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Abstract. Video Object Detection (VOD) leverages temporal information across 

adjacent frames in video datasets, enabling the identification and localization be-

yond single-frame image object detection. Transformer-based detectors have 

achieved remarkable performance in static image object detection. However, 

their application to video object detection lacks sufficient exploration, particu-

larly in aggregating spatial features and temporal features effectively. Recent re-

search has replaced handcrafted components in traditional optical flow models 

and association networks with novel designs to integrate spatial features across 

frames, thereby incorporating temporal information. Nevertheless, these methods 

often introduce significant computational overhead or complex processing pipe-

lines. Moreover, the integration of multi-scale spatial features and temporal fea-

tures into a unified framework remains challenging, making it difficult to process 

both small and large objects simultaneously. To address these issues and enhance 

detection efficiency, we propose a novel method that aggregates multi-scale spa-

tial features and contextual temporal information. Specifically, we propose a strip 

attention mechanism for intra-scale feature interaction, utilize pyramid network 

to fuse spatial features across scales and construct temporal associations across 

video frames through decoder structures. Our end-to-end approach aggregates 

target queries progressively from coarse to fine, striking a balance between per-

formance and efficiency. Extensive experiments on the ImageNet VID dataset 

demonstrate that our method significantly improves video object detection. 

Keywords: video object detection, temporal queries, muti-scale features, trans-

former. 

1 Introduction 

Video Object Detection (VOD) extends static image object detection to video scenar-

ios, identifying every object in a video sequence. Traditional static image object detec-

tion tasks take an image as input and output the objects present in the image along with 

their categories and bounding boxes. While it is possible to treat video streams as a 

series of independent frames and process them with single-frame object detectors, this 

approach overlooks the unique temporal information inherent in video stream. Moreo-

ver, video object detection often involves challenging scenarios, such as object 



 

 

 

appearance changes, motion blur, occlusion, defocus, and rare poses, where single-

frame object detection methods struggle to perform effectively. 

To tackle these challenges, existing research explores three primary strategies to in-

corporate temporal information in video detection.  The first involves post-processing 

methods [1-5], where a single-frame object detector generates detection results, and the 

outputs of the current frame and its neighboring frames are associated during post-pro-

cessing. However, the decoupled nature of the detector and the post-processing pipeline 

prevents joint optimization, often resulting in suboptimal performance. 

The second strategy employs temporal feature aggregation models [6-14], which in-

troduce feature similarity metrics[13,15,17,18] or relation networks[13,19,20] to 

weight and fuse features between the current and reference frames.  While these ap-

proaches effectively address motion blur and appearance changes, they often rely on 

two-stage detectors such as Faster-RCNN[21] or R-FCN[22], which involve complex 

designs, handcrafted components, and post-processing steps, complicating the pipeline. 

With the introduction of Transformers [23], DETR [24] showcased exceptional per-

formance in object detection, inspiring numerous improvements [25,26]. Building on 

DETR, some studies [27-30] address video object detection by simultaneously pro-

cessing spatial and temporal information. These methods use attention mechanisms or 

learnable weights to establish associations on objects in different frames and aggregate 

image features or object queries. While effective, these approaches often overlook the 

importance of image-level features in guiding query initialization and learning, leading 

to slower convergence and miss performance gains. Furthermore, their heavy emphasis 

on associations in different frames associations often neglects backbone-extracted 

multi-scale features, resulting in subpar detection of small objects. 

In this work, we reexamine the connection between the backbone-extracted spatial 

features and object queries, highlighting the critical role of raw spatial features in guid-

ing the initialization of object queries. Randomly initializing queries ignores the quality 

of the queries, which inspired us to optimize and enhance the Backbone-Transformer 

pipeline in DETR. To this end, we propose a novel framework, featuring a Temporal 

Query Aggregation Decoder (TQAD) module designed to generate and aggregate que-

ries across frames. Unlike existing methods that rely on weighted averages to aggregate 

queries, our approach aggregates temporal queries from coarse to fine through two par-

allel pipelines. Additionally, to solve the common blurring and deformation problems 

in video, we introduce a multi-scale feature fusion encoder (MSFE) based on strip at-

tention, which fuses three scales of feature maps extracted by the backbone network, 

avoiding the common reliance solely on deep-layer features. 

Our contributions are summarized as follows: 

• We propose a Transformer-based end-to-end video object detector that balances ef-

ficiency and performance, addressing key challenges in VOD tasks. 

• We design a TQAD module that leverages raw image features to guide the genera-

tion of high-quality queries, enhancing detection performance. The module is decou-

pled from the core model and can be easily integrated into other Transformer-based 

video object detectors. 
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• We develop a lightweight MSFE, which significantly improves deformed and small 

object detection performance without increasing considerable computational over-

head. 

2 Related Works 

2.1 Video Object Detection 

Compared to static images, video streams present unique challenges such as object ap-

pearance deformation, motion blur, occlusion, defocus, and background clutter. To ad-

dress these issues, earlier studies primarily relied on optical flow models combined with 

various post-processing or feature aggregation strategies to capture temporal infor-

mation. For instance, TCNN[3] segments video sequences into multiple frames and 

processes each frame independently by using static image object detectors while lever-

aging optical flow to associate detection results across frames.   Similarly, methods like 

FGFA[17], THP[31], and MANet[15] aggregate spatial features from adjacent frames 

based on optical flow. However, training optical flow models requires extensive data 

and significant computational costs. 

Subsequent studies incorporated attention mechanisms and deformable convolutions 

to model temporal context. For example, SELSA[16] and TROI[32] aggregate features 

across frames based on spatial semantic similarities. STSN[33] employs deformable 

convolutions to sample spatial features from reference frames, enhancing feature rep-

resentation for the current frame. Advanced approaches like MEGA[13], OGEMN[34], 

and LWDN[35] leverage memory mechanisms to integrate local and global features, 

propagating and updating them across frames. Building on MEGA, TF-Blender[36] in-

troduces learnable fusion networks to capture temporal context. 

The above approaches are generally based on two-stage object detection frameworks 

such as Faster-RCNN[21] and R-FCN[22], which require numerous handcrafted com-

ponents and post-processing steps, making the VOD pipelines overly complex and dif-

ficult to train. Recently, with the emergence of Transformer-based architectures, there 

has been a shift toward building end-to-end VOD frameworks. TransVOD[27,28] in-

troduces modules such as TDTE, TQE, and TDTD to aggregate video frame features 

and object queries. To address the spatial information limitations of TransVOD, PTSE-

Former[29], proposes the STAM module to fuse spatial features across frames. How-

ever, most of these methods aggregate queries after the decoder stage, which neglect 

the importance of query initialization. FQA[30] addresses this by dynamically generat-

ing and aggregating object queries using a learnable network. Our approach focuses on 

multi-scale feature maps extracted from backbone networks and emphasizes that they 

guide the generation of object queries. 

2.2 Vision Transformer in Object Detection 

Currently, the main research is divided into two directions. One is to directly employ 

the Transformer throughout the entire pipeline for feature extraction and downstream 



 

 

 

tasks, replacing the CNN backbone network, like ViT. The other is to retain  CNN as 

the feature extraction backbone network and utilize Transformer for instance under-

standing through image features and object queries, like DETR. Regardless of which 

direction, we can establish end-to-end vision models. In the field of object detection, 

works based on DETR often follow the second approach, and our work is no exception. 

DETR[24] leverages the Hungarian algorithm for bipartite matching, establishing 

one-to-one label assignments between ground truth boxes and learnable object queries, 

eliminating the need for handcrafted components(e.g. anchor generation) and post-pro-

cessing steps (e.g. NMS). However, the flattened feature sequences in DETR require 

extensive self-attention operations, leading to high computational complexity. Deform-

able DETR[25] addresses this by introducing deformable attention, which focuses on a 

few learnable reference points around each pixel, significantly reducing computational 

costs. To tackle DETR's slow convergence issue, DN-DETR[37] introduces denoising 

training to mitigate the instability of bipartite matching. DAB-DETR[38] represents 

each positional query explicitly as an anchor box, providing location priors to accelerate 

convergence. DINO[39] enhances the denoising approach by focusing on negative sam-

ples and refining query initialization. RT-DETR[40] studies the efficiency of attention 

across multi-scale feature maps and proposes IoU-aware query generation to improve 

query quality. These advancements inspires our model design, ensuring that high-qual-

ity detections are achieved for individual frames before incorporating temporal infor-

mation. 

3 Method 

3.1 Overview 

Similar to recent video object detection pipelines, our method is an end-to-end video 

object detector based on a Backbone-Transformer architecture. The overall structure is 

illustrated in Figure 1. Given a current frame 𝐼𝑡and its reference frames[𝐼𝑡+𝑖]𝑖=−𝐿:𝐿, we 

first extract multi-scale feature maps 𝐹𝑡 and [𝐹𝑡+𝑖]𝑖=−𝐿:𝐿by using a backbone network, 

such as ResNet, and feed them into the Multi-Scale Feature Fusion Encoder (MSFE). 

The encoder produces memory outputs 𝑀𝑡 and [𝑀𝑡+𝑖]𝑖=−𝐿:𝐿, which are subsequently 

used to initialize object queries. In MSFE, multi-scale features are fused, as detailed in 

Section B. Based on our experiments and insights from TransVOD, performing spatio-

temporal attention operations across frame memories using a Temporal Transformer 

Encoder only marginally improves temporal learning while significantly increasing 

computational costs. Therefore, we propose TQAD to construct temporal associations 

among frame memories through two parallel pipelines. Finally, TQAD outputs the ag-

gregate query 𝒬𝑓𝑢𝑠 of the current frame, and the query is sent to the detection head to 

output the classification confidence and bounding box coordinates through the feedfor-

ward neural network. 
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Figure 1. Framework of the proposed method. 

3.2 Strip Attention 

Video shot in dynamic scenes often has blurred frames, and blur and deformation may 

have different directions and sizes. To model this directivity, we propose strip attention, 

which extracts blured and deformable features by combining intra-strip and inter-strip 

attention. The tokens in the strip sequence have the blured feature of local single direc-

tion pixels, and the tokens that constitute the attention between the strip sequences have 

the fuzzy feature of the global region. 

The intra-strip sequence attention module consists of two branches: horizontal in-

strip sequence attention and vertical in-strip sequence attention. Let the input feature 

map of the attention block in the strip sequence 𝑋 ∈ ℝ𝐻×𝑊×𝐶 , where 𝐻, 𝑊, 𝐶 represent 

the height, width and number of channels of the input feature map, respectively. First 

enter 𝑋 into a LayerNorm layer for normalization, then process it with a 1×1 convolu-

tion layer, and then divide it into two along the channel dimension: 

 (𝑋ℎ, 𝑋𝑣) = Chunk (Conv(Norm(𝑋))) (1) 

where 𝑋ℎ and 𝑋𝑣 ∈ ℝ𝐻×𝑊×𝐷 represent the input features of the horizontal and vertical 

branches of the attention block in the strip sequence, 𝐷 = 𝐶/2. 

For attention in horizontal strip sequence, the input feature 𝑋ℎ is divided into 𝐻 non-

overlapping horizontal strip sequences𝑋𝑖
ℎ ∈ ℝ𝑊×𝐷 along the height direction of the fea-

ture map. Each horizontal strip sequence has a length of 𝑊, which means 𝑊 tokens of 

dimension 𝐷. 𝑋𝑖
ℎ is mapped to three vector Spaces by linear projection layer, and then 



 

 

 

the result is split to generate its query, key and value vector, and output the result 

through multi-head attention mechanism. The process can be described as: 

 (𝑄𝑖
ℎ , 𝐾𝑖

ℎ, 𝑉𝑖
ℎ) = Split(𝑋𝑖

ℎ𝑃) (2) 

 𝑀𝑖𝑗
ℎ = Softmax(

𝑄𝑖𝑗
ℎ (𝐾𝑖𝑗

ℎ )
𝑇

√𝐷/𝑚
)𝑉𝑖𝑗

ℎ (3) 

 𝑀ℎ = Stack(𝑀𝑖𝑗
ℎ ) (4) 

where 𝑚 represent the number of the head in multi-head attention, 𝑖 and 𝑗 index the 

height of the feature map and the head of multi-head attention, respectively. The output 

of the attention branches in the vertical strip sequence 𝑀𝑣 can be obtained by the same 

method.  By means of residual connection, 𝑀ℎ and 𝑀𝑣 are connected and sent into the 

1×1 convolution layer for fusion, and the output 𝑀𝑖𝑛𝑡𝑟𝑎
′ ∈ ℝ𝐻×𝑊×𝐶  of the attention 

layer in the strip sequence is obtained: 

 𝑀𝑖𝑛𝑡𝑟𝑎
′ = Conv(Concat(𝑀ℎ, 𝑀𝑣)) + 𝑋 (5) 

𝑀𝑖𝑛𝑡𝑟𝑎
′  is sent to the feedforward neural network to obtain the output memory feature 

𝑀𝑖𝑛𝑡𝑟𝑎 ∈ ℝ𝐻×𝑊×𝐶 of the intra-strip attention: 

 𝑀𝑖𝑛𝑡𝑟𝑎 = FFN(Norm(𝑀𝑖𝑛𝑡𝑟𝑎
′ )) + 𝑀𝑖𝑛𝑡𝑟𝑎

′  (6) 

Inter-strip attention is the interaction of attention based on the sequence dimension, 

treating each strip sequence as a token, and the module also includes two branches of 

horizontal and vertical. The calculation method of inter-strip attention is the same as 

Intra-strip attention. 

3.3 Multi-Scale Feature Fusion Encoder 

Deformable attention has been introduced to reduce the computational complexity of 

attention mechanisms while incorporating multi-scale features. However, this also in-

creases sequence lengths, leading to negligible reductions in overall computational 

costs. Instead of considering cross-scale feature interactions, TransVOD replaced spa-

tial scales with temporal sequences, but found the TDTE module's effectiveness to be 

limited. Some researchers[40] confirm that cross-scale feature interaction is as ineffi-

cient as cross-temporal sequences interaction. Therefore, we only use strip attention 

method on the deepest features. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

Figure 2. Details of MSFEncoder. 

Based on the above analysis, we propose the Muti-Scale Feature Fusion Encoder 

(MSFE), illustrated in figure 2. It consists of an intra-scale feature interaction encoder 

based on strip attention and a cross-scale feature pyramid based on convolutional neural 

network.. Specifically, three maps which are extracted by backbone are fed into MSFE. 

The deepest feature map 𝑆5, with the smallest resolution, is fed into the intra-scale fea-

ture interaction encoder for self-attention computation and reshaped to 𝑆5
′  which is the 

same shape as 𝑆5: 

 𝑆5
′ =  Rashape(𝒩𝑒𝑛𝑐(𝑆5)) (7) 

Then we send 𝑆3 , 𝑆4  and 𝑆5
′  into the multi-scale feature fusion module. Inspired by 

PANet, the multi-scale feature fusion module fuses features through both top-down and 

bottom-up pathways, with intermediate layers facilitating cross-scale interactions. The 

fusion module is based on FreqFusion to achieve superior fusion results. The process 

can be simplified as: 

 𝑀 = MSFM(𝑆3, 𝑆4, 𝑆5
′ ) (8) 

where 𝑀 is called feature memory which is the final output of MSFE. 

3.4 Temporal Query Aggregation Decoder 

With Transformer being used for object detection, it replaces traditional handcrafted 

components like anchor boxes with object queries, enabling end-to-end object detec-

tion. In DETR, these object queries are randomly initialized and learn image features 

through attention mechanisms, allowing for object classification and localization. 



 

 

 

However, this initialization limits queries to current-frame information, ignoring tem-

poral context. Prior methods associate object queries across different frames to capture 

temporal information but often overlook the quality of these randomly initialized que-

ries. Given the similarity and continuity between frames, object queries across frames 

are inherently correlated. Randomly initialized queries reduce the utility of shared tem-

poral information, while a single shared query set fails to capture frame-specific differ-

ences. To address these issues, we propose a simple yet effective query generation and 

aggregation strategy for inter-frame interaction.  

 
Figure 3. Details of TQADecoder. 

The structure of the Temporal Query Aggregation Decoder is illustrated in Figure 

3. In this setup, one pipeline guides randomly initialized queries using the raw features 

of video frames to learn inter-frame differences, while aggregating the queries most 

likely to map to targets. This approach ensures that the queries accurately capture in-

formation from each frame while also grasping the differences between frames, which 

can reflect the blurring characteristics of the images. Another pipeline performs a linear 

projection on the encoder's feature memory to learn the essential information from the 

raw features of the video frames. It filters and retains the more critical information, 

associating the important details between the current frame and reference frames 

through cross-attention to learn inter-frame differences. Finally, the results of the two 

pipelines are summed, fusing the similarities and differences between video frames. 

This enables the model to select important features from reference frames to guide the 

detection of the current frame. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Our main idea is to make full use of encoder memory features to guide query gener-

ation. Traditional detection pipeline is to feed the encoder memory and randomly ini-

tialized object queries into the decoder, and then output the category confidence and 

bounding box coordinates through FFN. This means that the object query learns the 

encoder's memory features from the decoder. After understanding that the original 

memory contain rich semantic information, we consider directly using the memory to 

generate target queries. 

The first difference-pipeline ensures that the spatial information of each frame is 

thoroughly learned by the network by providing a set of randomly initialized queries 

𝑄𝑖𝑛𝑖𝑡 ∈ ℝ𝑙×𝑛×𝑑 for each frame, where l, n, and d represent the number of video frames, 

the number of queries, and the depth of the queries, respectively. 𝑄𝑖𝑛𝑖𝑡  and all frame 

memories 𝑀 are fed into the decoder. The output of the final decoder layer passes 

through a feedforward network(FFN) and the sigmoid activation function to obtain 

class confidence scores. These scores are then ranked, retaining only the top k highest 

values, as higher confidence indicates a greater likelihood of being a target. Based on 

this, the temporal blur queries 𝑄1 ∈ ℝ𝑘×𝑑  from the first difference-pipeline are ob-

tained. 

To ensure that the queries focus on the feature memory, the second similarity-pipe-

line generates and initializes queries via a fully connected (FC) layer, leveraging cross-

attention to aggregate temporal information. Specifically, the feature memory 𝑀𝑡 of the 

current frame and the feature memories {𝑀𝑡+𝑖}𝑖=−𝐿:𝐿
 of the reference frames from the 

encoder output are first fed into the FC layer for linear projection. A sigmoid activation 

function is then applied to obtain class confidence scores s: 

 𝑠 = sigmoid[FFN(𝑀)] (9) 

The confidence scores 𝑠 are sorted, and the top 𝑘 values are retained for each frame. 

Unlike the Top-k processing in the first difference-pipeline, which globally ranks the 

combined 𝑠 values across all frames, the second pipeline independently sorts the results 

for each frame and retains the top 𝑘 values per frame. Here, 𝑘 denotes the number of 

queries per frame.After Top-k selection, high-quality queries 𝑄𝑡 (for the current frame) 

and 𝑄𝑡
𝑟  = {𝑄𝑡+𝑖}𝑖=−𝐿:𝐿 (for the reference frames) are obtained, which encapsulate rich 

semantic information from each frame. To establish temporal dependencies among the 

queries, self-attention is applied to the current frame’s queries 𝑄𝑡, enhancing focus on 

the current frame: 

 𝑄, 𝐾, 𝑉 = 𝑄𝑡 (10) 

 self_attention(𝑄, 𝐾, 𝑉) =  Softmax (
𝑄𝐾𝑇

√𝑑
) 𝑉 (11) 

Cross-attention is employed between the current frame's queries 𝑄𝑡 and the reference 

frame queries 𝑄𝑡
𝑟  to interactively fuse their features: 

 𝑄 = 𝑄𝑡  (12) 

 𝐾 = 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑄𝑡
𝑟) (13) 



 

 

 

 cross_attention(𝑄, 𝐾, 𝑉) =  Softmax (
𝑄𝐾𝑇

√𝑑
)  𝑉 (14) 

In this way, the second pipeline thus generates, initializes, and aggregates high-quality 
query 𝑄2 across frames, embedding temporal context into the object queries for further 
processing. 

Finally, the output of the two pipes is aggregated as 𝑄𝑑𝑒𝑐 through element-wise ad-

dition: 

 𝑄𝑑𝑒𝑐 = 𝑄1 ⨁ 𝑄2 (15) 

4 Experiment 

4.1 Experimental Setup 

Dataset. In order to make a fair comparison with other state-of-the-arts methods, we 

conduct experiments on ImageNet-VID[41] and evaluate our approach. ImageNet-VID 

is a large-scale public dataset for video object detection, which contains 30 object cat-

egories with 3862 training videos and 555 validation videos. Following the existing 

common training protocol for transformer-based video object detectors, we mix 

ImageNet-VID and ImageNet-DET datasets to train and validate our model. Mean Av-

erage Precision (mAP) is used as the evaluation metric. 

Training details. In this work, we use a ResNet-50[42] pretrained on ImageNet as the 

backbone of the network. Our model is trained with the AdamW optimizer on four 

RTX3090 GPUs, each of which trains a batch containing one current frame and its 

corresponding reference frame. As in the previous methods, we perform bidirectional 

uniform sampling for the reference frames, where reference frames are evenly sampled 

from both sides of the current frame. 

4.2 Comparison with State-of-the-art Methods 

We use ResNet-50 as the backbone to compare our method with recent state-of-the-art 

video object detectors. The performance of these models on the ImageNet VID valida-

tion set is presented in Table 1. Since such studies rarely focus on small object detection 

alone and there is no publicly available performance metric APS, we reimplement and 

train the methods which lack publicly available pre-trained weights to get their mAP 

and APS. 

It is not difficult to see our method achieves an mAP of 84.6%, surpassing existing 

Transformer-based methods by 1.1% to 5.7%. Notably, our method demonstrates sig-

nificant improvements in small-object detection, with APS. reaching 16.5%, an in-

crease of 1.5% to 5.2% over competing methods. 

Table 1. Performance comparison with the recent state-of-the-art video object detection 

approaches on ImageNet VID validation set with ResNet50 backbone. 
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4.3 Ablation Studies and Analysis 

MSFE. To evaluate the efficiency of the Multi-Scale Feature Fusion Encoder (MSFE), 

we conduct ablation studies by replacing the MSFE with the original encoder in De-

formable DETR. As shown in Table 2, incorporating the MSFE improves overall per-

formance, increasing mAP from 76.0% to 79.8%. The improvement is particularly pro-

nounced for small objects, with APS increasing from 10.6% to 13.7%. These results 

highlight the effectiveness of MSFE, especially in addressing the challenges of small-

object detection in the ImageNet VID dataset. Additionally, the lightweight design of 

the MSFE ensures that inference speed is only reduced by approximately 10%. 

Table 2 Ablation studies of MSFE. 

Method mAPS mAP50 FPS 

Vanilla Encoder 10.6 76.0 25.2 

MSFE 13.7 79.8 21.4 

Table 3 Ablation studies of pipeline design. 

Baseline TransVOD FAQ TQAD mAP50 

    76.0 

    79.9 

    81.7 

    82.5 

TQAD. Our method TQAD aggregates temporal information in a coarse-to-fine man-

ner through the design of two pipelines. To validate the effectiveness of this design, we 

conducted comparisons with modules that aggregate temporal information in SOTA. 

As shown in Table 3, Ablation studies demonstrate the effectiveness of TQAD. The 

baseline model is Deformable DETR which achieves 76.0% mAP. The three modules 

of TransVOD have increased mAP to 79.9% and the dynamic query strategy proposed 

by the FAQ has improved to 81.7%. The performance of our method is further im-

proved to 82.5%, which is 0.8% better than the current best method. 

Method Base Detector mAPS mAP50 

DFF [18] R-FCN 5.0 70.4 

FGFA [17] R-FCN 5.8 74.0 

SELSA [16] Faster-RCNN 7.6 75.8 

TROI [32] Faster-RCNN 7.1 76.5 

MEGA [13] Faster-RCNN 8.2 77.3 

TransVOD [27] Deformable DETR 11.3 79.9 

TransVOD++ [28] Deformable DETR 13.4 80.5 

FAQ [30] Deformable DETR 13.2 81.7 

Ours Deformable DETR 16.5 85.6 



 

 

 

Number of encoder layers in MSFE. To analyze the impact of encoder depth on 

model performance, we vary the number of encoder layers in MSFE while keeping 

other parameters constant. As shown in Table 4(a), the result indicate that performance 

peaks when using 2 encoder layers. Increasing the number of layers beyond this does 

not yield further benefits and may even degrade performance for small-object detection. 

Number of decoder layers in TQAD. We investigate the effect of varying the number 

of decoder layers in TQAD, fixing the number of encoder layers in MSFE to one. The 

results shown in Table 4(b) indicate that performance stabilizes after three decoder lay-

ers, so we adopt three layers in the final configuration. 

Number of top k queries of each frame in TQAD. To assess the impact of query 

quality on model performance, we vary the number of retained queries 𝑘 after FFN and 

sigmoid activation. As shown in Table 4(c), increasing 𝑘 improves performance up to 

a threshold of 300 queries, beyond which performance plateaus or even declines due to 

the inclusion of low-quality queries. These results validate the importance of prioritiz-

ing high-quality queries. 

Table 4 Ablation studies on hyperparameters of each component. 

4.4 Visualization 

In addition to extensive experimental data results, we also aim to demonstrate the per-

formance of our method through visualizations. Figure 4 illustrates the detection results 

comparison between our model and the pre-trained Deformable DETR model across 

two video sequences. 

(a) Number of encoder layers 𝑵𝑴𝑺𝑭𝑬 in MSFE 

𝑵𝑴𝑺𝑭𝑬 0 1 2 3 4 

mAP50 77.3 79.3 79.8 79.9 79.5 

mAPS 11.2 12.9 13.7 13.6 13.5 

(b) Number of decoder layers 𝑵𝑻𝑸𝑨 in TQAD 

𝑵𝑻𝑸𝑨𝑫 1 2 3 4 5 

mAP50 81.7 82.4 82.5 82.5 82.6 

(c) top k queries of each frame in TQAD 

𝒌 50 100 200 300 500 

mAP50 81.2 81.5 82.1 82.5 82.5 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

 

Figure 4. Visualization of the detection results. Baseline indicates pre-trained Deform-

able DETR model on ImageNet VID. 

As shown in the figure, our method plays a decisive role in practical detection. In the 

first video sequence, the baseline model suffers from false positives and missed detec-

tions. Specifically, it misidentifies an airplane as a bird in the first image and fails to 

detect the target in the last frame. In the second scenario, similar issues arise: the base-

line model misses the orange cat in the upper-left corner of the second frame and incor-

rectly labels the central cat as a monkey. This can be attributed to the inherent chal-

lenges of single-frame detectors, which lack temporal context to handle quality degra-

dation caused by motion blur or occlusions. In contrast, our approach successfully de-

tects all targets across both sequences and achieves significant improvements in 



 

 

 

detection precision. These results clearly demonstrate the superiority of our method in 

leveraging temporal dependencies to enhance robustness under complex video condi-

tions. 

5 Conclusion 

In this work, we summarize the limitations of existing video object detectors and ana-

lyzed the advantages of transformer-based methods. Current state-of-the-art methods 

often overlook the importance of query quality and struggle with small-object detection. 

From a novel perspective, we propose a coarse-to-fine pipeline approach to simultane-

ously capture spatial and temporal information in video sequences. Additionally, we 

designe a lightweight Multi-Scale Feature Fusion Encoder (MSFE) to enhance the de-

tection performance for blurry, deformed and small objects, and a Temporal Query Ag-

gregation Decoder (TQAD) to guide the generation and aggregation of high-quality 

queries. Extensive experiments on the ImageNet VID dataset validate the effectiveness 

of our approach, demonstrating a well-balanced trade-off between performance and ef-

ficiency. 
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