𝑡𝑥 , 𝑡𝑦), ∀𝑥, 𝑦 ∈ 𝑙𝑎𝑏𝑒𝑙 (10)

4.2 Multi-Layer Neuron Test Coverage Index Comparison Experiment

We compare the proposed Multi-Layer indicator with the existing test criteria, and ver-

ify the effectiveness of our indicator from the perspective of the overall structure cov-

erage of the neural network.

In this paper, two sets of experimental designs are carried out, which are compared

with the control indicators from the perspective of the full training set. Neuron

Coverage (NC) in DeepXplore is used as the index of the comparison group, and all the

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

training set parts of the dataset MNIST are used, and a total of 60,000 sample pictures

are all input into the model. The control group adopts the NC index as the coverage

measurement index, and the experimental group adopts MLNC. Indicators, the test ob-

jects are set to three models of LeNet1, LeNet-4 and LeNet-5, take the average value

of the final indicators of the three models as the result of the experiment and compare

the changes of the indicators of the three models respectively, and observe the test cri-

teria in the full amount. The variation on the training set samples, the sampling interval

is numerical sampling every 1000 samples.

Fig. 3. Comparison of traditional white-box testing and white-box neural network-based

testing

It can be seen from the figure that the NC index has reached a value of 0.765 in the

initial stage, while the comparative MLNC-avg index only reached 0.454. After 60,000

experimental samples, the NC-avg index increased to 0.816, while the MLNC- avg in-

dex increased to 0.816. Raised to 0.562. From the experimental results, the MLNC

index is initially lower than the NC index, indicating that the test space mapped by the

MLNC index is larger than the NC index, and the same is true for the subsequent index

increase. Therefore, the experiments in this section can verify that the MLNC indicator

can measure the deep neural network in a more detailed manner. Compared with other

test criteria, it requires more sufficient test case construction, and can conduct more

detailed verification of the model decision logic.

 Based on the three models of LeNet-1, LeNet-4 and LeNet-5, compare the changes

of the experimental KMNC, NBC, SNAC and MLNC indicators after adding adversar-

ial samples for many times. We select 10,000 random samples from the MNIST dataset

as the base dataset for Test. On this basis, iteratively added a variety of adversarial

samples for experiments, the first time adding 1000 FGSM adversarial samples, the

second adding 1000 BIM samples, the third adding 1000 JSMA samples, and the fourth

adding 1000 CW samples, and observe the changes of the test criteria on different mod-

els.

Table 2. Multi-layer neuron test coverage index different model experiments

DNN Criteria

Test

Org

Step 1

+FGSM

Step 2

+BIM

Step 3

+JSMA

Step 4

+CW

LeNet-1
KMNC 65.3 74.9 70.8 77.7 72.6

NBC 43.5 47.3 49.2 45.4 44.3

(%)
SNAC 35.3 42.5 47.3 44.2 42.1

MLNC 62.5 63.7 63.7 64.2 65.3

LeNet-4
KMNC 71.4 74.2 74.5 77.6 76.3

NBC 7.2 10.8 13.5 15.4 12.3

(%)
SNAC 13.5 17.6 21.3 24.7 15.3

MLNC 48.2 51.1 51.1 51.3 52.3

LeNet-5
KMNC 56.3 68.6 70.4 75.4 77.3

NBC 5.6 13.3 16.5 35.0 45.5

(%)
SNAC 13.9 18.9 19.4 22.4 14.5

MLNC 45.7 46.7 46.7 48.3 48.8

In the three models of LeNet-1, LeNet-4 and LeNet5, as the model structure becomes

more complex, the initial value of the MLNC index Test is lower, which reflects that

MLNC is a reflection of the complexity of the model. The more complex the structure,

the more logical structure needs to be tested. After the adversarial samples are added in

stages, the MLNC indicator shows a relatively low growth rate compared with other

test criteria, and the changes of other indicators exceed the MLNC indicator, which

shows that in the case of the same amount of test data, the MLNC indicator is better

than other indicators. The growth rate of the index is low, and the test and verification

of the model is more stringent, which also proves the more detailed characteristics of

the MLNC index.

4.3 Multi-Layer test case generation method comparison experiment

The basic process of the experiment is to first input the entire MNIST training set into

the LeNet-1, LeNet-4 and LeNet-5 models of the three tested objects, record the final

MLNC indicators and layer neuron activation states, and then use the best model in

experiment three. The test case set generated by the experimental combination results

is input to the MLNC index and layer neuron activation state recorded by the model,

and the TTMLNC index and the TNMLNC index are calculated from this. The three

indexes are used to measure whether the test case generation method is sufficient.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Fig. 4. TTMLNC and TNMLNC in 800 Generated test case

The adequacy experiment of the Multi-Layer test case generation method is con-

structed from the three aspects of MLNC index, TTMLNC index and TNMLNC index,

and the quality of the test set is verified from the specific experimental results. The test

case set has a comprehensive coverage rate of 64.4% in the three models, compared

with the training set, the coverage is increased by 6.2%, covering 89% of the state space

of the training set, and activating an additional 34% of the state space, and the verifica-

tion test is sufficient.

5 Conclusion

We propose an algorithm to map a deep neural network into a tree structure, and use a

related tree structure distance algorithm to measure the distance of the tree structure

mapped by two test samples, and then quantify its change to the internal nodes of the

deep neural network. The test method is improved from the white-box point of view,

and relevant experimental indicators are constructed to verify the correctness of the

algorithm. We experimentally verify that the deep neural network model has certain

structural differences for different types of inputs. Therefore, a Multi-Layer test metric

(MLNC) based on neural network structure is proposed, which can evaluate the state

of the model from the perspective of model structure. TTMLC is proposed to evaluate

whether the generated test cases can replace the existing test cases in terms of neuron

coverage. TNMLNC is proposed on the neuron coverage to evaluate how many addi-

tional activated neurons the generated test cases are newer than the training data set.

Compared with the original training set of 10,000 samples, the generated 800 test

cases can cover nearly 89% of the training set activation state on average on the three

models, and an additional 34% of the training set activation state can be activated.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to

the content of this article.

References

1. Zheng, W., et al.: An empirical study on correlations between deep neural network

fairness and neuron coverage criteria. IEEE Transactions on Software Engineer-

ing 50(3), 391–412 (2024)

2. Westhofen, L., Neurohr, C., Koopmann, T., et al.: Criticality metrics for automated

driving: A review and suitability analysis of the state of the art. Archives of Computa-

tional Methods in Engineering 30(1), 1–35 (2023)

3. Pei, K., Cao, Y., Yang, J.: DeepXplore: Automated whitebox testing of deep learning

systems. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp.

1–18 (2017)

4. Sun, Y., Huang, X., Kroening, D.: Testing deep neural networks. arXiv preprint

arXiv:1803.04792 (2018)

5. Ma, L., Juefei-Xu, F., Zhang, F.Y., et al.: DeepGauge: Multi-granularity testing criteria

for deep learning systems. In: Proceedings of the Automated Software Engineering,

pp. 120–131 (2018)

6. Ma, L., Juefei-Xu, F., Xue, M., et al.: DeepCT: Tomographic combinatorial testing for

deep learning systems. In: Proceedings of the 26th International Conference on Soft-

ware Analysis, Evolution and Reengineering, pp. 614–618. IEEE (2019)

7. Szeliski, R.: Deep Learning. Springer, Cham (2022). https://doi.org/10.1007/978-3-

030-34372-9_5

8. An, S., Lu, R., Zhang, T.: Unsupervised feature learning for data classification. Journal

of Physics: Conference Series 1994, 012010 (2021). https://doi.org/10.1088/1742-

6596/1994/1/012010

9. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: Survey, land-

scapes and horizons. arXiv preprint arXiv:1906.10742 (2019)

10. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image

classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 3642–3649 (2012)

11. Hinton, G., Deng, L., Yu, D., et al.: Deep neural networks for acoustic modeling in

speech recognition: The shared views of four research groups. IEEE Signal Processing

Magazine 29(6), 82–97 (2012)

12. Huval, B., Wang, T., Tandon, S., et al.: An empirical evaluation of deep learning on

highway driving. arXiv preprint arXiv:1504.01716 (2015)

13. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks

segment neuronal membranes in electron microscopy images. In: Advances in Neural

Information Processing Systems (NIPS), pp. 2843–2851 (2012)

14. Chen, H., Engkvist, O., Wang, Y., et al.: The rise of deep learning in drug discovery.

Drug Discovery Today 23(6), 1241–1250 (2018)

15. Huang, X., Kroening, D., Kwiatkowska, M., et al.: Safety and trustworthiness of deep

neural networks: A survey. arXiv preprint arXiv:1812.08342 (2018)

16. Xiang, W., Musau, P., Wild, A.A., et al.: Verification for machine learning, autonomy,

and neural networks survey. arXiv preprint arXiv:1810.01989 (2018)

17. Offutt, A.J., Untch, R.H.: Mutation 2000: Uniting the orthogonal. In: Mutation Testing

for the New Century, pp. 34–44 (2001)

18. Sun, Y., Huang, X., Kroening, D.: Testing deep neural networks. arXiv preprint

arXiv:1803.04792 (2018)

19. Paaßen, B.: Revisiting the tree edit distance and its backtracing: A tutorial. arXiv pre-

print arXiv:1805.06869 (2018)

https://doi.org/10.1007/978-3-030-34372-9_5
https://doi.org/10.1007/978-3-030-34372-9_5
https://doi.org/10.1088/1742-6596/1994/1/012010
https://doi.org/10.1088/1742-6596/1994/1/012010

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

20. Tai, K.C.: The tree-to-tree correction problem. Journal of the ACM 26(3), 422–433

(1979)

21. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees

and related problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

22. Pawlik, M., Augsten, N.: Tree edit distance: Robust and memory-efficient. Information

Systems 56, 157–173 (2016)

23. Pawlik, M., Augsten, N.: Efficient computation of the tree edit distance. ACM Trans-

actions on Database Systems 40(1), 1–40 (2015)

24. Khan, M.: Different approaches to black box testing technique for finding errors. In-

ternational Journal of Software Engineering & Applications 2(4), 1–12 (2011)

