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Abstract. In the field of self-supervised learning, representative frameworks 

such as MAE (Masked Autoencoder) and MoCo (Momentum Contrast) have 

emerged successively. However, the inherent architectural dependencies and im-

plementation complexities of these methods constrain their universality and 

scalability across diverse model structures. Although existing training paradigms 

demonstrate certain optimization effects on lightweight model performance, sys-

tematic research in this domain remains insufficient. Thus, this study proposes 

Channel-Masked Autoencoders (CMAE) through improvements to the classical 

MAE framework, aiming to explore novel pathways for enhancing lightweight 

model performance. CMAE effectively resolves the architectural compatibility 

issues between MAE and convolutional neural networks while further investigat-

ing the operational mechanisms of noise injection strategies on model perfor-

mance. This methodology establishes a dual-stage learning framework: the en-

coder extracts latent representations through channel masking and dual-cropped 

grayscale images, while the decoder reconstructs the original images accordingly. 

This design is inspired by the cognitive mechanism that the human visual system 

exhibits higher sensitivity to textural and morphological features compared to 

color attributes. Furthermore, this research innovatively introduces a controllable 

salt-and-pepper noise injection strategy that disrupts local pixel spatial correla-

tions, guiding the encoder to learn more robust feature representations, achieves 

an absolute accuracy improvement of 0.3% on the Mini-ImageNet benchmark. 

To comprehensively evaluate model performance, we conduct systematic exper-

iments across multiple heterogeneous datasets and cross-domain tasks. Notably, 

MobileViTv3 (with 4.7M parameters) improves classification accuracy from the 

baseline 70.5% to 74.2% on the Mini-ImageNet dataset, surpassing MoCoV3 by 

1.9%. These results fully validate the technical advantages of our method in light-

weight model optimization. 

Keywords: Computer Vision, Self-Supervised Learning, Visual Feature Learn-

ing, Transfer Learning. 



1 Introduction 

In the field of self-supervised learning, prominent frameworks such as Masked Au-

toencoders (MAE) [3] and MoCo [15] have fully leveraged the potential of Vision 

Transformers (ViT) [4], demonstrating exceptional performance across diverse image 

processing applications. Notably, MAE has rapidly emerged as a mainstream approach 

for visual representation learning due to its robust learning capacity and scalability. 

However, a prevalent issue persists: many self-supervised methods are explicitly de-

signed for predetermined architectures. For instance, MAE is specifically tailored for 

ViT and remains incompatible with convolutional neural networks (CNNs) [34] that 

employ sliding window operations. To address these architectural limitations, several 

improvement strategies have been proposed in academia. The FCMAE framework in-

troduced in ConvNeXt v2 [35] achieves masked pre-training for CNNs by replacing 

standard convolutions with sparse convolutions. However, experimental evidence indi-

cates that such structural modifications degrade model generalization in dense predic-

tion tasks, and their compatibility with other architectures requires further validation. 

In contrast, the CMAE method proposed in this work realizes effective masked learning 

while preserving the integrity of native architectures.  

 

 

Fig. 1: The streamlined design of the CMAE framework. 

Meanwhile, the rapid advancement of large-scale deep learning models has demon-

strated remarkable performance on diversified datasets, primarily attributed to their pa-

rameter-intensive architectures [36–38]. Nevertheless, their computational intensity 

poses significant challenges in resource-constrained environments such as embedded 

and mobile systems, particularly regarding model training, optimization, and deploy-

ment. Although lightweight architectures have emerged to enhance computational effi-

ciency, existing solutions generally face performance trade-offs, and research on deep 

optimization for resource-constrained scenarios remains notably deficient. Within the 

current computer vision ecosystem, the implementation of efficient network models is 

paramount. It is noteworthy that research in lightweight models predominantly focuses 

on architectural innovations [13, 39, 40, 25], while systematic investigations into train-

ing strategy optimization remain limited. We posit that training methodology optimi-

zation holds equivalent importance, especially considering the demonstrated efficacy 

of pre-training paradigms in large-model scenarios [23]. Of particular interest, conven-
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tional self-supervised approaches like MoCov2, though successful in large architec-

tures, underperform in lightweight models [24]. This underscores the critical need for 

customized pre-training techniques targeting resource-efficient models.  

Noise mechanisms are conventionally perceived as interference factors in deep 

learning research. However, recent theoretical investigations reveal their dual nature as 

positive and negative noise [6]. Through comparative experimental analyses of CNN 

and ViT architectures, studies demonstrate that positive noise can effectively enhance 

the representational capacity of deep learning models. Nevertheless, existing research 

lacks further exploration of noise injection's compatibility with visual representation 

learning and lightweight architectures, particularly the operational mechanisms within 

masked learning frameworks. Therefore, investigating the effectiveness of noise injec-

tion strategies in lightweight models and their applicability in pre-training constitutes 

significant research value.  

This study proposes a novel pre-training paradigm specifically optimized for light-

weight models. The theoretical foundation originates from a crucial observation of hu-

man visual cognition mechanisms: object recognition in real world scenarios predomi-

nantly relies on textural and morphological features rather than chromatic information. 

To validate this hypothesis, through RGB channel-selective masking (as illustrated in 

Fig. 2), we discover that single channel grayscale images can effectively preserve the 

textural structures and morphological features of target objects even under dual-channel 

information loss conditions, with each channel exhibiting distinct visual representa-

tions. This finding theoretically aligns with existing conclusions in literature [7, 8] re-

garding the dominant role of textural-morphological features in specific visual tasks.  

 

 

Fig. 2: Two color channels were removed, preserving only R, G, or B grayscale images. 

Building upon this foundation, this paper constructs an efficient, concise, and uni-

versal Channel-Masked Autoencoder (CMAE) for visual representation learning. Com-

pared to classical MAE, CMAE achieves deep compatibility with CNN architectures 

while maintaining Vision Transformer compatibility through an innovative channel-

level masking mechanism: input images undergo random channel masking and dual 

random cropping before the encoder extracts latent representations, with a lightweight 

decoder subsequently reconstructing images based on these representations.  

This study encompasses heterogeneous datasets for image classification and object 

detection. By constructing a multi-model comparative validation framework, we sys-

tematically analyze the scenario adaptability characteristics of the CMAE algorithm. 

Experimental results demonstrate that CMAE exhibits robust performance advantages 

across various scenarios: Compared with supervised learning methods, it achieves up 

to 3.4% improvement in classification accuracy and a 1.4% gain in detection mAP met-

rics. When benchmarked against MoCov3, the classification accuracy improvement 

reaches 1.9%. Notably, the additionally introduced noise injection strategy effectively 



drives model performance enhancement, yielding an absolute improvement of 0.3%, 

thereby further validating the scalability of CMAE. The principal contributions are 

summarized as follows:  

1. This study systematically investigates pre-training methodologies for lightweight 

architectures, with a focused exploration on CNN-ViT hybrid model frameworks. To 

our knowledge, this work represents the first systematic investigation in this research 

domain.  

2. We propose the Channel-Masked Autoencoder (CMAE), a novel pretraining par-

adigm that effectively addresses the inherent compatibility challenges between MAE 

frameworks and convolutional networks, enabling adaptation to diverse visual archi-

tectures for pre-training requirements. Through systematic experimental validation, 

CMAE demonstrates marked performance superiority and exceptional scalability, 

thereby paving a new pathway for visual model pretraining.  

3. Building upon the elucidation of noise mechanisms' impact on lightweight model 

performance, we innovatively propose a pixel-level noise injection strategy. Experi-

mental data demonstrate that this strategy consistently enhances model accuracy, 

achieving an absolute performance gain of 0.3 percentage points. 

2 Related Work 

Self-supervised Learning predominantly focuses on diverse pretext tasks for images 

or texts [1, 9, 10]. Among these, contrastive learning [11] has gained significant popu-

larity, exemplified by methods such as [12, 13], whose core mechanism lies in modeling 

similarity metrics and dissimilarity constraints (or single dimensional similarity opti-

mization [14]) between multi-view data representations. Contrastive learning and re-

lated methodologies exhibit heavy reliance on data augmentation [13, 14]. A particu-

larly noteworthy approach is MoCoV3 [15], a contrastive learning-based self-super-

vised framework capable of pre-training both CNN and ViT models. However, its es-

sential components—momentum encoders and negative sample dependencies—result 

in framework complexity and high computational costs. In contrast, the proposed 

CMAE framework demonstrates relative simplicity and accelerated training efficiency 

through masking mechanisms. 

Autoencoders represent classical paradigms in representation learning theory, com-

prising bidirectional mapping components: an encoder implementing nonlinear projec-

tion from input space to latent space, and a decoder reconstructing original inputs from 

latent representations. Classical algorithms with autoencoder architectures include 

Principal Component Analysis (PCA) and k-means clustering [16]. Denoising Autoen-

coders (DAE) [17], as critical extensions, achieve robust representations through "cor-

ruption-reconstruction" learning mechanisms. Existing studies indicate that numerous 

self-supervised methods can be viewed as instantiations of generalized DAE frame-

works under various data perturbation conditions, with typical perturbation strategies 

including pixel masking [2, 18] and color image inpainting [10]. CMAE fundamentally 

differs from colorization tasks: while the latter primarily aims to generate realistic chro-

matic information from grayscale images, CMAE operates as a denoising autoencoder 
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that requires authentic reconstruction of original textural features beyond mere color 

recovery.  

 

Masked Autoencoder (MAE) constitutes a Vision Transformer (ViT)-based self-su-

pervised paradigm that achieves deep feature representation learning through an "en-

coding-reconstruction" pre-training mechanism. Its core architecture employs asym-

metric encoder-decoder design: the encoder processes only unmasked visible patches, 

while the decoder executes pixel-level reconstruction using trainable mask tokens. This 

block-wise masking-based pre-training strategy, recognized for architectural simplicity 

and training efficiency, has been validated as an effective solution for constructing scal-

able visual representation systems.  

Nevertheless, inherent limitations emerge when applying MAE frameworks to CNN 

pre-training, primarily stemming from fundamental architectural disparities between 

Transformers and CNNs. Specifically: (1) ViT's global self-attention mechanism inher-

ently accommodates block-wise masking, with positional embeddings explicitly mod-

eling spatial relationships of masked regions, whereas CNN's local convolution opera-

tions struggle to capture spatial correlations among discontinuous masked areas; (2) 

Weight-sharing properties of standard convolution kernels prevent effective differenti-

ation between masked and valid feature regions, introducing noisy gradients during 

back propagation; (3) Intrinsic translation-equivariance in CNNs fundamentally con-

flicts with spatial position-awareness required by MAE frameworks. Preliminary ex-

periments confirm significant performance degradation when training CNNs with sim-

ple block masking. Tian et al. [19] further attribute this performance gap to CNN's lack 

of explicit positional encoding mechanisms, hindering accurate spatial-semantic recov-

ery of masked regions.  

To address these architectural constraints, academic efforts have proposed multiple 

improvements. The FCMAE framework in ConvNeXt v2 achieves masked CNN pre-

training by substituting standard convolutions with sparse convolutions. This approach 

suppresses gradient propagation in invalid masked regions through dynamic mask-

aware convolutional kernel sparsification. However, empirical evidence reveals that 

such structural modifications impair model generalization in dense prediction tasks, 

with cross-architecture compatibility requiring further validation. Comparatively, the 

proposed CMAE introduces an innovative channel masking mechanism, establishing 

joint channel-spatial masking strategies to enable effective feature learning while pre-

serving native architectural integrity.  

Recent advancements in MAE frameworks demonstrate multi-dimensional innova-

tions. Gao's team [19] significantly enhanced fine-grained feature capture through 

multi-scale encoding mechanisms, while Fei et al. [20] integrated Generative Adver-

sarial Networks (GANs) to construct hybrid pre-training frameworks with competitive 

feature generation capabilities. These improvements validate MAE's extensibility ad-

vantages. Building upon these foundations, CMAE introduces three key enhancements: 

(1) Channel masking establishes robust representations through random color channel 

suppression; (2) Dual-cropping technology strengthens collaborative modeling of lo-

cal-global features; (3) Ultra-low-rate noise injection improves model adaptability to 

distribution-shift scenarios. 



 

Lightweight Models primarily address deployment requirements in resource con-

strained environments like edge devices and embedded systems, prioritizing balance 

between power consumption, latency, and performance. Beyond architectural optimi-

zations, performance enhancement strategies focus on two technical directions: (1) Net-

work topology optimization through parameter compression techniques like depthwise 

separable convolutions and channel pruning; (2) Transfer learning paradigm innova-

tions, where knowledge distillation [21, 22] achieves knowledge transfer from complex 

to lightweight architectures via feature distribution alignment. Although pre-training 

techniques show potential for lightweight model optimization, systematic research re-

mains scarce, particularly regarding pre-training methodologies for lightweight CNNs. 

ViT-focused studies are similarly limited, with most efforts concentrated on knowledge 

distillation rather than pre-training techniques, as evidenced by [23, 24]. Recent work 

by Shaoru W and Jin G [23] reports MAE and MoCoV3 applications on lightweight 

ViTs. While MAE outperforms MoCoV3 when pre-trained and fine-tuned on 

ImageNet-1k, it exhibits incompatibility with numerous hybrid ViT-CNN architec-

tures. 

Hybrid ViT-CNN architectures have garnered substantial attention for combining 

attention mechanisms and convolutional advantages to create lightweight models sur-

passing pure CNNs and ViTs. For instance, Astroformer [26] achieves superior perfor-

mance on small-scale datasets like CIFAR-100 [27]. We pre-trained Astroformer mod-

els of varying scales using CMAE. Additionally, MobileViT [28] and EdgeNet [29], as 

representative hybrid models, deliver competitive results on large datasets (e.g., 

ImageNet-1k [30]) and excel in downstream tasks. CMAE pre-training further en-

hances their performance, demonstrating framework versatility across architectures and 

tasks. 

 

Noise Injection Strategies recently proposed by Xiaowei Yu et al. [6], represent an 

innovative approach. Although noise is conventionally perceived as detrimental in deep 

learning, their extensive experiments on CNNs and ViTs reveal its dual nature: positive 

and negative noise. Positive noise specifically demonstrates performance-enhancing ef-

fects. Typical noise modalities are categorized as: (1) Gaussian noise, characterized by 

random perturbations in observation or latent spaces with normal-distributed ampli-

tudes [31]; (2) Linear transformation noise, involving affine transformations of raw im-

ages or latent representations with row equivalent transformation matrices [32]; (3) 

Salt-and-pepper noise, an image distortion phenomenon caused by random black/white 

pixel injections at image or latent representation levels [33]. Notably, linear transfor-

mation noise has been identified as positive noise that effectively improves model per-

formance. This work further investigates noise effects in masked learning, ultimately 

proposing innovative ultra-low-rate noise injection methodologies. 
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3 Approach 

The Channel-Masked Autoencoder (CMAE) proposed in this work adheres to an en-

coder-decoder architectural paradigm analogous to MAE. The encoding module spe-

cializes in the nonlinear mapping of partially observable signals to latent space repre-

sentations, while the decoding module accomplishes high-fidelity reconstruction of the 

original signal distribution. Distinct from MAE's block-wise masking mechanism, 

CMAE innovatively employs a channel-level masking strategy, eschewing the input 

image patching approach and directly processing full resolution images as atomic units. 

For three-channel RGB inputs, the method constructs partially observable data through 

random masking of two color channels, which are subsequently fed into the encoder 

for feature mapping—a process compatible with diverse computer vision architectures, 

including CNNs. These extracted features are then input to the decoder to reconstruct 

the masked channels. The core mechanism is visually elucidated in Fig. 1, the following 

text will introduce its components one by one. 

 

 

Fig. 3: Complete workflow of CMAE: from masking to reconstruction. 

Masking. In the CMAE framework, we employ a random channel masking mechanism 

as the core strategy. The standard implementation constructs training samples by ran-

domly masking two color channels. Since masking different channel combinations gen-

erates visually distinct single-channel images, this stochasticity inherently achieves a 

data augmentation-like effect. For pure Vision Transformer encoder architectures, this 

method supports the combined application of channel masking and random block mask-

ing.  

However, training paradigms relying solely on random channel masking exhibit lim-

itations in performance improvement, primarily due to inefficient optimization caused 

by global coverage of image regions in each training cycle. To address this, we inno-

vatively integrate a dual random cropping strategy with channel masking: initial ran-

dom cropping is applied during data pre-processing, followed by secondary random 

cropping before model input. This compound strategy functionally emulates block-wise 

masking. Images processed through dual random cropping serve as training inputs. Ex-

perimental validation demonstrates optimal acceleration benefits with a 50% cropping 

ratio while maintaining classification accuracy, as detailed in Fig. 3. 

 

CMAE Encoder. In the CMAE design, the encoder processes cropped single channel 

grayscale inputs and maps them to latent space representations. Notably, this encoder 

is compatible with any native computer vision model architecture without structural 

modifications. This study primarily adopts lightweight hybrid architectures combining 

CNN and ViT advantages as the base encoder. 

 



CMAE Decoder. For the decoder module, prior studies such as MAE and SimMIM 

[41] have demonstrated low correlation between decoder structure and model fine-tun-

ing performance. Accordingly, CMAE employs a lightweight decoder only comprising 

four convolutional layers, inspired by the generator module in Generative Adversarial 

Networks (GANs) [42]. This design ensures efficient decoding while introducing neg-

ligible computational overhead.  

The architecture details are shown in Fig. 4. The upsampling factors and channel 

dimension C in the decoder architecture require dynamic adjustment according to the 

input image resolution and the encoder's output feature dimensions. The current default 

parameter configuration (upsampling factor sequence 4→2→2) is designed for stand-

ard input resolutions of 224×224 pixels, based on the 7×7 feature map size generated 

through 32× downsampling in the encoder. 

 

 

Fig. 4: CMAE Decoder. 

Reconstruction Target. Regarding reconstruction objectives, both CMAE and MAE 

optimize for high-precision reconstruction of masked pixels, maintaining theoretical 

consistency in loss function design. 

 

Fine-tuning. During fine-tuning, inputs are standard RGB three-channel images. To 

adapt to this input format, we implement a parameter expansion strategy: replicating 

single-channel pre-trained weights into a three-channel structure. This effectively re-

solves compatibility issues when transitioning from single channel pre-trained models 

to three-channel inputs, ensuring robust extraction of multi-channel visual features dur-

ing fine-tuning. 

 

Noise Injection Strategy. Two distinct noise injection techniques are adopted: an orig-

inal pixel-level noise addition strategy and the Noisynn [6] method. Specifically, our 

proposed strategy injects 1%–5% low-intensity salt-and-pepper noise at the encoder 

input to simulate real-world image distortion while preserving feature learning stability. 

In contrast, the Noisynn [6] approach introduces 30% linear transformation noise be-

fore the encoder's final layers.  
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Compared to traditional self-supervised frameworks, CMAE's core innovation lies 

in its liberation from rigid architectural constraints. This architecture agnostic nature 

enables flexible adaptation to diverse model architectures, effectively resolving com-

patibility bottlenecks between MAE and CNNs. Whether applied to sliding-window 

convolutional operations or other computational paradigms, CMAE demonstrates ex-

ceptional architectural integration capabilities. Furthermore, the framework simplifies 

data flow by eliminating complex token embedding mechanisms and significantly re-

ducing reliance on data augmentation, ultimately achieving orders-of-magnitude reduc-

tions in marginal computational costs during training.  

In summary, CMAE provides a novel methodological perspective for self-super-

vised visual representation learning. Its breakthrough architectural universality and ef-

ficient engineering implementation not only enable seamless cross architecture integra-

tion but also reduce training resource consumption while preserving performance ad-

vantages. This framework offers new insights and directions for future research in vis-

ual representation learning. 

4 Experiments 

Our decision to avoid large-scale datasets for experimentation is driven by two princi-

pal considerations. First, while prior research predominantly focuses on large da-

tasets—widely acknowledged for learning generalizable representations—the perfor-

mance of models on small datasets remains an under explored yet noteworthy domain. 

Second, although Vision Transformers (ViTs) demonstrate superior performance over 

Convolutional Neural Networks (CNNs) under sufficient data conditions, CNNs retain 

irreplaceable advantages in few-shot learning scenarios. Consequently, this study em-

ploys small-scale benchmark datasets such as CIFAR-100 and Mini-ImageNet for ex-

perimental validation, with detailed performance metrics presented in Table 1.  

This study deviates from conventional single-paradigm architectures like ViT or 

CNN. Current research in lightweight models prioritizes hybrid architectures that inte-

grate convolutional operations with attention mechanisms, which exhibit significant 

advantages in energy efficiency ratios and inference latency, representing the techno-

logical frontier in computer vision. Aligning with this trend, we adopt convolution-

attention hybrid architectures as base models, ensuring both alignment with domain 

evolution and technological innovation value.  

A comprehensive explanation of parameter settings is provided in appendix. Nota-

bly, all experiments exclude external data sources, relying solely on standard augmen-

tation techniques such as random cropping and horizontal flipping. Full training out-

comes are derived via parameter fine-tuning, with strategies strictly adhering to original 

publications to ensure comparative fairness. Through a multi-dimensional evaluation 

framework, this study systematically validates the universal applicability of the CMAE 

pre-training strategy across heterogeneous datasets and diverse model architectures. 

 

 

 



Table 1: Image classification experiments. 

Datasets Method Params(M) Supervised CMAE 

Cifar100 
Astroformer 2.8 69.0 71.0+2.0 

MobileViTv3 4.7 64.7 68.1+3.4 

ImageNet100 
Edgexxsmall 1.3 67.0 71.4+4.4 

MobileViTv3 2.7 76.6 77.8+1.2 

Mini-ImageNet 
MobileViTv3 1.2 69.2 71.2+2.0 

MobileViTv3 4.7 70.5 74.2+3.7 

4.1 Image Classification Experiments 

This section presents a comparative evaluation of classification performance between 

CMAE-based pre-training/fine-tuning paradigms and training-from-scratch approaches 

across benchmark datasets, using Top-1 accuracy as the core metric.  

Experiments focus on three datasets: CIFAR-100 [27], ImageNet-100, and Mini-

ImageNet [43]. CIFAR-100, a standard dataset in computer vision, contains 60,000 

32×32 RGB images spanning 100 fine-grained categories. ImageNet100 and Mini-

ImageNet are subsets of ImageNet-1K [30]. The former comprises 100,000 color im-

ages across 100 classes, while the latter includes 60,000 images over 100 classes. Com-

pared to ImageNet-100, Mini-ImageNet's reduced scale makes it suitable for model 

training and evaluation in resource-constrained environments.  

Table 1 comprehensively compares performance across model architectures on di-

verse datasets. Crucially, experiments utilize the base CMAE framework without inte-

grated noise modules to accurately assess core mechanism efficacy. Notably, results 

exclude CMAE performance on classical backbone networks like ResNet [44] and ViT. 

This omission arises not from framework incompatibility but from significant perfor-

mance disparities between traditional architectures (ResNet, ViT) and hybrid models 

under identical parameter configurations and small-scale dataset conditions. 

4.2 Comparative with Self-supervised Learning 

In the comparative study of self-supervised learning paradigms, this work selects Mo-

Cov3 as the benchmark reference due to its representation of the technical frontier in 

general self-supervised frameworks. While other prominent methods like MAE and 

BEIT [36] hold theoretical innovation value, their exclusion from the comparison stems 

from compatibility constraints—specifically, their optimization for ViT architectures, 

which conflicts with the ViT-CNN hybrid architectures central to this study.  

Contrastive learning frameworks typically rely on complex data augmentation strat-

egies, and their multi-stage architectural designs incur significant computational re-

source demands. Despite this, the CMAE framework demonstrates superior perfor-

mance over MoCoV3 across diverse scenarios, exhibiting varying degrees of ad-

vantage. As shown in Tables 2, we conduct comparative experiments on multiple 
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benchmark datasets, pre-training MobileViT-v3 models of varying scales using both 

MoCoV3 and CMAE. Results confirm that CMAE consistently outperforms MoCoV3. 

Table 2: Comparative with self-supervised learning. 

Datasets Params(M) MoCov3 CMAE 

Cifar100 
2.7 66.2 66.5+0.3 

4.7 67.6 68.1+0.5 

Mini-ImageNet 4.7 72.3 74.2+1.9 

4.3 Transfer Learning Experiments 

To comprehensively evaluate transfer ability, we conduct object detection experiments 

on the PascalVOC dataset [45], comparing CMAE with supervised learning and Mo-

CoV3 using mAP (mean Average Precision) metrics. All experiments are performed 

under strict closed-set conditions without external data. Results demonstrate CMAE's 

significant advantages in downstream task adaptability.  

The PascalVOC dataset is widely recognized for its rich content and precise annota-

tions, encompassing 21 object categories. All images include pixel level segmentation 

masks, bounding boxes, and class labels, providing a critical benchmark for diverse 

computer vision tasks. For object detection, the benchmark comprises 5,011 training 

and 4,952 test samples. The model architecture is based on MobileViTv3, serving as 

the backbone feature extractor for the single stage detector SSD [46]. Architectural 

modifications include replacing standard convolutions with depthwise separable con-

volutions in the SSD head, forming an SSDLite variant. Owing to its exceptional per-

formance and lightweight nature, SSDLite is widely adopted for evaluating detection 

tasks in resource-efficient networks.  

Table 3: Transfer learning experiments. 

Method supervised MoCov3 CMAE 

MobileViTv3-1.2M 56.8 57.8+1.0 58.0+1.2 

MobileViTv3-2.7M 58.8 60.0+1.2 60.2+1.4 

 

Table 3 systematically presents quantitative results from PascalVOC experiments. 

When scaling model capacity by increasing depth while fixing MobileViTv3's width 

parameter, CMAE's pre-training strategy consistently surpasses MoCoV3 across model 

sizes. Although performance gains fluctuate with scenario-specific conditions, CMAE 

maintains a significant advantage, validating the method's advanced scalability in 

model optimization. 

4.4 Ablation Experiments 

We conducted a series of ablation experiments to investigate the impact of varying pa-

rameter configurations on CMAE's performance during lightweight model pre-training. 



These experiments revealed critical insights into model optimization and understand-

ing. Notably, a theoretically simplified implementation path exists: applying zero-pad-

ding or mean-padding to masked image patches when using CNNs within the MAE 

framework. However, this approach was excluded from experimental results due to 

preliminary trials showing unsatisfactory performance—a finding consistent with the-

oretical expectations, as CNN's sliding window computation inherently struggles to ex-

tract generalized representations from locally masked regions. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Masking rate experiments. 

Masking Rate. CMAE employs a dual-stage masking strategy: channel-level masking 

in the first stage and spatial-domain masking via secondary cropping in the second 

stage. This mechanism fundamentally differs from MAE's block level masking—

CMAE focuses on masking redundant pixels outside cropped regions, prioritizing 

structural integrity of input images. Due to the synergistic effects of dual-stage mask-

ing, the overall masking rate may exhibit non-integer characteristics. When the en-

coder's downsampling factor is 32, the secondary crop size must satisfy two constraints: 

1) The crop size must be an integer multiple of 32; 2) The downsampled size must be 

divisible by the initial crop size. Taking an initial crop size of 320 as an example, 160 

can be selected as the secondary crop size (corresponding to a downsampled size of 5), 

which results in a calculated masking ratio of 50%. However, 192 cannot be chosen as 

the secondary crop size because its downsampled size becomes 6, and the initial crop 

size 320 is not divisible by 6. Leading to a dimensional mismatch in the feature maps, 

thereby rendering the decoder incapable of restoring the original dimensions.  

Fig. 5 presents ablation results on masking rates using the MobileViTv31.2M model. 

We systematically explored the efficacy of block masking strategies across resolutions 

on the Mini-ImageNet and PascalVOC datasets. Experimental data demonstrate that a 

masking rate of ∼50% (input resolutions of 160 or 192) achieves significant accelera-

tion benefits while maintaining high accuracy. Further analysis reveals that increasing 

the initial crop size positively enhances model performance. However, compared to 

MAE's robustness under high masking rates, CMAE exhibits more pronounced perfor-
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mance degradation in similar scenarios. This discrepancy arises from architectural dif-

ferences between convolutional operations and self-attention mechanisms in feature ex-

traction, particularly CNN's heightened sensitivity to local structural information. 

 

 

Fig. 6: Noise injection rate (salt-and-pepper noise). 

Noise Injection Rate. Inspired by advanced noise models such as Noisynn [6], this 

study proposes a pixel-level random zeroing interference mechanism for noise injection 

strategy design. The specific implementation involves randomly selecting input image 

pixels for zeroing operations. This strategy enhances model robustness against noise 

contamination and suppresses feature redundancy by introducing perturbations in the 

feature space. As illustrated in Figure 6, experimental validation on the ImageNet-100 

dataset using the MobileViTv3-1.2M architecture demonstrates that this noise scheme 

achieves an absolute accuracy improvement of 0.3 percentage points, fully validating 

CMAE's technical advantages in architectural scalability and parameter space optimi-

zation. Parameter sensitivity analysis reveals optimal classification accuracy when the 

noise ratio is set to 1%.  

Furthermore, this study comparatively evaluates the enhancement effects of linear 

transformation noise. As shown in Table 4, the performance of the CMAE model is 

systematically improved by incorporating the linear transformation noise injection par-

adigm proposed in Noisynn [6]. Notably, this strategy exhibits positive gain effects 

even in small-scale datasets and lightweight model architectures, confirming the uni-

versal applicability of noise enhancement strategies across computational units of var-

ying scales. 

Table 4: Linear transformation noise. 

Datasets Method Original Noisy 

PascalVOC CMAE 57.7 58.0+0.3 

Cifar100 supervised 64.7 65.1+0.4 
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Training Schedule. In the investigation of pre-training schedule regulation, Figure 7 

quantitatively reveals the impact of pre-training duration on finetuning performance. 

Notably, excessively prolonged pre-training cycles may induce model overfitting 

risks—a phenomenon fundamentally distinct from MAE framework behaviors. In 

CMAE, each training cycle ensures full coverage of global image regions (with only 

color channel masking applied). The standard pre-training protocol is set to 700 epochs, 

but experiments indicate that model performance converges to saturation after 500 

epochs. Although CMAE and MAE maintain formal consistency in pre-training strate-

gies, their training dynamics diverge significantly due to structural differences in mask-

ing mechanisms and encoder design. Specifically, CMAE exhibits a stronger propen-

sity for overfitting during extended training cycles. 

 

 

Fig. 7: Impact of training schedules. 

5 Discussion and Conclusion 

Conclusion. This study proposes the Channel-Masked Autoencoder (CMAE) with a 

dedicated focus on lightweight models and small-scale dataset investigations. By inno-

vatively integrating channel-level random masking and dual spatial cropping mecha-

nisms, CMAE effectively resolves the compatibility bottleneck between existing self-

supervised frameworks (e.g., MAE) and specific architectures (e.g., CNNs). Through a 

lightweight decoder that reconstructs the original image distribution from latent repre-

sentations, CMAE demonstrates exceptional architectural compatibility and domain 

adaptability, achieving a balance between performance enhancement and computa-

tional efficiency. Further introduction of noise intervention mechanisms systematically 

improves model robustness against adversarial perturbations and cross-domain stabil-

ity. Empirical studies across datasets, tasks, and architectures paradigms substantiate 

the viability of CMAE as a general-purpose visual representation learning instrument. 

 

Discussion. In the evolution of deep learning technologies, the scalability of algorith-

mic frameworks and engineering simplicity constitute core elements for sustaining a 
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healthy technical ecosystem. Highly scalable methodologies enable adaptation to rapid 

architectural iterations, while architecture-agnostic characteristics mitigate risks of 

technological path dependence, thereby extending algorithmic longevity. Building 

upon these principles, this study proposes the Channel-Masked Autoencoder (CMAE), 

which constructs an architecture agnostic visual representation framework through 

channel masking and dual stage cropping mechanisms. Its core innovation lies in trans-

lating the texture morphology perception mechanism of human vision into channel-

level masking strategies, providing cross-scenario applicability for lightweight models. 

Experimental validation demonstrates CMAE's effectiveness under low computa-

tional overhead. Nevertheless, two critical performance boundaries require further ex-

ploration: 1) Feature consistency is influenced by task diversity (e.g., fine-grained clas-

sification and open-domain detection), necessitating comprehensive multi-task evalua-

tion metrics; 2) Its architecture-agnostic nature suggests potential scalability in large-

scale models (e.g., Transformers). Future research should focus on two directions: an-

alyzing generalization critical points through open-domain benchmarks and verifying 

adaptability in massive architectures. 
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