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Abstract. Time series anomaly detection is crucial in various real-world scenar-

ios, including fault diagnosis, financial fraud detection, and early warning sys-

tems. While diffusion models have recently emerged as powerful generative tools 

for anomaly detection, two key challenges persist: (1) conventional Gaussian 

noise used during the forward process fails to suppress anomaly-specific frequen-

cies due to spectral mismatches; and (2) most existing methods adopt a unified 

model to detect all types of anomalies, overlooking the distinct characteristics of 

trend, seasonal, and mixture anomalies. To address these issues, we propose 

GNDC-DM, a gradient noise-based dynamic conditional diffusion model for 

time series anomaly detection. GNDC-DM employs three dedicated channels to 

detect different types of anomalies individually. In the trend and seasonal chan-

nels, we introduce a novel gradient noise that fuses gradient-aligned noise with 

stochastic Gaussian components, effectively preserving normal patterns while 

corrupting anomaly distortion. In the mixture channel, we dynamically incorpo-

rate trend and seasonal components as conditions to guide the denoising process, 

making mixed anomalies more distinguishable. Extensive experiments on four 

benchmark datasets demonstrate the superior performance of our approach, high-

lighting its ability to improve detection accuracy across various anomaly catego-

ries. 
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1 Introduction 

Time series anomaly detection refers to the identification of data points that significantly deviate 

from established normal patterns within temporal sequences. This technique holds critical im-

portance in real-world applications, such as fault detection in industrial systems, financial fraud 

detection, automotive fault diagnosis, and early anomaly warning for machinery [2, 8, 35]. Ac-

curately detecting anomalies in time series data is essential for ensuring operational safety, re-

ducing risks, and preventing significant economic losses [19, 50]. Due to the high cost of obtain-

ing ground-truth anomaly labels, one of the primary challenges in time series anomaly detection 

is identifying anomalies in an unsupervised manner.  To address this, a variety of unsupervised 

techniques have been proposed, including Autoencoders (AE) [3], Normalizing Flows [9], Graph 

Neural Networks (GNN) [10], and Transformer-based models [18, 46]. These methods typically 



 

 

rely on learning compact representations or reconstruction errors to distinguish normal from 

anomalous patterns. 

In contrast, generative models aim to learn the underlying distribution of normal time series 

data, offering the potential to detect anomalies based on generation quality and likelihood esti-

mates. By capturing normal patterns, these models can accurately reconstruct normal instances, 

while failing to do that for anomalous ones. As a result, anomalies can be identified by measuring 

reconstruction errors. Among the generative approaches, Generative Adversarial Networks 

(GANs) [24] and Variational Autoencoders (VAEs) [30] have been explored for their ability to 

generate realistic time series data. However, these models often suffer from limited generation 

fidelity and training instability, resulting in noisy or unrealistic outputs that can impair detection 

performance [51]. Therefore, diffusion model-based methods [7, 52] have recently been intro-

duced for time series anomaly detection. These models provide stronger generative capabilities, 

more stable training, and higher-quality sample reconstruction, making them a promising alter-

native for robust anomaly identification. 

Despite recent advancements, two critical limitations hinder the performance of current meth-

ods: (1) Existing diffusion-based approaches predominantly employ Gaussian noise during the 

forward process to corrupt input data [11, 14, 16, 32]. However, because Gaussian noise does not 

differentiate between normal and anomalous data, it can result in the anomalous data being re-

constructed as effectively as the normal data during the generation process. While, reconstruc-

tion-based methods require to smooth anomalous points and obtain larger reconstruction errors 

for anomalies [7, 52]. The main reason for this is that this noise paradigm inadequately suppresses 

anomalous patterns due a spectral mismatch: Gaussian noise exhibits uniform energy distribution 

across all frequency bands, whereas anomalies in time series often localize to specific frequen-

cies—e.g., high-frequency spikes or mid-band deviations [51]. Consequently, its indiscriminate 

spectral perturbation fails to selectively attenuate anomaly dominated frequencies to enlarge re-

construction errors of anomalies. (2) Most methods adopt a unified detection model to identify 

different types of anomalies [43], leading to suboptimal detection results. Time series anomalies 

exhibit intricate seasonal anomalies, trend anomalies, and mixture anomalies [23, 49]. A single-

model architecture learns entangled representations that inadequately capture the distinct causal 

mechanisms underlying these anomaly categories . For instance, seasonal anomalies require fre-

quency-aware detectors, while trend anomalies demand robust baseline estimators. This "one-

size-fits-all" approach underperforms compared to specialized detectors tailored for specific 

anomaly types [32]. 

To address these issues, we propose a gradient noise-based dynamic conditional diffusion 

model for time-series anomaly detection (called GNDC-DM). In this framework, we design three 

specialized channels to independently detect trend anomalies, seasonal anomalies, and mixed 

anomalies. In the trend and seasonal channels, we introduce a gradient noise to replace the stand-

ard Gaussian noise used in conventional diffusion models. This custom noise is designed to ef-

fectively attenuate the anomalies, thereby enlarging the reconstruction error and improving the 

detection performance. It is constructed by combining gradient-oriented noise, which reinforces 

normal trends (or seasonal patterns), with stochastic Gaussian components, which preserve di-

versity. The gradient aligned term leverages the fact that anomalies typically exhibit gradient 

directions that deviate from their neighborhood trends (or seasonal patterns). By aligning with 

dominant normal gradients, this term naturally suppresses anomalous fluctuations. Meanwhile, 

the residual Gaussian component introduces controlled randomness, helping to avoid 
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deterministic bias and maintain sample diversity. By integrating these two components, the pro-

posed noise formulation ensures that normal patterns are minimally distorted during the recon-

struction process, while anomalies are systematically shifted toward the normal manifold. This 

achieves both effective anomaly mitigation and robust preservation of normal characteristics. 

In the mixture channel, we combine both trend and seasonal noise at each time step as dynamic 

conditions to guide the diffusion model in reconstructing time series data. By aligning the gener-

ated data with normal trend and seasonal patterns, this design effectively suppresses abnormal 

components in these dimensions, thereby making mixture anomalies more distinguishable and 

easier to detect. Unlike static conditions (e.g., global trends or seasonal averages), which may 

fail to align with the local temporal context due to the evolving nature of the diffusion process, 

our approach dynamically synchronizes the generation process with the step-wise characteristics 

of the input data. Specifically, we iteratively extract step-specific trend and seasonal information 

and incorporate them as conditions for the mixture channel. This ensures that the generated out-

puts remain locally coherent and closely aligned with the distribution of normal data. As a result, 

data points containing mixture anomalies tend to exhibit larger reconstruction errors, enabling 

their effective identification based on reconstruction-based scoring. Our main contributions are 

summarized as follows: 

— We propose a novel time series anomaly detection framework, GNDC-DM, which 

employs three specialized channels to independently detect trend anomalies, sea-

sonal anomalies, and mixed anomalies. 

— We introduce a tailored gradient noise, which combines gradient-oriented constraints 

with stochastic components to explicitly suppress anomalous patterns while preserv-

ing normal structures. This design amplifies reconstruction errors for anomalies and 

enhances the detection of trend and seasonal anomalies. 

— We develop a dynamic conditional denoising network that adaptively fuses trend and 

seasonal components via learnable cross-attention mechanisms. These combined in-

formation serves as dynamic conditions for the reverse diffusion process to corrupt 

anomalies, thereby improving the detection of mixed anomalies. 

— Extensive experiments on four benchmark datasets demonstrate the superior perfor-

mance of GNDC-DM compared to state-of-the-art time series anomaly detection 

methods. 

2 Related Work 

2.1 Time-series anomaly detection 

Initial research in time series anomaly detection primarily relied on conventional methods such 

as density estimation [6] and clustering techniques [40, 42]. The advent of deep learning has 

since spurred the development of numerous models that have significantly advanced the field. 

These deep learning–based approaches utilize a variety of techniques—including autoencoders 

(AE) [3, 20, 38], variational autoencoders (VAE)[17, 43], generative adversarial networks 

(GAN) [13, 15, 24], Transformers [18, 33, 46], and denoising diffusion probabilistic models 

(DDPM) [7, 32, 52]—to achieve superior anomaly detection performance. 



 

 

The method employs autoencoders (AE) [38] to reconstruct time series through an encoding–

decoding procedure, with anomaly detection based on measuring the reconstruction error be-

tween the original and reconstructed data. Building on this foundation, subsequent research has 

enhanced both model interpretability and performance by decomposing time series. Furthermore, 

variational autoencoder (VAE)-based approaches [17, 43] not only capture reconstruction errors 

but also estimate the log-likelihood of the reconstructions, thereby modeling the latent probability 

distribution of the data and achieving robust anomaly detection. Nonetheless, reconstruction 

methods that lack proper regularization are susceptible to overfitting and diminished perfor-

mance , a problem that GANs [13, 15, 24] address by concurrently training a discriminator and 

a generator to produce high-quality synthetic data. To overcome these issues, Denoising Diffu-

sion Probabilistic Models (DDPM) have been proposed. Leveraging the superior performance of 

DDPM in generation tasks and its success in time series imputation [28, 45], researchers have 

applied a DDPM-based imputation method to time series anomaly detection, wherein traditional 

Gaussian white noise is used in the forward process and the original data values serve as static 

conditions to guide the generation process [7, 32, 52]. 

2.2 Diffusion Model 

Recent advancements in diffusion models have yielded remarkable success in image processing 

[11, 16]. Although their application to time series analysis is relatively nascent, researchers have 

begun exploring their utility in tasks such as imputation [4, 28, 45, 53], forecasting [22, 34], and 

generation [25]. Time series imputation, which involves restoring missing data, has benefited 

from diffusion-based approaches that offer flexible assumptions about the underlying data distri-

bution compared to traditional probabilistic methods [26]. The CSDI framework [45] leverages 

diffusion models for imputation by conditioning the generation process on observed data. Build-

ing on this foundation, both DSPD/CSPD [4] and PriSTI [28] similarly guide the diffusion pro-

cess using observed data. Specifically, DSPD/CSPD defines appropriate noise sources and em-

ploys score-matching models for imputation, whereas PriSTI introduces static conditions based 

on global spatiotemporal correlations and geographical relationships to enhance the diffusion 

model’s performance. 

Diffusion models have proven effective for multivariate time series forecasting by leveraging 

historical interactions among variables to predict future trends. For instance, TimeGrad [34] uti-

lizes an autoregressive diffusion process that generates sequences via a Markov chain originating 

from white Gaussian noise, thereby ensuring robust and efficient forecasts. In addressing the 

challenges associated with applying diffusion models to time series data, subsequent research [4, 

22] has introduced various novel approaches tailored to these tasks. Furthermore, diffusion mod-

els excel in generating time series data, as evidenced by TSGM [25], which employs a score-

based diffusion methodology to synthesize data from a Gaussian prior, surpassing baseline meth-

ods in both quality and diversity. 

Difference: Compared to conventional diffusion models that rely on Gaussian noise, our ap-

proach employs custom-tailored noise specifically designed to address trend and seasonal anom-

aly. Traditional diffusion models are optimized for generative tasks where the objective is to 

replicate the original distribution accurately. In contrast, anomaly detection requires the genera-

tion of a large proportion of normal data to amplify the error associated with anomalies. By cus-

tomizing the noise to align more closely with the inherent characteristics of the data, our diffusion 
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model is better equipped to differentiate between typical patterns and anomalies, thereby enhanc-

ing detection performance. 

3 Method 

3.1 Problem Formulation 

In this study, we focus on detecting anomalies in multivariate time series (MTS) using an unsu-

pervised approach. A collection of MTS is represented 𝒳 = {𝐱1 , 𝐱2, ⋯ , 𝐱𝑁}, comprising meas-

urements recorded from timestamps 1 to N. The objective is to identify timestamps that signifi-

cantly deviate from the majority of reference timestamps based on a computed threshold 𝒯. 

3.2 Framework of GNDC-DM 

The overall framework of the model is shown in Fig. 1. The overview of GNDC-DM.. It 

proposes introduces a three channel anomaly detection architecture to identify trend, seasonal, 

and mixture anomalies in time series through tailored diffusion models. Specifically: (1) In the 

diffusion models for trend and season, we design a custom noise function, referred to as gradient 

noise, which is derived from predominantly normal trend and seasonal patterns. Unlike Gaussian 

noise, this tailored noise selectively corrupts anomalies in the trend and seasonal signals. During 

the forward process, gradient noise is incrementally added to the original trend and seasonal data, 

guiding the resulting noisy data toward normal behavior. This robust prior ensures that the re-

verse process reconstructs the trend and seasonal components as normal. (2) In the mixture dif-

fusion model, for complex mixture anomalies, the model employs combined noise—encompass-

ing both trend and seasonal aspects—as dynamic conditions to steer the generation process. In 

this scenario, gradient noise is also added during the forward process. However, in the reverse 

generation phase, the conditions are dynamically adjusted at each time step. These dynamic con-

ditions, in contrast to static ones, emphasize normal information in the time series, thereby en-

hancing the generation of normal data. 

 

Fig. 1. The overview of GNDC-DM. 



 

 

3.3 Trend Anomaly Detection 

Trend anomalies in time series data are subsequences that induce significant deviations from the 

overall trend. We employ a diffusion model with gradient noise to reconstruct the trend and sub-

sequently identify anomalies based on the reconstruction error. 

To detect trend anomalies, we employ reconstruction-based techniques similar to those in [36, 

48], in which both normal and anomalous data points are transformed to reflect normal behavior. 

Anomalies are subsequently identified by analyzing the reconstruction error, with larger errors 

indicating a higher likelihood of an anomaly. Inspired by the demonstrated efficacy of diffusion 

models in related tasks [7, 53], we adopt a diffusion-based approach for reconstruction. In our 

method, the forward process perturbs the trend data with gradient noise to create a prior distribu-

tion, and the reverse diffusion process then refines this prior to generate the reconstructed trend. 

However, conventional diffusion models typically corrupt the original data using Gaussian white 

noise, which does not sufficiently attenuate the influence of anomalous points [51]. To address 

this limitation, we introduce a novel gradient noise, which yields a smoother reconstructed trend 

and produces larger reconstruction errors for anomalies. 

Gradient Noise. Inspired by the successful use of specialized noise in graph data , we propose a 

novel gradient noise to suppress anomaly-specific information. This noise mechanism shifts the 

data distribution towards normal patterns, causing anomalous values to be reconstructed as nor-

mal while preserving the integrity of the original normal values. Consequently, anomalies are 

readily identifiable through elevated reconstruction errors. 

Anomalies in time series often appear as abrupt fluctuations that deviate from the overall 

trend, resulting in gradient directions that significantly differ from those of their surrounding 

data. Noise generated based on gradient direction can enhance the underlying trend of normal 

points while attenuating the influence of anomalies. To effectively suppress anomalies in the 

trend, we transform standard Gaussian noise into gradient noise by introducing two key con-

straints: (𝑖) a directional constraint that aligns the noise with the local gradient, thereby capturing 

the local dynamics of the time series; and (𝑖𝑖) a stochastic constraint that incorporates Gaussian 

noise to preserve diversity in the generated samples. Given the trend time series 𝑡 and Gaussian 

noise 𝜖, the two constraints are expressed as: 

𝜖𝑡 = 𝜆 ⋅
∇𝑡

∥ ∇𝑡 ∥ +𝜀
⋅∥ 𝜖 ∥ +𝛾 ⋅ 𝜖 (1) 

Here, ∇𝑡 denotes the gradient of the time series 𝑡, and ∥ ∇𝑡 ∥ represents its magnitude. The term 

ε is a small constant introduced to prevent division by zero when ∥ ∇𝑡 ∥ approaches zero, thereby 

ensuring numerical stability. ∥ 𝜖 ∥ is the magnitude of the Gaussian noise𝜖 ∼ 𝒩(0, 𝐼). The coef-

ficients 𝜆 and 𝛾 are tunable hyperparameters that control the relative contributions of the gradi-

ent-oriented and random noise components, respectively. 

Forward Diffusion Process. Given the gradient noise ϵt, we apply the forward diffusion process 

to inject this noise into the original trend t0, resulting in a corrupted version that serves as the 

prior: 

𝐭𝐾 = √𝛼𝐾𝐭0 + √1 − 𝛼𝐾𝜖𝐭, (2) 
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where 𝛼𝑇 = ∏ (1 − 𝛽𝑡)
𝑇

𝑡=1
, and 𝛽1, . . . , 𝛽𝑇  is a fixed variance schedule [16]. Because the gradi-

ent trend noise obtained through Eq. (1) encourages the data to converge towards normal data, 

the abnormal information in the prior is significantly reduced after the forward process. 

Denoising Neural Network. To reconstruct trend data, it requires a denoising neural network to 

remove the noise in the prior and generate clean data. The objective function of this denoising 

network is to predict the noise from Eq. (2): 

ℒ𝑡𝑟𝑒 = 𝔼𝑘,𝐭0,𝜖𝐭
∥ 𝜖𝐭 − 𝜖𝜃𝐭

(𝐭𝑘 , 𝑘) ∥2
2, (3) 

where 𝜖𝜃𝐭
(⋅) is the denoising neural network parameterized by 𝜃𝐭. 

To better learn the normal distribution of the trend, we employ a U-Net based on LDM [36] 

to implement the denoising network, 𝜖𝜃𝐭
(⋅). Unlike dynamic conditional denoising networks used 

in mixed-type anomaly detection—which rely on external conditions such as trend and season-

ality—trend anomaly detection focuses on learning the distribution of normal samples without 

additional conditioning. To align with this objective, we remove the conditional components 

from the original LDM design and instead incorporate self-attention layers. Selfattention is par-

ticularly effective for capturing long-range dependencies within sequences [27, 47], enabling the 

network to develop a global understanding of the trend structure. Given that normal data typically 

dominates in anomaly detection tasks [5, 39], leveraging long-range dependencies enhances the 

network’s ability to model normal patterns. This, in turn, amplifies the reconstruction error for 

anomalous points, thereby improving anomaly detection performance. 

Reverse generation process. With the denoising neural network 𝜖𝜃𝐭
(⋅) and the prior 𝐭𝐾, the re-

verse generation (diffusion) process iteratively remove noisy data 𝐭𝐾 to generate a clean data 𝐭0: 

𝐭𝑘−1 =
1

√𝛼𝑘

(𝐭𝑘 −
𝛽𝑘

√1 − 𝛼𝑘

𝜖𝜃𝐭
(𝐭𝑘 , 𝑘)) + √𝛽

~

𝑘𝜖𝐭, (4) 

The generation process starts with the noisy data 𝐭𝑲 and generates a clean sample  𝐭𝟎 through 

iterative denoising, i.e., 𝐭𝐾 → ⋯ → 𝐭𝑘 → 𝐭𝑘−1 ⋯ → 𝐭0. 

3.4 Seasonal Anomaly Detection 

For the seasonal component, a similar procedure is employed to reconstruct the data. First, anal-

ogous to Eq. (1), the Gaussian noise 𝜖′ is transformed into the gradient noise 𝜖𝐬. This tailored 

noise is then used to perturb the seasonal data 𝐬0 over 𝐾 steps in the forward diffusion process, 

resulting in the prior 𝐬𝐾, in a manner corresponding to Eq. (2) for the trend component: 

𝐬𝑘 = √𝛼𝑘𝐬0 + √1 − 𝛼𝑘𝜖𝐬, (5) 

Next, the denoising neural network 𝜖𝜃𝐬
(⋅) parameterized by 𝜃𝐬 is trained to remove the noise 

in  𝐬𝑲. Finally, the prior  𝐬𝑲 is iteratively removed noisy using 𝜖𝜃𝐬
(⋅) to generate the clean season 

data 𝐬𝟎 in the reverse process, like Eq. (4): 



 

 

𝐬𝑘−1 =
1

√𝛼𝑘

(𝐬𝑘 −
𝛽𝑘

√1 − 𝛼𝑘

𝜖𝜃𝐬
(𝐬𝑘 , 𝑘)) + √𝛽

~

𝑘𝜖𝐬, (6) 

3.5 Anomaly Detection 

Time series often comprise multiple complex components, and in addition to trend and seasonal 

anomalies, mixture anomalies frequently coexist within the data [23]. To detect such anomalies, 

we design a time series diffusion model with dynamic conditions. In the forward diffusion pro-

cess, we replace standard Gaussian noise with the proposed gradient noise to better corrupt mix-

ture anomalies. During the reverse process, dynamic conditions—derived from the decomposed 

trend and seasonal components—are incorporated to guide the generation of the reconstructed 

time series. Mixture anomalies are then identified by computing the reconstruction error between 

the generated time series and the original input, with larger errors indicating a higher likelihood 

of anomalous behavior. 

Denoising Diffusion Probabilistic Models (DDPMs) have shown strong capabilities in accu-

rately modeling data distributions for generative tasks [14]. However, when applied to anomaly 

detection, existing methods [7, 52] typically rely on static or gradient-based conditioning 

throughout the generation process. Such static conditioning lacks the flexibility to provide tar-

geted, step-wise guidance during generation, making it challenging to adapt to complex temporal 

dynamics. As a result, this limitation often leads to suboptimal performance in detecting anoma-

lies within time series data. 

To address this limitation, we introduce a dynamic conditioning mechanism that incorporates 

synchronous noise derived from both the trend and seasonal components during the generation 

process. This dynamic condition guides the diffusion model to generate time series data that align 

with normal patterns. Specifically, at each time step in the iterative generation process, we per-

form trend and seasonal diffusion to obtain trend noise and seasonal noise corresponding to the 

same time step. These noise components predominantly reflect the characteristics of normal data. 

By combining them as a dynamic condition, the model is effectively guided to generate time 

series values that conform to normal behavior. This design ensures that the trend and seasonal 

signals—both aligned with normal orientations—serve as time-synchronized guidance, not only 

matching the temporal structure of the data but also directing the generation process toward the 

normal distribution. 

Forward. The diffusion process for time series closely follows the trend forward process de-

scribed in Eq. (2). Specifically, the time series data 𝒙𝟎, sampled from the true distribution, are 

perturbed over 𝐾 steps using gradient noise generated in a manner analogous to Eq. (1), resulting 

in the corrupted representation 𝐱𝐾 . 

Dynamic Conditions Denoising Network. For the denoising network 𝜖𝜃𝐱
(⋅) applied to time se-

ries data, we incorporate dynamic condition guidance to prioritize learning the distribution of 

normal data. During the denoising process at each time step, we take the output predicted at the 

previous step, i.e., 𝐱𝑘, as input. Additionally, we use the corresponding trend 𝐭𝑘 and season 𝐬𝑘 at 

the same time step as conditioning variables to predict the noise. The predicted noise is then used 

to generate the time series data for the previous time step, 𝐱𝑘−1. The objective function for this 

process is defined as follows: 
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ℒ𝑚𝑖𝑥 = 𝔼𝑘,𝐱0,𝐭𝑘,𝐬𝑘 ,𝜖[||𝜖𝜃𝐱
(𝐱𝑘, 𝐭𝑘, 𝐬𝑘 , 𝑘) − 𝜖||2

2], (7) 

here, 𝜖𝜃𝐱
(𝐱𝑘 , 𝐭𝑘 , 𝐬𝑘, 𝑘) denotes the denoising neural network parameterized by 𝜃𝐱, where the in-

put is 𝐱𝑘 and the conditions are 𝐭𝑘 and 𝐬𝑘. As a result, the dynamic conditions at each time step 

change according to the corresponding time step. These dynamic conditions not only ensure con-

sistency across time steps but also incorporate components with normal orientations, effectively 

guiding the network to reconstruct time series data that aligns with normal patterns. 

However, the components in real-world time series are not always quantitative, meaning that 

using trends and seasons in equal proportions as conditions for time series generation may not be 

effective for generative tasks. To better align with real-time series data, we preprocess the trend 

and seasonal components before incorporating them as conditional factors into the denoising net-

work. This ensures that each individual component contributes more effectively to the generation 

of time series data. Specifically, we control the proportion of trend and season when generating 

the conditional guidance. Formally, the generation of this conditional guidance is as follows: 

𝐜 = 𝛿𝐭𝑘 + (1 − 𝛿)𝐬𝑘 , (8) 

where 𝛿 represents the weight coefficient that controls the proportion of trend and season.  

At each 𝑘-th time step, the condition 𝐜guides the denoising process of the input data 𝐱𝒌 

through a cross-attention mechanism. We adopt an LDM-based U-Net architecture [36] as the 

diffusion network, enhancing it with cross-attention to sequentially integrate the condition 𝐜 into 

the denoising process. To facilitate this integration, we use an embedding layer to transform the 

condition 𝐜 into 𝐜
^

∈ ℝ𝑁×ℎ  where the dimension ℎ corresponds to the time series representation 

𝜙(𝐱𝑘). The cross-attention mechanism that incorporates the condition is defined as follows: 

𝐳 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐
𝐜
^, 𝐊𝐱, 𝐕𝐱) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(

𝐐
𝐜
^𝐊𝐱

𝑇

√𝑑
) ⋅ 𝐕𝐱   (9) 

The output z from the cross-attention mechanism is then used as the input for the subsequent 

modules in the U-Net architecture. Specifically, the query 𝐐
𝐜
^ = 𝐖

𝐜
^
𝑞

⋅ 𝐜
^
 is derived from the con-

dition, which includes the mixed trend and seasonal noises at the 𝑘 -th time step. The key and 

value are given by 𝐊𝐱 = 𝐖𝐱
𝑘 ⋅ 𝜙(𝐱𝑘)  and 𝐕𝐱 = 𝐖𝐱

𝑣 ⋅ 𝜙(𝐱𝑘) ,  respectively, where 𝜙(𝐱𝑘) ∈

ℝ𝑁×ℎ represents the input time series representation for each cross-attention layer. For the query 

𝐐
𝐜
^ from the condition and the key 𝐊𝐱 from the time series, when both are normal, their similarity 

will be high, leading to larger attention weights when summing with 𝐕𝐱. In contrast, when 𝐐
𝐜
^ is 

normal but 𝐊𝐱 is abnormal, the similarity decreases, resulting in significantly smaller weights. 

Consequently, the anomaly information in the time series is effectively attenuated, which helps 

the network focus on learning the patterns of normal time series. 

Reverse. In the generative (reverse diffusion) process at time step 𝑘, the prior 𝐱𝒌 is fed into the 

denoising network 𝜖𝜃𝐱
(𝐱𝑘 , 𝐭𝑘 , 𝐬𝑘 , 𝑘) for denoising: 

𝐱𝑘−1 =
1

√𝛼𝑘

(𝐱𝑘 −
1 − 𝛼𝑘

√1 − 𝛼𝑘

𝜖𝜃𝐱
(𝐱𝑘, 𝐭𝑘, 𝐬𝑘 , 𝑘)) + √𝛽𝑘

~

𝜖𝐱, (10) 



 

 

This generative process iteratively refines the distribution until reaching the clean time series 

data 𝐱0. 

3.6 Detection Criterion 

Anomalous and normal time series are distinguished based on reconstruction error, with higher 

errors indicating a greater likelihood of an anomaly. For mixture anomalies in time series, we 

define them as follows:  

𝐀𝐒𝐱(𝐱𝑖) = ∑ |

𝑑

𝑘=1

|𝐱𝑖
(𝑘)

− 𝐱
^

𝑖
(𝑘)

||2
2 (11) 

where 𝐱𝒊 is the original time series data and 𝐱
^

𝑖 is the generated time series data. Simultaneously, 

we substitute the time series 𝐱 in Eq. (11) with the trend 𝐭 and the season 𝐬 to separately calculate 

the scores for trend anomalies 𝐀𝐒𝐭(𝐭𝑖) and seasonal anomalies 𝐀𝐒𝐬(𝐬𝑖). Subsequently, we inte-

grate the computed mixture anomaly scores, trend anomaly scores, and seasonal anomaly scores 

to derive the overall anomaly score: 

𝐀𝐒(𝐱𝑖) = 𝜆1𝐀𝐒𝐱(𝐱𝑖) + 𝜆2𝐀𝐒𝐭(𝐭𝑖) + 𝜆3𝐀𝐒𝐬(𝐬𝑖), (12) 

where 𝜆1, 𝜆2 and 𝜆3 are the balance hyper-parameters. 

Following previous works, we calculate the threshold based on the training data. Given the 

training data 𝐗 = {𝐱1, ⋯ , 𝐱𝑁}, the corresponding decision threshold is: 

𝒯 =
1

𝑁
∑ 𝐀𝐒

𝑁

𝑖=1

(𝐱𝑖) + √
1

𝑁
∑(𝑨𝑺(𝒙𝑖) − 𝑨𝑽𝑮(𝑿))

𝑁

𝑖=1

, (13) 

where 𝐀𝐒(𝐱𝑖) is the function for calculating anomaly scores, corresponding to Eq. (12), and 

𝐀𝐕𝐆(𝐗) is a function for calculating the average of 𝐀𝐒(𝐱𝑖). A test sample is considered to be 

abnormal if 𝐀𝐒(𝐱𝑖) > 𝒯 ; otherwise, it is considered normal. 

4 EXPERIMENTS 

4.1 Benchmark Datasets 

We evaluate the effectiveness of our GNDC-DM on four widely used baselines for anomaly 

identification on time series, as presented in Table 1．Dataset description. (1) MSL, collected 

by NASA, which contains sensor and actuator data from the Mars rover [17]. (2) SMD, a five-

week collection of resource utilization traces from 28 machines in an internet company’s com-

pute cluster [43]. (3) SWaT, a 51- dimensional dataset gathered from continuously operating 

critical infrastructure sensors [29]. (4) PSM, compiled internally by eBay, which aggregates met-

rics from multiple application server nodes [1]. 
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Table 1．Dataset description 

Datasets Applications # dimension # point anomaly(%) 

SMD Server 38 1,416,825 4.2% 

MLS Space 55 132,046 10.5% 

SWaT Water 51 944,919 12.1% 

SMD Server 38 1,416,825 4.20% 

 

4.2 Baselines and Experiment Setup 

We perform a thorough evaluation by comparing GNDC-DM with several baseline approaches 

across different categories: (1) Clustering-based methods (e.g., DeepSVDD [37], THOC [41], 

and ITAD [42]) group data sequences into clusters and detect anomalies by measuring their dis-

tance from the clusters. (2) Prediction-based models (e.g., LSTM [17], CL-MPPCA [44]) train 

predictive models to estimate future values based on a contextual window of prior observations, 

flagging anomalies based on discrepancies between predicted and actual values. (3) Reconstruc-

tion-based methods (e.g., LSTM-VAE [30], BeatGAN, OmniAnomaly [43], ATransformer, and 

TFMAE [12]) encode subsequences of normal training time series into a latent space, reconstruct 

the sequences, and detect anomalies using reconstruction errors. (4) Imputation-based methods 

(e.g., DiffAD [52] and ImDiffusion [7]) estimate missing values through imputation techniques 

and identify anomalies based on the magnitude of estimation errors.  

Experiments are conducted using PyTorch [31] with a single NVIDIA RTX 24GB GPU. The 

Adam optimizer [21] is employed with default settings, an initial learning rate of 3 × 10−6, and 

a batch size of 16 for all datasets. GNDC-DM is configured with 100 diffusion steps. Hyperpa-

rameters and detection thresholds for baseline models are set according to the specifications in 

their original papers. 

4.3 Anomaly Detection Performance 

Table 2 presents the precision, recall, and F1-score performance of GNDCDM and baseline meth-

ods across various datasets. All results are averaged over multiple runs to ensure robustness. 

GNDC-DM achieved the highest average F1 scores across the four datasets, surpassing the base-

line methods, thereby demonstrating its effectiveness in time series anomaly detection. Specifi-

cally, our model obtained F1 scores of 95.27% and 95.34%  on the SMD and MSL datasets, 

respectively. This improvement can be attributed to our decoupled modeling approach for anom-

aly detection, which effectively captures multiple anomaly types and enhances performance. The 

results on the industrial datasets further confirm the practical applicability of GNDC-DM. For 

SWaT and PSM, our approach achieved F1 scores of 97.77% and 98.07%, respectively, setting 

a new benchmark in the field. GNDC-DM successfully reduces the anomalous components in 

the time series through gradient noise, while maintaining a favorable precision-recall balance. 

 



 

 

Table 2. Performance comparison between GNDC-DM and baselines on the four datasets. 

4.4 Ablation Studies 

Subsequently, we present a comprehensive ablation experiment analysis to evaluate the effec-

tiveness of various components within GNDC-DM and to understand how these components 

contribute to the improvement of anomaly detection performance. Table 3 summarizes the anom-

aly detection results for different combinations of components across all datasets. It is important 

to note that all results in the table are reported using the F1-score metric, and the values are 

averaged over multiple independent runs. The following provides an introduction to each com-

ponent presented in Table 3: (𝑖) Noise: This component introduces gradient noise to the data 

during the diffusion process. (𝑖𝑖) Trend: This component decomposes the trend data and applies 

Trend Reconstruction to detect trend anomalies. (𝑖𝑖𝑖) Season: This component separates seasonal 

data and utilizes Season Reconstruction to detect seasonal anomalies. (𝑖𝑣) Mixture: This compo-

nent employs Mixture Reconstruction to detect mixed anomalies in the residual data. 

Table 3 shows that using only the gradient noise and Mixture Reconstruction components 

results in minimal performance improvement, indicating that although gradient noise effectively 

disrupts anomalies, leading to better detection compared to Gaussian noise, the unified model 

struggles to handle diverse anomaly types. However, incorporating either Trend Reconstruction 

or Season Reconstruction significantly enhances performance by specifically targeting trend and 

seasonal anomalies, thus improving overall detection. 

 

Method 
 

SMD MSL SWaT PSM 

 
 P R F1 P P P P R F1 P R F1 

ITAD  86.22 73.71 79.48 69.44 84.09 76.07 63.13 52.08 57.08 72.80 64.02 68.13 

THOC  79.76 90.95 84.99 88.45 90.97 89.69 83.94 86.36 85.13 88.14 90.99 89.54 

Deep-SVDD  78.54 79.67 79.10 91.92 76.63 83.58 80.42 84.45 82.39 95.41 86.49 90.73 

CL-MPPCA  82.35 76.07 79.08 73.72 88.55 80.45 76.78 81.51 79.07 56.03 99.93 71.81 

LSTM  78.56 85.27 81.79 85.44 82.51 83.94 86.15 83.26 84.68 76.93 89.63 82.81 

LSTM-VAE  75.76 90.08 82.30 85.49 79.94 82.62 76.00 89.5 82.20 73.62 89.92 80.96 

BeatGAN  72.90 84.09 78.10 89.75 85.42 87.53 64.01 87.46 73.92 90.30 93.84 92.04 

OmniAnomaly  83.68 86.82 85.22 89.02 86.37 87.67 81.42 84.30 82.83 88.39 74.46 80.83 

ATransformer  89.40 95.45 92.33 92.09 95.15 93.59 91.55 96.73 94.07 96.91 98.90 97.89 

TFMAE  91.41 91.07 91.24 92.83 95.59 94.19 96.47 97.23 96.85 96.36 98.46 97.40 

DiffAD  90.01 95.67 92.75 92.97 95.44 94.19 97.12 96.90 97.01 97.00 98.92 97.95 

ImDiffusion  95.20 95.09 94.88 89.30 86.38 87.79 89.88 84.65 87.09 98.11 97.53 97.81 

GNDC-DM  94.12 96.45 95.27 93.92 96.81 95.34 97.12 98.43 97.77 97.52 98.62 98.07 
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Table 3. The F1-scores using different components. 

Component Dataset 

Noise Trend Sea-
son 

Mix-
ture 

SMD MSL SWaT PSM 

✘ ✘ ✘ ✘ 89.32 88.88 90.21 90.93 

✔ ✘ ✘ ✔ 91.87 90.65 92.39 91.76 

✘ ✔ ✔ ✔ 92.13 91.23 93.46 92.25 

✔ ✘ ✔ ✔ 94.39 93.52 95.66 95.5 

✔ ✔ ✘ ✔ 94.65 93.2 96.08 95.9 

✔ ✔ ✔ ✘ 92.72 91.98 94.11 94.33 

✔ ✔ ✔ ✔ 95.27 95.34 97.77 98.07 

 

4.5 Sensitivity Analysis 

Here, we examine the role of the key hyperparameters in the two formulas within GNDC-DM. 

First, to investigate the impact of 𝛿 in Equation 8, we evaluate precision (P), recall (R), and F1-

score under varying 𝛿 values across four datasets. As shown in Fig. 2, the SMD and PSM datasets 

exhibit optimal performance at 𝛿 =0.6. This is due to the server-collected nature of these datasets, 

where anomalies primarily manifest as periodic patterns (e.g., daily server load cycles) and sud-

den deviations (e.g., resource contention spikes). As a result, these datasets require a balanced 

integration of temporal trends and seasonal components for effective anomaly detection. In con-

trast, the SWaT dataset, which records persistent attacks in industrial water treatment systems 

(e.g., pump manipulation over multiple operational cycles), performs better at higher 𝛿 values, 

highlighting the importance of long-term temporal dependencies. Finally, the MSL dataset, 

which contains transient anomalies caused by random equipment failures (e.g., sensor drifts in 

Martian environmental data), achieves peak performance at 𝛿 =0.4. This lower 𝛿 value priori-

tizes statistical outlier detection over temporal modeling, which aligns with the sporadic nature 

of the anomalies in this dataset.  

 

Fig. 2. The impact of 𝛿 parameters. 

Second, we analyze the sensitivity of two critical hyperparameters in Equation 1: 𝜆 and 𝛾. The 

results across four datasets are summarized in Fig. 3.The impact of 𝜆 and 𝛾 parameters., with 

key observations as follows: Impact of 𝜆: Increasing 𝜆 from 0.1 to 0.7 enhances detection perfor-

mance across all datasets. This confirms that gradient-aligned noise effectively suppresses anom-

alies by strengthening normal trends. However, when 𝜆 is too high, performance begins to de-

crease. This suggests that over-reliance on gradient orientation might distort normal patterns, 



 

 

leading to a reduction in overall detection accuracy. Impact of 𝛾: Moderate values of 𝛾 (with 𝜆 

ranging from 0.5 to 0.7) strike a balance between diversity and the preservation of normal pat-

terns, leading to optimal results. This indicates that an appropriate level of Gaussian noise helps 

improve the model’s generalization. However, when 𝛾 is too high, excessive randomness weak-

ens the contribution of the normal component in gradient noise, reducing the model’s ability to 

effectively detect anomalies. 

 

Fig. 3.The impact of 𝜆 and 𝛾 parameters. 

5 Conclusions 

In this work, we present GNDC-DM, a novel time series anomaly detection framework based on 

dynamic conditional diffusion models. By addressing two critical limitations of prior methods—

ineffective anomaly suppression from standard Gaussian noise and entangled detection of differ-

ent anomaly types—our approach offers a tailored solution with three specialized channels for 

trend, seasonal, and mixed anomalies. The proposed gradient noise integrates gradient based and 

stochastic elements to distort anomalies while preserving normal structures. In addition, the dy-

namic conditioning strategy in the mixture channel allows the model to better adapt to complex 

temporal patterns, significantly improving the identification of mixed anomalies. Extensive ex-

periments across multiple real-world datasets confirm the effectiveness and robustness of 

GNDCDM, achieving state-of-the-art performance in both detection accuracy and generalizabil-

ity.  
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