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Abstract. Short-term Object Interaction Anticipation (STA) aims to enhance in-

telligent systems with predictive capabilities and decision-making support by 

forecasting future interactions between objects. Existing methods often rely on 

visual changes in short video inputs, which limits the depth and accuracy of mo-

tivation prediction. In this study, we propose a novel approach, termed Inten-

Former, inspired by how humans make decisions by understanding intentions. 

Specifically, IntenFormer employs a heterogeneous attention mechanism to sim-

ultaneously mine long- and short-term information frameworks, while incorpo-

rating knowledge distillation by utilizing a pretrained global intention model as 

a teacher, enabling the model to learn intention patterns. Extensive experiments 

on the Ego4D-STA dataset demonstrate that IntenFormer achieves highly com-

petitive results, underscoring the efficacy of a unified approach to intention pre-

diction and knowledge distillation. 

Keywords: Object Interaction Anticipation, Knowledge Distillation. 

1 Introduction 

Short-term Object Interaction Anticipation (STA) is an important research task aimed 

at predicting future interactions between objects and agents, thereby providing a basis 

for behavior prediction and decision-making support [1]. The STA task involves taking 

a video and a specific timestamp as input and predicting the timing, location, and type 

of object interaction that may occur at that specific moment. Compared to traditional 

tasks such as action recognition and hand-grasp analysis, there is growing interest in 

predicting future human-object interactions based on egocentric (first-person perspec-

tive) videos. Such predictions can be embedded into AI systems to support users by 

enabling more accurate behavior predictions. For example, STA can be used to predict 

pedestrian trajectories in autonomous driving or to anticipate user actions in smart 

kitchens to provide safety alerts. [2][3] In scenarios requiring proactive judgment and 

rapid response, STA is critical. 

Humans instinctively rely on understanding others' intentions to make predictions 

and decisions. In communication, we observe facial expressions and body language to 

infer emotions and intentions, thereby predicting subsequent behaviors and interac-

tions. Studies have shown that incorporating the concept of intention into the processing 



of egocentric videos can significantly enhance model performance [4], leading to more 

accurate behavior predictions [5]. However, existing methods [1] [6] [7] primarily rely 

on short-term observed physical changes, such as hand motion trends and gaze fixation 

rates, to predict intentions. These approaches are constrained by the length of input 

videos and the richness of observations, leading to overly localized and simplistic pre-

dictions of intention, which in turn limits the efficiency and accuracy of the task.   

 

 
Fig. 1. Top: Previous methods could only use short-term memory and objective 

physical changes to predict implicit intentions. These methods often failed to uncover 

deeper subjective motivations. Bottom: Our IntenFormer additionally incorporates 

long-term memory and knowledge distillation, making it more capable of guiding ac-

tion prediction from a macro perspective. 

 

The effectiveness of intention prediction is often closely related to the richness 

of observational information. Based on this natural insight, we propose the core idea: 

combining long-term and short-term memory with knowledge-distilled global features 

to predict intentions. (see in Fig. 1). This approach offers the following 2 key merits: 

• Task-oriented prediction: The model can accurately predict object interactions that 

are directly relevant to the current task. For example, an STA model that understands 

a user’s historical behavior and current task objectives can accurately predict the 

next ingredient the user is likely to use while preparing a meal. 

• Personalized prediction: The model can identify individual behavioral patterns. For 

instance, if the model learns from historical data that a specific user always wipes 
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their hands after using the kitchen sink, it can predict that the user is likely to wipe 

their hands again after finishing sink usage. 

To this end, we propose an Intention-guided Transformer, termed IntenFormer for 

mining considered intentions to guide anticipation. Specifically, IntenFormer formu-

lates the STA task as a set-prediction problem and defines a set of "Next-Active Ob-

jects" (NAO) queries to aggregate all intentions from memory and generate final pre-

dictions through a prediction head. To achieve effective intention modeling, Inten-

Former leverages temporal attention and introduces a heterogeneous attention mecha-

nism. It fully exploits local spatiotemporal features and dynamically models spatial in-

formation in short-term memory, while also extending historical information and 

broadening the model's perceptual scope in long-term memory. To further enrich the 

enhanced intentions, IntenFormer defines an additional set of queries that fully interact 

with all accumulated memories. These queries are supervised by global features ob-

tained from a pretrained teacher model, enabling knowledge distillation for the NAO 

queries. Finally, the updated NAO queries are processed into final outputs through bi-

partite graph matching in the prediction head. We conducted extensive experiments on 

the Ego4D-STA dataset, including STAv1 and STAv2, to evaluate the performance of 

IntenFormer. Experimental results show that IntenFormer achieves highly competitive 

results compared to existing methods. Moreover, our ablation studies demonstrate the 

significant advantages of incorporating enhanced intentions into the STA task. 

Our main contributions are as follows: 

⚫ We propose IntenFormer, an end-to-end model that jointly uses short-term 

memory, long-term memory, and the intention mined by them to complete STA 

task. 

⚫ A heterogeneous attention method is proposed, which not only fully exploits 

local spatiotemporal features but also extends historical information and broad-

ens the model's perceptual scope. 

⚫ Furthermore, we integrate knowledge distillation to extract global features, en-

abling task-oriented prediction and personalized prediction, thereby enhancing 

the model's predictive capability. 

⚫ Our model has produced highly competitive results on Ego4D STA dataset and 

has proven the superiority of our approach through extensive ablation testing. 

2 Related Work 

2.1 Action Anticipation with Intention 

Different prior works have explored incorporating Intention (termed as Goal in some 

papers) into the task of action prediction.  

ANTGPT [8] proposed utilizing large language models to predict Goals in natural 

language form based on video action sequences extracted by the backbone. It then trans-

forms these Goals into features using CLIP [9], attaches them to the input features, and 

feeds them into the prediction network for completion.  



Method [10] proposed an action prediction model based on "Abstract Goal", which 

defined a new concept called “Abstract Goal” from observed visual feature sequences 

for action anticipation. Similar to Method [5], this Abstract Goal is designed as a dis-

tribution, whose parameters are estimated through a variational recurrent network. The 

model then samples multiple possible next actions and introduces a measure called goal 

consistency to determine which candidate action aligns best with the Abstract Goal.  

Method [11] proposed an action prediction method based on "latent goal learning." 

It generates latent goals from observed video features using a stacked recurrent neural 

network and uses the learned latent goals to guide the generation of possible future 

actions. The loss is then calculated based on the quality of the predicted actions and the 

distance difference between the continuous predicted latent goals. 

However, these methods are too coarse-grained and lack the ability to capture micro-

information in interactions. In contrast, our proposed method not only captures macro 

trends but also extracts subtle details such as minute hand movements and gaze shifts 

from short-term memory, enabling more comprehensive predictions. 

2.2 Short-term Object Interaction Anticipation 

Various approaches have explored Short-Term Object Interaction Anticipation task. 

Method [12] proposed analyzing the trajectories of objects to enhance anticipation 

performance. Method [13] explored predicting visual attention probability maps from 

images, taking into account features of both hands and objects. With the advent of Vi-

sion Transformers [14], the application of transformers has begun to be explored by 

researchers. Method [15] introduced causal modeling of video features, employing se-

quence modeling of frame features to interpret interactions in consecutive future 

frames. Method [16] developed a method for a long-term understanding of videos, us-

ing Multiscale Transformers to hierarchically focus on stored memories. 

We propose a novel approach that leverages logically derived explicit intentions 

from long-term memory to guide predictions, while also incorporate global intentions 

to capture more nuanced details. 

3 Methodology 

3.1 Problem Definition 

We define the STA task as follows. Given an egocentric video 𝑉  and a specific 

timestamp 𝑡, the input to the model is the video segment 𝑉1:𝑡 up to the current time. The 

goal of the model is to predict future interactions, which are represented by a set:Ψ =

{ϕ𝑖 = (𝑏, 𝑛, 𝑣, δ, 𝑐)}
𝑖=1

𝑁𝑝
, where 𝑏 denotes the object's location (bounding box), 𝑛 is the 

object's category, 𝑣 is the action performed with the object, δ is the time until interac-

tion, and 𝑐 is the confidence score of the prediction.  

The video segments {𝑉1:𝑡𝑖
}𝑖=1

𝑁𝑣  are defined by annotation or sampling points {𝑡𝑖}𝑖=1
𝑁𝑣 , 

where the annotation points are consecutive points from the same scene. 
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3.2 Model Architecture 

 

Fig. 2. A The overview of our IntenFormer. The light yellow section in the middle represents 

the main control flow, the light gray column on the left indicates the feature extraction and prep-

aration of the data, and the boxes on the right visualize the specific modules. 

As illustrated in Fig. 2, the input to IntenFormer consists of a video clip and the output 

from the previous time step 𝑂𝑡𝑖−1
. The backbone processes the video clip and extracts 

3 types of features: 𝐹𝑜𝑏𝑗 (object features), 𝐹3𝐷 (3D motion features), and 𝐹𝑐𝑜𝑚𝑏  (com-

bined features), which are used for the intention prediction task. 

Next, we create a set of Next-Active Object (NAO) queries. We define these learn-

able parameters 𝑄𝑡𝑖
∈ 𝑅𝑁𝑞×𝐶  to query for NAOs, where 𝑁𝑞 is the number of NAOs we 

want to query, 𝐶 is the dimensionality of the model, and 𝑡𝑖 represents the current time. 

Following [17], we add learnable positional encodings to 𝑄𝑡𝑖
 to enhance the predictive 

capability in the time sequence. These queries utilize a heterogeneous attention mech-

anism to interact with the 3 types of features and the previous output 𝑂𝑡𝑖−1
, facilitating 

the mining of intentions from both long- and short-term memory. On the other hand, 

we introduce another set of intention queries 𝑄𝐼 , which query the long-term memory 

𝑂𝑡𝑖−1
 and the short-term memory 𝐹𝑐𝑜𝑚𝑏 to train the teacher model, and is supervised 

by global features from future. The knowledge obtained from this training is distilled 

into our model, enhancing the overall preformance. 

Finally, a feedforward layer completes one iteration. Each iteration follows a resid-

ual connection and a LayerNorm layer [18]. After 3 iterations, the output 𝑂𝑡𝑖
 is deter-

mined. This output serves two purposes: it acts as the long-term memory for the next 

time step 𝑡𝑖+1 and also enters the prediction head to complete the predictions. 

3.3 Feature Extraction 

We designed a dual-branch feature extraction method based on [6]. Given an input 

video 𝑉1:𝑡𝑖
, this module takes as input the high-resolution frame 𝑉𝑡𝑖

 extracted from the 



last frame and a low-resolution video 𝑉(𝑡𝑖−𝑙):𝑡𝑖
̃ , obtained by spatially downsampling the 

input video of length 𝑙. These are processed separately using image backbone networks 

to generate two sets of features: ℬ2𝒟(𝑉𝑡𝑖
) and ℬ3𝒟(𝑉(𝑡𝑖−𝑙):𝑡𝑖

̃ ). 

The 2D features ℬ2𝒟(𝑉𝑡𝑖
) are passed through a standard feature pyramid layer to 

obtain ℬ2𝐷̃(𝑉𝑡𝑖
). ℬ2𝐷̃(𝑉𝑡𝑖

) is used by a Region Proposal Network (RPN) [20] to predict 

region proposals. From these region proposals, we extract 2D object features (processed 

through an average pooling layer) and object position features using an RoIAlign layer 

and linear layers. These two features are summed to form the final object features 𝐹𝑡𝑖

𝑜𝑏𝑗
. 

Also, we mix the 2D features ℬ2𝒟(𝑉𝑡𝑖
) and 3D features ℬ3𝒟(𝑉(𝑡𝑖−𝑙):𝑡𝑖

̃ ) to create a 

combined feature. We upsample 3D feature map to match 2D spatial resolution, average 

along its temporal dimension, and apply a 2D 3 × 3 convolution to match the dimen-

sions of ℬ2𝒟(𝑉𝑡𝑖
), resulting in ℬ3𝒟

2𝒟(𝑉(𝑡𝑖−𝑙):𝑡𝑖
̃ ). These features are added to  ℬ2𝒟(𝑉𝑡𝑖

), 

and each layer undergoes a 1 × 1 convolution, producing combined feature 𝐹𝑡𝑖

𝑐𝑜𝑚𝑏 . 

Finally, 𝐹𝑡𝑖
3𝐷  (i.e., ℬ3𝒟(𝑉(𝑡𝑖−𝑙):𝑡𝑖

̃ ) ), 𝐹𝑡𝑖

𝑐𝑜𝑚𝑏, and 𝐹𝑡𝑖

𝑜𝑏𝑗
 serve as outputs of the feature 

extraction module for subsequent networks. In our experiments, we use ResNet-50 as 

the 2D CNN and X3D-M as the 3D CNN. 

3.4 Long- and Short-term Heterogeneous Attention 

We introduce the heterogeneous attention mechanisms employed by our model to ob-

tain information from both long- and short-term memory, combining multi-head self-

attention (MHSA) [18], multi-head cross-attention (MHCA) [19], and multi-scale 

multi-head deformable attention (MSMHDA) [20]. 

For Long-term Memory Aggregation, we adopt an iterative approach. We adopt an 

iterative approach. (Although more distant memories may become diluted, aligning 

with the principles of memory in the real world), we define 𝑂𝑡𝑖−1
 as the long-term 

memory at time 𝑡𝑖. For any given moment 𝑡𝑖 in the video sequence {𝑉1:𝑡𝑖
}𝑖=1

𝑁𝑣 , the model 

learns information from 𝑡1 to 𝑡𝑖−1 through 𝑂𝑡𝑖−1
. To achieve this, we concatenate 𝑂𝑡𝑖−1

 

and 𝑄𝑡𝑖
, then apply MHSA [18]. The part of the concatenated vector corresponding to 

the original 𝑄𝑡𝑖
 is selected as the new 𝑄𝑡𝑖

. 

For short-term intention mining, as illustrated in Fig. 3 , we obtain information  from 

3 different perspectives to enhance intention prediction.  

Firstly, 𝐹𝑡𝑖

𝑜𝑏𝑗
 captures object-related information. We apply MHCA [18] to learn the 

features and spatial distribution of potential NAOs, as follows: 

 𝐼𝑡𝑖

𝑜𝑏𝑗
= MHCA(𝑄𝑡𝑖

, 𝐹𝑡𝑖

𝑜𝑏𝑗
)  (1) 

    Secondly, 𝐹𝑡𝑖
3𝐷 contains multi-scale and multi-dimensional short-term memory fea-

tures. To process these, we designed MSMHDA3𝐷 [20]. 3D coordinates of 𝑄𝑡𝑖
 vectors 

are computed through a learnable projection. The 𝐹𝑡𝑖
3𝐷  layers are dimensionally ad-

justed using 1 × 1 convolutions. To distinguish the feature layers, we add learnable 

scale embeddings {𝑒𝑙
3𝐷}𝑙=1

𝐿  and calculate the final 3D feature 𝐼𝑡𝑖
3𝐷 : 
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Fig. 3. The architecture of Short-term Intention Mining. From left to right, we utilize 2D 

deformable attention to learn 𝐹𝑐𝑜𝑚𝑏 , cross-attention to learn 𝐹𝑜𝑏𝑗, and 3D deformable attention 

to learn 𝐹3𝐷, respectively. 

 𝐼𝑡𝑖
3𝐷 = MSMHDA3𝐷 (𝑄𝑡𝑖

, 𝑝𝑄𝑡𝑖

′̂ ,Conv1x1(𝐹𝑡𝑖
3𝐷) + {𝑒𝑙

3𝐷}𝑙=1
𝐿 )  (2) 

Lastly, 𝐹𝑡𝑖

𝑐𝑜𝑚𝑏  merges high-resolution and low-resolution video features to form a 

multi-scale 2D feature map. We apply MSMHDA [20] to enhance efficiency by reduc-

ing redundancy. After computing 2D coordinates, adjusting dimensions, and adding 

scale embeddings {𝑒𝑙
𝑐𝑜𝑚𝑏}𝑙=1

𝐿 , 𝑄𝑡𝑖
, 𝑝𝑄𝑡𝑖

̂ , and 𝐹𝑡𝑖

𝑐𝑜𝑚𝑏  are processed as follows: 

 𝐼𝑡𝑖

𝑐𝑜𝑚𝑏 = MSMHDA (𝑄𝑡𝑖
, 𝑝𝑄𝑡𝑖

̂ ,Conv1x1(𝐹𝑡𝑖

𝑐𝑜𝑚𝑏) + {𝑒𝑙
𝑐𝑜𝑚𝑏}𝑙=1

𝐿 ) (3) 

Finally, the aggregated features are summed and residual connections are added: 

 𝑄𝑡𝑖
= (𝐼𝑡𝑖

𝑜𝑏𝑗
+ 𝐼𝑡𝑖

3𝐷 + 𝐼𝑡𝑖

𝑐𝑜𝑚𝑏) + 𝑄𝑡𝑖
  (4) 

3.5 Foresight Knowledge Distillation 

To effectively predict future interactions, we initialize a set of learnable Intention Que-

ries 𝑄𝑡𝑖
𝐼 ∈ 𝑅𝑁𝐼×𝐶. These queries are processed through multiple stages of intention pre-

diction, forming the basis of our teacher model. Then the model is used to supervise 

and distill knowledge to the model to enhance its ability to predict. 



The intention prediction process involves both Long-term memory 𝑂𝑡𝑖−1
, Short-term 

memory 𝐹𝑡𝑖

𝑐𝑜𝑚𝑏 , and the global features extracted from future frames. To handle Short-

term memory, we apply average pooling to each layer of 𝐹𝑡𝑖

𝑐𝑜𝑚𝑏 . Each vector is then 

processed through a 1 × 1 convolution to standardize the dimensions to 𝐶: 

 𝐹𝑡𝑖

𝑐𝑜𝑚𝑏.𝑎𝑣𝑔
= Flatten (AvgPool(𝐹𝑡𝑖

𝑐𝑜𝑚𝑏))  (5) 

 𝐹𝑡𝑖

𝑐𝑜𝑚𝑏.𝑚 = Concat (Conv1x1(𝐹𝑡𝑖

𝑐𝑜𝑚𝑏.𝑎𝑣𝑔
)) (6) 

where 𝑘 denotes the unified height of feature maps after AvgPool, resulting in 𝑙 distinct 

one-dimensional vectors of varying dimensions.  

Then Intention Queries 𝑄𝑡𝑖
𝐼  are passed through a Multi-Head Self-Attention (MHSA) 

[18] layer to learn internal representations. Then, we concatenate 𝑂𝑡𝑖−1
 and 𝐹𝑡𝑖

𝑐𝑜𝑚𝑏.𝑚 to 

process them using Multi-Head Cross-Attention (MHCA) [19]. Scale-level embeddings 

{𝑒𝑙
𝑐𝑜𝑚𝑏.𝑚}𝑙=1

𝐿  are added to enhance 𝐹𝑡𝑖

𝑐𝑜𝑚𝑏.𝑚 across different feature levels.  

During training, we supervise 𝐼𝑡𝑖
 using global features from future video frames. 

Specifically, we extract the global features of the next 𝑛 frames using CLIP [9], com-

pute their average and compare it with the predicted intention 𝐼𝑡𝑖
. The dimensions of 

𝐼𝑡𝑖

𝑎𝑣𝑔
 are aligned with the CLIP features using a 1 × 1 convolution. After 𝐿𝐼 iterations, 

the final intention prediction 𝐼𝑡𝑖
∈ 𝑅𝑁𝐼×𝐶 is obtained. This predicted intention is used to 

guide the NAO Queries 𝑄𝑡𝑖
 via MHCA [19]. Finally, we can compute the explicit in-

tention loss: 𝐿𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = ||𝐼𝑡𝑖

𝑔𝑡
− 𝐼𝑡𝑖

𝑎𝑣𝑔
||

2
. 

3.6 Prediction Head 

After 𝐿𝑄 iterations, we obtain the NAO prediction set features 𝑂𝑡𝑖
. Each prediction in 

𝑂𝑡𝑖
 passes through two separate 3-layer perceptions to get bounding box (bbox) and 

time to contact (ttc), and through two linear layers to obtain noun and verb categories. 

Following [6], background classes are added for nouns and verbs, indicating "no object" 

and "no action." During training, bipartite graph matching is used to find the optimal 

pairing based on ground truth and calculate the total loss. 

Specifically, in matching, for any sample 𝑖, we calculate the noun cross-entropy loss, 

verb cross-entropy loss, and the L1 and IoU losses for the bounding box. We determine 

the optimal matching loss 𝐿match by selecting the 𝑖 that minimizes the weighted sum of 

costs, referred to as 𝑖∗.Unmatched samples are set to the background classes, giving the 

unmatched loss: 

 𝐿matched = 𝑚𝑖𝑛(𝛼𝐿noun(𝑖) + 𝛽𝐿verb(𝑖) + 𝛾𝐿bbox-L1(𝑖) + 𝛿𝐿bbox-IoU(𝑖))  (7) 

 𝐿unmatched = ∑ (𝜌𝐿noun(𝑗) + 𝜎𝐿verb(𝑗))𝑗≠𝑖∗   (8) 

Combined with 𝐿𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛  and the L1 loss for time to contact, the total loss of our 

model is expressed as: 
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 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑚𝑎𝑡𝑐ℎ𝑒𝑑 + 𝐿𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑 + 𝜖|𝑡𝑡𝑐𝑖∗ − 𝑡𝑡𝑐gt| + 𝜙𝐿𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛  (9) 

During inference, we take the result with the highest sum of noun and verb confi-

dence scores as the final result. 

4 Experiments 

4.1 Dataset 

Our model is trained using the Ego4D-STA dataset, which is widely adopted in the 

STA field. Ego4D-STA v1 [1] contains 120 hours of videos, 27,801 training samples, 

17,217 validation samples, and 19,780 test samples, classified into 87 noun and 74 verb 

categories. Ego4D-STA v2 [1] expands to 243 hours, 98,276 training samples, 47,395 

validation samples, and the same 19,780 test samples, using a richer taxonomy with 

128 noun and 81 verb categories. 

4.2 Evaluation Metrics 

Evaluation is performed using Top-K Average Precision (AP) and mean Average Pre-

cision (mAP), with no penalties for predicting unannotated objects. We specifically 

evaluate various Top-5 AP/mAP metrics: AP/mAP for nouns (b+n), nouns and verbs 

(b+n+v), nouns and time to contact (b+n+t), and the full combination (b+n+v+t). The 

overall metric (b+n+v+t) measures the model's ability to predict interactions of future 

active objects by considering nouns, verbs, and time to contact as in [1]. 

4.3 Experiments Settings and Computational Performance 

For training, we use a batch size of 1 and 50 epochs, setting the optimizer as Adam. 

The base learning rate is 2 × 10−4, β1 = 0.9, β2 = 0.999, and weight decay of 10−4. 

The learning rate is decayed at the 40-th epoch by 0.1. Compared to our baseline, Still-

fast, we compute the number of parameters and inference time for comparison, the re-

sults are (M/min/mAP), Stillfast 101/29.05/2.48, our Intenformer 142/38.67/4.01. We 

perform evaluations on an 8-card NVIDIA GeForce RTX 4090 setup. 

4.4 Comparison with State-of-the-arts (SOTA) 

Table 1. (AP) Results of our model and other baseline methods on Ego4D-STAv1. 

model (AP) b b+n b+n+t b+n+v b+t b+v b+v+t b+n+v+t 

Slowfast  [1] 40.5 24.5 5.00 4.90 8.40 8.16 1.90 1.50 
AVT        [15] 40.5 24.5 4.39 4.52 7.12 8.45 1.15 1.71 
ANACTO[21] 40.5 24.5 4.55 5.10 7.47 8.90 1.54 1.91 
MeMVIT [16] 40.5 24.5 4.95 5.89 9.27 10.0 2.11 1.34 
NAOGAT[22] 45.3 27.0 9.00 6.54 16.6 12.2 4.18 2.47 
IntenFormer 42.5 25.8 9.12 7.60 16.9 13.1 4.63 3.01 



 

As shown in Table 1, our model exhibits strong performance on the STAv1 dataset, 

particularly in predicting verbs and time to contact (ttc). Compared to previous models, 

we observe improvements of 0.29 in 𝐴𝑃𝑏+𝑡, 0.9 in 𝐴𝑃𝑏+𝑣, and 0.45 in 𝐴𝑃𝑏+𝑣+𝑡. These 

gains are due to the model's ability to capture macro trends and dynamically predict 

object positioning and timing. However, for 𝐴𝑃𝑏  and 𝐴𝑃𝑏+𝑛, our model shows slightly 

lower performance compared to NAOGAT [22]. Their work focuses on Next-Active 

Object (NAO) prediction, emphasizing bounding boxes and nouns, which has a disad-

vantage of overfitting in comprehensive prediction. 

Table 2. (mAP) Results of our model and other baseline methods on Ego4D-STAv1&2. 

 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 
 b+n b+v b+n+t b+n+v b+n+v+t 
1-stage            
StillFast [6] 16.2 20.3 - - 4.94 7.16 7.32 10.37 2.48 3.96 
2-stage           
Slowfast [1] 17.5 21.4 - 3.31 5.37 6.92 5.19 7.74 2.07 2.94 
IntenFormer 19.2 22.5 8.41 10.21 7.13 9.35 7.47 10.06 4.01 5.18 

 

In terms of mAP performance, as seen in Table 2, our model sets a new state-of-the-

art (SOTA) benchmark on both STAv1 and STAv2 datasets, surpassing previous mod-

els. The significant improvements on STAv2 are mainly attributed to the larger dataset 

size and more detailed annotations, demonstrating our model's strong generalization 

capability across different datasets and evaluation conditions. 

4.5 Ablation Study Based on the STAv1 Dataset 

Feature Mining 

Table 3. Ablation study considering different feature combinations in Feature Mining. 

Long Short Future b+n b+v b+t b+v+t b+n+v+t 

   25.07 11.45 15.38 3.20 2.13 

   24.50 10.58 14.54 3.53 2.05 
   24.82 12.74 15.01 4.24 2.75 

   25.28 12.58 16.74 4.48 2.78 
   25.35 12.11 16.43 4.15 2.60 
   25.83 13.10 16.89 4.63 3.01 

 

Table 3 shows the impact of different feature combinations for mining intentions. 

Given the initialization of 𝐹𝑐𝑜𝑚𝑏 using pre-trained Deformable DETR parameters, re-

sults vary significantly with its introduction. Thus, we only consider combinations in-

cluding 𝐹𝑐𝑜𝑚𝑏 . Both 𝐹𝑜𝑏𝑗  and 𝐹3𝐷  improve overall performance; 𝐹𝑜𝑏𝑗  increases 

𝐴𝑃𝑏+𝑛 , and 𝐹3𝐷  enhances 𝐴𝑃𝑏+𝑣 , 𝐴𝑃𝑏+𝑡 , and 𝐴𝑃𝑏+𝑣+𝑡 . Combining all features 

achieves the best results. 
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Information Interaction  

Table 4. Ablation study considering the different combinations of Information Interaction. 

𝐹𝑜𝑏𝑗 𝐹3𝐷 𝐹𝑐𝑜𝑚𝑏  b+n b+v b+t b+v+t b+n+v+t 

   25.17 12.40 15.97 4.22 2.23 
   25.70 12.76 16.03 4.29 2.75 

   25.21 12.89 16.58 4.51 2.89 
   25.83 13.10 16.89 4.63 3.01 

 

Table 4 shows the impact of different information interaction combinations. Results 

with short-term memory intention are initially better, but global knowledge distillation 

improves with long-term memory aggregation. Global knowledge surpasses short-term 

memory intention when long-term memory aggregation is present, and combining all 

three yields the best performance. 

5 Conclusion 

This paper presents IntenFormer, a model combining long- and short-term memory to 

mine intentions for STA. With Heterogeneous Attention and Distillation mechanism, 

this dual approach enhances behavior prediction performance. Tests on the Ego4D STA 

dataset confirm its superiority. 
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