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Abstract. Convolutional neural networks (CNN) can perform defect recognition 

and classification, saving time compared to traditional methods. However, tradi-

tional CNN are difficult to achieve accurate differentiation due to insufficient 

feature extraction capability and low computational efficiency when dealing with 

scenes with complex backgrounds and similar defect categories. To solve these 

problems, this paper proposes an improved CNN based on multimodal data fu-

sion to achieve efficient automated defect recognition and classification by com-

bining the technical advantages of terahertz time-domain spectral system. Firstly, 

the spectral data of the samples are obtained by a terahertz time-domain spectros-

copy system, and the pre-processed spectral data are imaged. Second, the absorp-

tion coefficients were obtained by building a terahertz propagation model inver-

sion. Then, the terahertz absorption coefficients are deeply fused with the image 

data to construct a multimodal dataset as the network input. Convolutional blocks 

with multi-layer asymmetric convolutional kernels are designed in the convolu-

tional layer to enhance the accuracy and classification speed of defect recognition 

by strengthening the feature extraction and learning capabilities. Meanwhile, 

jump connections are chosen between the convolutional blocks, aiming to resist 

the problems of gradient vanishing and overfitting. Numerical experiments 

demonstrate that the improved CNN attains an accuracy of 99.4% in defect clas-

sification, with an F1 score of 0.99, and 100% accuracy in the confusion matrix 

validation set. Compared with traditional CNN, the accuracy is increased by 6% 

and the F1 score is improved by 4%. This provides reliable technical support for 

defect recognition and classification in complex scenes. 

Keywords: Convolutional Neural Network, Defect detection and classification, 

Terahertz Time-Domain Spectroscopy System. 

1 Introduction 

In the contemporary textile industry, fabrics serve as a crucial raw material, playing a 

pivotal role in various sectors, including garment manufacturing and home decoration. 



 

Nevertheless, during the production and transportation of fabrics, defects such as snags, 

holes, stains, twists, yarn piles, and abrasions frequently occur within or on the fabric 

surface. These issues arise due to factors like equipment malfunctions and improper 

process control. Such defects not only compromise the aesthetic appeal of the finished 

products but also significantly affect the durability and stability of the fabrics. Addi-

tionally, they increase the difficulty of cutting operations, thereby reducing production 

efficiency and product quality. Consequently, the development of efficient and accurate 

methods for detecting and classifying fabric defects has become a critical concern in 

the textile industry. 

Traditional fabric defect detection predominantly relies on manual visual inspection. 

This approach is not only time-consuming and labor-intensive but also highly suscep-

tible to subjective influences, which can undermine the accuracy of the detection pro-

cess [1]. With the rapid advancement of computer vision and artificial intelligence tech-

nologies, numerous non-destructive testing methods for fabric defects have emerged. 

These include X-ray detection, ultrasonic detection, infrared detection, and machine-

vision-based detection methods [2]. Among them, although X-ray technology can pen-

etrate various types of fabrics, the associated equipment is costly, and it involves radi-

ation risks [3]. Ultrasonic detection can assess the internal structural integrity of fabrics, 

yet it is significantly influenced by material properties, making it challenging to detect 

defects in complex-shaped fabrics [4]. Infrared detection, leveraging thermal imaging 

technology, can quickly locate abnormal regions. However, it is highly sensitive to the 

surface roughness of materials and ambient temperature variations [5]. Machine-vision-

based detection methods can clearly capture the fine textures and surface defects of 

fabrics. Still, they impose stringent requirements on light stability, and changes in am-

bient light can readily affect the detection accuracy [6]. Evidently, these existing tech-

niques have certain limitations when applied to fabric defect detection. 

In recent years, the terahertz time-domain spectroscopy (THz-TDS) system has 

shown great promise in the textile industry's non-destructive testing applications. This 

system benefits from its strong penetration ability, high resolution, insensitivity to light 

interference, and fingerprint spectroscopy characteristics [7]. It can simultaneously de-

tect multiple types of defects both inside and on the surface of fabrics. In fabric inspec-

tion, the THz-TDS system can identify fabric structures and compositions without caus-

ing damage to the materials [8], providing a novel technical approach for fabric defect 

detection. However, in practical applications, to further enhance recognition accuracy 

and classification speed, the automatic recognition and classification of fabric images 

containing defects are essential. Most previous research methods focused on likelihood-

based or feature-based classification [9]. Nevertheless, these methods encounter chal-

lenges in practical applications, such as limited computational capabilities or insuffi-

cient experience in signal feature engineering, which hinder their ability to meet the 

requirements of automatic detection in industrial inspection. To address these issues, 

fabric defect classification methods based on image processing and deep learning have 

gradually become a research hotspot [10]. Among these, the Convolutional Neural Net-

work (CNN) has emerged as one of the mainstream techniques for solving fabric defect 

classification problems. CNN's ability to automatically extract features at different lev-

els from data and its excellent depth scalability contribute to its popularity [11]. For 
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instance, Wang et al. developed a terahertz characterization system based on a deform-

able attention CNN framework to achieve automatic defect localization [12]. However, 

it exhibits poor accuracy in identifying certain subtle or complex defect features. Kim 

et al. analyzed tiny internal defects in materials using a deep learning model of terahertz 

signals based on CNN [13], but the method has high computational complexity and is 

difficult to implement in real-time applications. Zhang et al. proposed a defect detection 

model based on a hybrid attention multiscale non-jumping U-type deep convolutional 

self-encoder [14]. Still, as the number of network layers increases, it is prone to prob-

lems such as gradient vanishing and information loss. Mengiste et al. explored the po-

tential of combining deep transfer learning architectures to improve the diagnostic ac-

curacy of automatic identification [15]. 

Faced with complex fabric backgrounds, easily confusable defect categories, and 

blurred fabric edges, traditional CNN algorithms with limited feature extraction capa-

bilities and long running times struggle to efficiently distinguish between various types 

of defects. To address this, this paper integrates the advantages of the THz-TDS system 

and the CNN model and proposes an improved CNN method for defect recognition and 

classification. This method first employs a THz-TDS system to acquire the spectral 

signals of samples and then images the pre-processed spectral signals. Subsequently, a 

sample transmission model is established and inverted to calculate the terahertz absorp-

tion coefficient, verifying the feasibility of the THz-TDS system in fabric defect iden-

tification. The terahertz absorption coefficients and image data are then correspond-

ingly fused and input as a dataset into the network. In the model design, multi-layer 

convolutional blocks with asymmetric convolutional kernels and a skip connection 

structure are utilized to enhance the model's recognition accuracy and generalization 

ability. Experimental results demonstrate that the improved CNN model can better 

adapt to the diversity and complexity of sample defects. It performs well in terms of the 

confusion matrix, accuracy, precision, recall, and F1 score, enabling accurate recogni-

tion and classification of different fabric defects. 

The paper is organised as follows. Section 2 describes the terahertz propagation 

model in fabrics. The proposed improved CNN network is described in Section 3. Sec-

tion 4 verifies that the proposed network is efficient through numerical experiments. 

Section 5 presents the conclusions. 

2 Terahertz propagation model 

It is assumed that the terahertz wave emitted by the THz-TDS system in transmission 

mode is a plane wave. The incident terahertz wave is called ( )THzE w  , and when the 

terahertz wave passes directly through the air without considering atmospheric losses 

and scattering effects, the received signal is called ( )refE w  reference wave. When the 

terahertz wave is incident from one medium to another, the received signal is called the 

sample wave ( )samE w  , as shown in Fig. 1. 



 

 

Fig. 1. Schematic diagram of transmissive terahertz wave transmission.A figure caption is 

always placed below the illustration. 

The interaction between the terahertz wave and the sample is described by the Max-

well's system of equations [16], the connection between the electromagnetic field quan-

tities is established according to their boundary conditions, and the reflection coeffi-

cients ( asr ) and the transmission coefficients ( ast ) at the different dielectric demarca-

tion surfaces are obtained through Fresnel's formula [17,18]. 
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where ( )an  denotes the negative refractive index of terahertz waves in air, ( )sn    

denotes the complex refractive index of terahertz waves in the sample, a and s de-

note the angles of incidence and refraction, respectively. 

As a terahertz wave propagates through a sample, its amplitude decays and its phase 

is delayed, and the change is described by the propagation factor [19], 
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where ( )n  is the complex refractive index,  is the angular frequency, L is the prop-

agation distance, and  c is the speed of light. 

Assuming that the total path of terahertz propagation in air is Z  when the sample is 

not placed, the projected distance in the direction of fibre propagation is h , d  is the 

thickness of the sample, and the length of a single reflected ray is x .  

When the sample is placed and the terahertz wave is incident on the sample at a 

certain angle, the Fabry-Perot effect (F-P effect) [20,21] occurs, where part of the wave 

is reflected and part of the wave penetrates through the sample and refracts and reflects 
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several times internally, and the terahertz wave propagates through the air over a dis-

tance of  Z h−  ,obtaining the Eq. 4. 
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The reference and sample signals are obtained from Eqs. 1-4 as shown in Eq. 5 and Eq. 

6. 
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Therefore, the transfer function is obtained as in Eq. 7. 
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The F-P effect factor was obtained as 

 ( ) ( )2 2

1

1 ,
k

sa s
k

FP r p x 


=

= + , (8) 

In order to extract the correct target signal, assume that the terahertz is incident on the 

sample vertically and the F-P effect is 1, cos cos 1a a = = , 1an = , to obtain its 

transfer function as 
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In the case of weak absorption, when ( ) ( )n k  , it can be neglected ( )k  . From 

the relation between the mode and the supplementary angle and Lambert's law 
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Obtaining the absorption coefficient 
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where the real refractive index of the sample is ( )sn  , the extinction coefficient is 

( )sk  , and d  is the thickness of the sample. 

Therefore, the strength of the sample's ability to absorb terahertz waves can be learnt 

based on the magnitude of the absorption coefficient, thus distinguishing different de-

fects of the sample. 

3 Improved CNN algorithm 

The CNN is regarded as a deep-learning architecture [22]. Due to the slow classification 

speed caused by the massive data measured by the terahertz time-domain spectroscopy 

system, traditional CNN perform poorly in identifying and classifying defects based on 

single defective features. Thus, improving the CNN to optimize and innovate in terms 

of classification accuracy and speed is necessary. Therefore, this section presents an 

efficient CNN architecture for classification, as illustrated in Fig.  2. 
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Fig.  2.  Architecture of the improved CNN algorithm. 

3.1 Input Layer Improvement 

The input layer serves as the starting point for neural networks to process data. It re-

ceives input data and forwards it to the convolutional layer for feature extraction. When 

the input layer only processes a single piece of data or image, the model's information 

acquisition is relatively limited. This limitation can result in poor performance when 

handling complex tasks, as the model fails to analyze problems from multiple perspec-

tives or dimensions. To address this issue, this paper transforms the original complex 

one-dimensional spectral data into a two-dimensional matrix similar to image data. 

Then, it corresponds one-to-one with image data in the channel dimension, fusing and 

feeding it into the network as input data. Specifically, each signal frame in the dataset 

is organized into a 2D array with a size of 2×1024. 

3.2 Improvement of convolutional layers 

The convolutional layer is a multi-layer convolutional block. Asymmetric convolu-

tional kernels are used, and jump connections are introduced between these blocks. In-

side the convolutional layer, the components are connected in the following order: the 

first convolutional block, the pooling layer, feature fusion module A, information en-

hancement module B, and two depth processing modules C, as depicted in Fig. 2. Input 

data passes through the first convolution block (convolution2dLayer) to extract general 

features, generating the first feature map. The first convolution block has a 3×7 convo-

lution kernel and reduces the spatial dimension in steps of (1, 2). 

To minimize the number of trainable parameters while maintaining feature extrac-

tion quality, the feature fusion module A uses two juxtaposed layers of asymmetric 

convolution kernels: a 3×1 vertical kernel (the second convolution block) and a 1×3 



 

horizontal kernel (the third convolution block). Notably, both convolution and pooling 

operations use steps of (1, 2), which efficiently reduces the horizontal dimension of the 

feature map and cuts computational costs. The second feature map output by module A 

is fed into the maximum pooling layer. Through downsampling, it produces the third 

feature map, facilitating more effective learning of discriminative features. 

The information enhancement module B contains two asymmetric convolutional 

modules. In the first module, the fourth convolutional block connects to 3×1, 1×3, and 

1×1 asymmetric convolution kernels and concatenates them along the depth dimension 

using the Depth-concatenation Layer at the connection layer. The fourth convolutional 

block directly following the pooling layer output extracts features, while the one juxta-

posed with the second and third convolutional layers reduces the channel dimension. 

The features from the first asymmetric convolutional block are fused with the max-

pooled features of the third branch in the ADDITIONLAYER. This significantly en-

hances the overall feature representation compared to traditional CNNs' single-feature 

extraction paths. The fused features then enter the second asymmetric convolution mod-

ule, undergoing 1×1 convolution, followed by parallel 3×1, 1×3, and 1×1 convolutions. 

The output feature maps are concatenated in depth by the Depth-concatenation Layer, 

and then element-wise fused with the third-branch output by the addition Layer to grad-

ually learn feature information. 

The depth processing module C consists of two asymmetric convolution modules. 

The first module first goes through a 1×1 convolution layer, then juxtaposes 3×1, 1×3, 

and 1×1 asymmetric convolution kernels. The 3×1 kernel connects to the maxpooling 

layer, reducing feature dimensionality and computation. Then, 1×3 and 1×1 convolu-

tion kernels are used for fusion with the Depth-concatenation Layer. The fused features 

are combined with the fifth-branch pooled features via the addition layer, integrating 

features from different dimensions to enrich feature information. The features fused by 

the addition layer are input to the second asymmetric convolution module, which first 

applies a 1×1 convolution layer, then parallel 3×1, 1×3, and 1×1 asymmetric convolu-

tion kernels, and concatenates the output along the depth dimension at the connection 

layer. Finally, the concatenated features are element-wise fused with the fifth-branch 

output by the addition Layer to obtain the final feature map. 

3.3 Improvements in the connectivity layer 

To boost the classification model's accuracy and alleviate the gradient vanishing prob-

lem caused by the activation function in the network, Skip Connections are added be-

tween convolutional blocks. These connections preserve the information of features 

extracted in each block throughout the network and combine them, enriching the clas-

sification model. Importantly, Skip Connections enable modules to learn residual in-

formation instead of traditional true outputs. Consequently, the improved CNN model 

can better resist gradient vanishing and overfitting during network training. 

At the end of the model, the feature maps from the last depth processing module C 

are combined with the previous jump link output via the connection layer. Then, a 

global averagePooling2dLayer converts the feature maps into fixed-length vectors, 

which are fed into the Fully Connected Layer. A Dropout Layer is added to prevent 
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overfitting and ensure the model's generalization ability. The number of hidden units in 

the fully connected layer, denoted as C, is set to match the number of signal modulation 

method types in the dataset. Finally, a Softmax Layer is connected to perform the multi-

category classification task and output defect classification results. The detailed layers 

of the improved CNN architecture are shown in Table 1. 

Table 1. Architecture details diagram. 

Layer Output Volume Dropout 

input 2x1024x1 - 

conv 2x512x64 0.1 

pool 2x256x64 - 

A 2x128x64 0.1 

B 2x32x128 0.1 

C 2x16x128 0.1 

C 2x8x128 0.1 

concat 2x8x384 - 

Pool 1x1x384 - 

classifcation 1x1xC 0.1 

3.4 Model training strategy 

The improved CNN model is trained with the data from the training set. The stochastic 

gradient descent optimization algorithm, combined with the cross-entropy loss func-

tion, is employed to dynamically adjust the model's weight parameters. After 4500 

training iterations, the loss function value of the model on the training set converges to 

a stable low value. 

When using stochastic gradient descent for model training, 128 samples are utilized 

for parameter updates in each iteration to strike a balance between training efficiency 

and memory consumption. The maximum number of training epochs is set to 60, mean-

ing the model will undergo 60 full iterations over the entire training set. The initial 

learning rate is set at 0.01, and a segmented learning rate adjustment strategy is adopted. 

Specifically, the learning rate decays to 0.1 times its original value every 30 epochs. 

This approach allows for the gradual fine-tuning of model parameters as training pro-

gresses, helping to avoid getting trapped in local optimal solutions. 

Before each training epoch, data shuffling is enabled. This ensures that the model 

encounters data in different orders during various training cycles, thereby enhancing its 

generalization ability. The model's performance is monitored using the validation set, 

with the validation frequency set to once every 30 epochs. Training will be terminated 

early if the loss on the validation set ceases to decrease continuously. 



 

4 Numerical experiment 

4.1 Data Acquisition and Preprocessing 

This paper employs the terahertz time-domain spectroscopy system from Zomega Com-

pany. With a bandwidth ranging from 0.1 to 4 THz and a frequency resolution of 10 

GHz, This system is employed to scan fabric samples point by point with a step size of 

0.05 mm to obtain the terahertz time-domain spectral signals at each acquisition point 

are obtained through the schematic diagram in Fig.  3. 

 

Fig.  3. Transmission terahertz time-domain spectroscopy system schematic diagram. 

The original spectral data for eight different types of defects, the Savitzky-Golay filter-

ing algorithm [23] was applied to reduce noise interference from the instrument and the 

environment, thereby enhancing the accuracy and reliability of the classification model. 

The basic equation of S-G filtering is as follows: 

 

m

k i ki
k m

y c y


+
=−

=  , (12) 

where 
iy



 is the smoothed value at i , i ky +  is the point of the original data, k  is the 

offset within the window, kc  is the coefficient of the filter, and m  is the half-width of 

the window. 

A specific frequency imaging method was used to generate imaging results of the 

fabric samples at various frequencies. Images began to emerge at 0.4 THz, reached the 

highest clarity at 1.1 THz, and gradually blurred after 1.5 THz. Representative images 

are shown in Fig.  4. 

  
 

 (a) (b) (c) 

Fig.  4. Imaging results at different frequencies. (a)Imaging results at 0.4 THz,(b)Imaging re-

sults at 1.1 THz,(c)Imaging results at 1.5 THz. 
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The image with the highest clarity at 1.1 THz was selected as the basic data. Median 

filtering and grey stretching pre-processing were performed on this image to eliminate 

noise points and blurred regions and enhance defect characteristics. The processed im-

age data and spectral data were paired one-to-one to form a dataset, which was then 

labelled. Specifically, the non-defective area was marked as 0; the polyester-cotton ma-

terial overlay defect as 1; the cotton material double overlay defect as 2; stains as 3; 

holes as 4; hooks as 5; and twisted unevenness as 6. Given the similarity between holes 

and hooks, areas exhibiting features of both were defined as mixed defects and marked 

as 7. A total of 552,900 datasets, which were complete and contained multiple defect 

types, were divided into training, testing, and validation sets at a ratio of 7:1.5:1.5. 

4.2  Experimental results and analyses 

Using the data measured by the terahertz time-domain spectroscopy system, the time-

domain and frequency-domain plots of the reference signal and the sample signal are 

depicted in Fig. 5 a. By comparing the time-domain plots of the signal passing through 

air (reference signal), defect-free fabrics, as well as fabrics with holes, dye stains, 

hooks, uneven twists, cotton double-layer overlays, and cotton-polyester laminates, a 

time delay and amplitude attenuation are observed between the time-domain reference 

signal and the sample signals. The time delay occurs because terahertz waves travel 

through samples with varying refractive indices, while the amplitude attenuation is 

caused by the absorption and random scattering of the samples. The corresponding fre-

quency-domain plot in Fig. 5 b. clearly shows that the electric field of the sample signal 

is attenuated relative to the reference signal. This attenuation is attributed to the differ-

ent absorption of terahertz waves by samples with various defects. These results 

demonstrate that different defects can be characterized by unique features within the 

terahertz spectral range, confirming the feasibility of terahertz time-domain spectros-

copy imaging for fabric detection.  

  
(a) (b) 

Fig. 5. Time and frequency domain plots of the reference and sample signals. (a) Time-domain 

plots of reference and sample,(b) Frequency domain plots of reference and sample. 

The terahertz time-domain spectroscopy system employed in the experiments had a 

nominal spectral range of 0.1-4.0 THz. To achieve a better signal-to-noise ratio, a spec-

tral range of 0.1 to 1.5 THz was selected for this spectral analysis. The THz absorption 

coefficients of each defect were calculated using Eq. 11. The absorption coefficient data 

of different fabric defects were then fused with the image data and fed into the improved 



 

CNN model. After several rounds of iterative training, as illustrated in Fig. 6 a., the 

accuracy continuously increased with the rise in the number of training rounds and sta-

bilized at a high level. The improved CNN model achieved a classification accuracy of 

up to 99.4%. As shown in Fig. 6 b., the loss value decreased rapidly and gradually 

approached 0, indicating that the model possesses excellent learning ability and gener-

alization performance and can accurately identify fabric defects. This effectively vali-

dates the research objective of efficiently and accurately classifying and identifying 

fabric defects. 

  

(a) (b) 

Fig. 6. Improved CNN model training accuracy versus loss function plot. (a)Accuracy 

graph,(b)Loss function plot. 

4.3  Comparative Analysis of Models 

To further validate the advantages of the improved CNN method proposed in this paper, 

a comparison with the traditional CNN model is conducted. The results indicate that 

although the traditional CNN model can utilize image information for classification, it 

fails to identify subtle and hidden defects. Its accuracy is 93.3%, approximately 6% 

lower than that of the improved CNN method. 

To evaluate the model's classification performance more intuitively, this paper cal-

culates the confusion matrices for the training, test, and validation sets of both the tra-

ditional and improved CNN models, as shown in Fig. 7. Specifically, coordinates 1 to 

8 denote the classification of defect-free fabric, cotton-polyester material overlay de-

fects, cotton material double overlay defects, stained defects, hole defects, hook defects, 

twisted and uneven defects, and mixed defects with both hole and hook features, re-

spectively. Fig. 7 a shows that the traditional CNN model achieves a classification ac-

curacy of 93.5% on the training set, while Fig. 7 b presents the improved CNN model's 

training-set confusion matrix with a classification accuracy of 99.3%. After fully train-

ing both models until their accuracies stabilize, they are applied to classify eight fabric 

categories, yielding the test-set confusion matrices in Fig. 7 c and Fig. 7 d. The tradi-

tional CNN model has a test accuracy of 93.3%, whereas the improved CNN model's 

test accuracy increases to 99.0%. Through constructing and analyzing the validation-

set confusion matrices, the traditional CNN model has a validation accuracy of 93.4%, 

while the improved CNN model attains a perfect 100% validation accuracy, as depicted 
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in Fig. 7 e and Fig. 7 f. Evidently, the improved CNN model fully meets the classifica-

tion and recognition requirements for the eight fabric defect types, with its accuracy 

significantly surpassing that of the traditional CNN model. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7. Confusion matrices of traditional and improved CNN models. (a) (c) (e) are the confu-

sion matrices for the training, validation, and test sets of the traditional CNN model, and (b) (d) 

(f) are the confusion matrices for the corresponding sets of the improved CNN model. 

To conduct a more comprehensive evaluation of the classification model, this paper 

introduces the F1 score as an additional evaluation index, complementing the compar-

ison of classification accuracy. As shown in Table 2, the improved CNN model outper-

forms the traditional CNN model in all four evaluation metrics: accuracy, precision, 

recall, and F1 score. This demonstrates that the improved CNN method can accurately 

differentiate various defect types and adapt to the diversity and complexity of fabric 

defects. 

 



 

Table 2. Performance comparison of different classification models. 

Classification model Accuracy Precision Recall F1-score 

Traditional CNN 0.93 0.96 0.95 0.95 

Improving CNN 0.99 0.99 0.99 0.99 

5 Conclusion 

In this paper, an improved convolutional neural network model based on multimodal 

data fusion is proposed to address the limitations of traditional convolutional neural 

networks in complex background defect recognition. Combining the advantages of te-

rahertz time-domain spectral system, the feature extraction and classification perfor-

mance is significantly improved by obtaining the deep fusion of absorption coefficients 

and image data, and combining the multilayer asymmetric convolutional kernel with 

jump connection design. Experimental results show that the improved convolutional 

neural network model achieves 99.4% accuracy and 0.99 F1 score in eight defect clas-

sification tasks, which is 6% and 4% higher than the traditional convolutional neural 

network method. It also performs well in terms of precision, recall, and confusion ma-

trix accuracy. This study not only provides an efficient and accurate solution for defect 

recognition in complex scenes, but also has high application value and research signif-

icance in the future. 
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