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Abstract. Face Anti-Spoofing (FAS) is crucial for protecting face recognition 

systems against various spoofing attacks. However, existing methods still suffer 

from significant performance degradation when handling unseen domains. To 

address this challenge, this paper designs a Diversified Style Transformation Net-

work (DSTN) that enhances the domain generalization capability of FAS models 

through instance-level style augmentation. At the core is a method called Diver-

sified Style Generation (DSG). DSG introduces a set of learnable style bases and 

uses the Dirichlet distribution to generate dynamic weights for each sample, con-

structing diversified style-enhanced features. During training, the model is ex-

posed to a broader range of style variations, thereby learning style-invariant fea-

tures. In addition, this paper designs a content consistency loss and a style diver-

sity loss to preserve semantic information in the augmented features and to en-

courage diversity among style bases, further improving model robustness. Exper-

iments on multiple standard cross-domain FAS benchmark datasets show that the 

proposed method outperforms state-of-the-art approaches across various do-

mains, especially in unseen domain tasks, demonstrating stronger generalization 

capabilities. These results verify the effectiveness and potential of DSG in solv-

ing the domain generalization problem. 

Keywords: Face Anti-spoofing, Domain Generalization, Style Augmentation. 

1 Introduction 

Face Anti-Spoofing plays a pivotal role in protecting face recognition systems from 

various spoofing attacks such as printed images or video replays [1-4]. To tackle these 

attacks, researchers have developed numerous FAS techniques, including methods 

based on handcrafted features [5-7] and deep learning approaches for feature extraction 

[8-11]. Although these methods have achieved excellent performance on specific da-

tasets, their performance typically drops significantly when applied to unseen domains 

due to changes in data distributions. 

To enhance generalization in unseen domains, recent studies have incorporated Do-

main Generalization (DG) techniques into FAS tasks, employing methods like adver-

sarial learning [12-14] and meta-learning [15,16] to learn domain-invariant representa-

tions. Despite the progress of DG-based methods, they often depend on domain labels 

to align distributions and learn domain-invariant features. However, these domain 



labels are usually coarse-grained and fail to fully capture the real complexity of domain 

distributions. Within source domains, variations in lighting conditions, attack types, 

and background scenes are often overlooked, resulting in fine-grained subdomains. 

While D2AM [15] attempts to distinguish mixed source domains by assigning pseudo-

domain labels, it still requires manually choosing the number of pseudo-domains, thus 

only partially mitigating the problem. Moreover, aligning domains at the distribution 

level imposes constraints on the features and cannot guarantee that all feature channels 

are invariant to instance-specific variations. Consequently, the learned features may 

still contain information sensitive to these instance-specific styles, limiting generaliza-

tion performance on new samples from unseen domains. 

Inspired by [36], which pioneered the idea of leveraging learnable style bases to 

project unseen testing samples into a known source domain space, this paper takes a 

complementary approach by focusing on training-time style augmentation. Instead of 

relying on test-time updates, this paper proposes a Diversified Style Generation (DSG) 

method that enriches the model’s exposure to diverse style variations during the train-

ing phase, thereby improving its generalization capability on unseen domains. Specifi-

cally, drawing on the concept of learnable style bases introduced by [36], this paper 

introduces a set of such bases and dynamically samples weights from a Dirichlet distri-

bution for each training instance. These style bases, when combined through the sam-

pled weights, generate a wide range of style-enhanced features at the instance level. As 

a result, the model experiences more diverse style patterns during training and learns 

representations that are less sensitive to style changes. In addition, the proposed ap-

proach integrates supervised contrastive and classification losses, thereby forming a 

fully coherent and comprehensive training framework. 

The main contributions can be summarized as follows: 

• A new framework is proposed to significantly enhance the cross-domain generaliza-

tion capability of FAS models by generating instance-level, diversified style-aug-

mented features. 

• Leveraging learnable style bases and dynamically generated weights from a Di-

richlet distribution, DSG achieves effective style augmentation of original features. 

To ensure the learning of style-robust features, a style diversity loss is introduced to 

encourage diversity among style bases, along with a content consistency loss to pre-

serve semantic information in the augmented features. 

• Comprehensive experiments on multiple benchmark datasets demonstrate that the 

proposed method outperforms state-of-the-art approaches in certain aspects of cross-

domain FAS tasks, highlighting its effectiveness and potential. 

2 Related Work 

2.1 Face Anti-Spoofing 

Face Anti-Spoofing  aims to determine whether an image represents a genuine face or 

a spoofed attack (such as a printed photo or a replayed video). Early FAS methods 

mainly relied on handcrafted features [7,17,18] to detect spoofing patterns. With the 

development of deep learning, various techniques have been explored, including 
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classification-based methods [9,19,20], regression-based methods [21,22], and genera-

tive models [23-25], aiming to improve FAS performance. Recently, vision Transform-

ers [26,27] have shown promising results in FAS tasks. However, although these meth-

ods perform well in intra-dataset evaluations, they often experience significant perfor-

mance degradation when applied to different target domains.To address this challenge, 

domain adaptation techniques [28-30] have been introduced into FAS models. How-

ever, such methods rely on accessing target domain data, which may not always be 

available in real scenarios, limiting their effectiveness. Nevertheless, these methods 

mostly focus on learning domain-invariant features during training, and still struggle 

when the target domain differs significantly from the source data. 

2.2 Style Augmentation 

Style augmentation enriches training data by altering style attributes, enhancing robust-

ness and generalization under diverse variations. It is widely applied in computer vision 

tasks such as image classification, object detection, and image generation. 

Neural network-based style transfer methods separate and recombine content and 

style by adjusting image statistics. For example, Gatys et al. [32] employed convolu-

tional neural network feature statistics for style transfer, while Huang and Belongie 

introduced Adaptive Instance Normalization (AdaIN) [33], enabling real-time style ma-

nipulation. 

In face anti-spoofing, variations in lighting, camera equipment, and attack media 

(e.g., paper, screen) degrade model performance in unseen domains. To mitigate this, 

researchers have explored style augmentation for FAS [14,31], generating diverse style 

transformations to improve adaptability.However, existing FAS style augmentation 

methods often depend on manually designed or globally applied transformations, lack-

ing the ability to fully capture style complexity and to personalize augmentation at the 

instance level. 

To overcome these limitations, this paper proposes a new approach based on DSG. 

By introducing learnable style bases and dynamically generating style-enhanced fea-

tures per sample, this approach achieves instance-level style diversity and significantly 

improves generalization to unseen domains. Incorporating DSG during training enables 

the model to learn style-invariant features, thereby strengthening its cross-domain FAS 

performance. 

3 Methodology 

Figure 1 presents an overview of the proposed Diversified Style Transformation Net-

work (DSTN), which aims to improve the domain generalization capability of FAS 

models through instance-level style augmentation. The key component is the DSG 

module. DSG first learns diverse style bases from training data to provide a rich repre-

sentation of the style space. Then, a dynamic weighting module uses a Dirichlet distri-

bution to generate style combination weights for each input instance, achieving person-

alized style augmentation. Additionally, this paper designs two losses to supervise the 

DSG training. 
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Fig. 1. An overview of the proposed DSTN framework. 

3.1 Diversified Style Generation 

Introduction of Style Bases. In real-world anti-spoofing tasks, facial data styles are 

influenced by various factors such as capture devices, lighting, and resolution. Such 

style diversity imposes great challenges for generalization. If a model cannot adapt to 

these style changes, its performance on unseen domains typically degrades. 

To address this issue, this paper introduces the concept of style bases, which are 

learnable parameters intended to represent the underlying style patterns in the data. 

Specifically, we define a set of style bases 
1{ , }i i N

b b i  =
 , where N  is the number of 

style bases, and 
i

b  and 
i

b  denote the mean and standard deviation of the i -th style 

base, respectively. By incorporating these style bases, the model can effectively capture 

and represent the stylistic characteristics of the data. In particular, 
i

b  encodes the cen-

tral position of the style, while 
i

b  describes its distributional shape. 

By learning these style bases, the model can generate a variety of style features that 

potentially cover unseen style variations, enhancing robustness and guiding the model 

toward more semantic features. 

Dynamic Weight Generation.  Relying solely on fixed style bases is not sufficient for 

handling diverse inputs. This paper uses a Dirichlet distribution to dynamically gener-

ate a weight vector 
N

c W  for each sample, combining different style bases at the 

instance level.  

To encourage style diversity, this paper adjusts the Dirichlet distribution parameters 
  based on the cosine similarities among the style bases. First, this paper calculates 

the average similarity of each style base to measure its distinctiveness. Bases with lower 

similarity are given higher sampling weights, thus increasing their participation in style 

generation. This design ensures a dynamic balance in style base usage and avoids over-

dependence on specific bases while maximizing style coverage. 

Formally, this paper first computes the cosine similarity matrix among style bases: 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 [ ( , )]b b

i j N NS cos   =  (1) 

Then, it calculates the average similarity for each base: 

 
,

1

1
i i j

j i

s S
N 

=
−
  (2) 

Next, it adjusts the Dirichlet parameters   based on the average similarity: 

 
1

(1 )i is
N

 = + −  (3) 

where   is a hyperparameter controlling the adjustment. This hyperparameter gov-

erns the extent to which style base similarity influences the sampling weights. Its value 

was carefully tuned on a held-out validation set. A larger   more aggressively pro-

motes less similar bases, while a smaller one results in a more uniform sampling distri-

bution. The value =0.5  was selected as it yielded the best cross-domain generaliza-

tion performance during validation, effectively encouraging style diversity without de-

stabilizing the learning process. Finally, dynamic weights are sampled from the Di-

richlet distribution: 

 ~ ( )Wc Dirichlet   (4) 

Generating Style-Enhanced Features. With dynamic weights and style bases, this 

paper enhances the original features with style. First, it uses the weights to combine 

style bases and produce augmented means and standard deviations. Then, these statis-

tics are applied to the original features for style transformation. 

This approach simulates style perturbations in feature space, improving the model’s 

robustness to style changes and exposing it to a broader style distribution. To preserve 

the semantic content of the original features, this paper fuses the enhanced features and 

the original features, striking a balance between augmentation intensity and information 

retention. 

Specifically, let the model-extracted original feature representation be 
B D

orgF  , where B  is the batch size and D  is the feature dimension. The first 

step is to normalize these features per sample: 

 
org org

norm

org

F
F





−
=

+ò
 (5) 

where 
1B

orgF   and 
1B

org   are the mean and standard deviation of the 

original features (computed per sample), and ò  is a small constant to prevent division 

by zero. Next, using the style bases and the dynamically sampled weights, the aug-

mented mean  and standard deviation  are generated: 

 ,aug c aug cW M W S =  =   (6) 

where 
1 2[ , , , ]N N D

b b bM    =  •
.Afterward, style enhancement is applied 

to the normalized features: 

 
aug aug norm augF F = +  (7) 



where  denotes element-wise multiplication. 

Finally, the enhanced features are fused with the original features to obtain the final 

representation: 

 
final org aug augF F F= +   (8) 

where 
aug  controls the augmentation strength. 

Style Diversity Loss. When introducing style bases, the absence of additional con-

straints can cause them to become overly similar, potentially leading to a collapse of 

the style space. Such a scenario not only diminishes the effectiveness of style augmen-

tation but also restricts the model’s generalization capabilities. To address this, a style 

diversity loss is introduced to promote orthogonality among style bases in the feature 

space. More specifically, by minimizing the squared difference of the cosine similari-

ties between style bases, their distinctiveness is increased. This design drives the style 

bases apart in the feature space, resulting in richer style representations. 

The core purpose of this loss is to enhance the expressiveness of the style bases so 

that they can capture more diverse style patterns, ultimately improving both the variety 

of generated style features and the model’s ability to generalize. In practice, cosine 

similarities are computed between the means and standard deviations of the style bases, 

and their squared differences are then minimized: 

 
2 2

1 1

[sin ( , ) sin ( , )]
N N

i j i j

diversity b b b b

i j i

L    
= = +

= +  (9) 

Minimizing 
diversityL  encourages style bases to be orthogonal and enhances style di-

versity. 

Content Consistency Loss. Although style augmentation improves the model’s robust-

ness to style variations, overemphasizing stylistic information may cause the model to 

neglect essential content features of input samples, ultimately affecting the task’s pri-

mary goal. To avoid this, a content consistency loss is introduced to ensure that the 

enhanced features incorporate style variations while retaining the original content in-

formation. Specifically, the cosine similarity between the enhanced features and the 

original features is used to measure content consistency, and the loss is minimized ac-

cordingly. This approach preserves the semantic information during style augmenta-

tion, preventing the model from overfitting to style-related attributes. 

First, both the enhanced features and the original features are normalized: 

 ( )norm

aug augF Normalize F=  (10) 

Then, compute the cosine similarity matrix between the two sets of features. 

 ( )norm norm

aug orgZ F F= •
 (11) 

Extract the diagonal elements (these represent the similarity corresponding to each 

sample). 

 ( )ttz diag Z=  (12) 

Finally, compute the content consistency loss: 
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1 1

1
( )

B B
k

content tt k j

k j

L z log exp z
B = =

 
= − − 

 
   (13) 

Minimizing contentL  ensures that augmented features remain content-consistent. 

Theoretical Foundation. DSG effectively treats style variations in FAS tasks as noise, 

guiding the model through style enhancement and constrained training to learn feature 

representations that are insensitive to style changes yet sensitive to spoofing detection. 

This style invariance is the key factor in improving cross-domain generalization capa-

bility. Unlike traditional domain generalization methods, DSG does not rely on explicit 

domain labels but instead handles both intra-domain and inter-domain style variations 

implicitly through instance-level style enhancement. This fine-grained style manipula-

tion allows the model to better adapt to style variations in unseen domains, significantly 

improving generalization performance across diverse testing conditions. 

3.2  Supervised Contrastive Learning 

Beyond style augmentation, a supervised contrastive learning strategy is employed to 

enhance the model’s discriminative ability. Unlike traditional contrastive learning, it 

leverages labels to define positive and negative sample pairs, resulting in more compact 

intra-class and more dispersed inter-class distributions—an essential property given the 

complexity and diversity of attack samples in anti-spoofing tasks. Utilizing multi-view 

generation from style-enhanced features, multiple views per sample further improve 

the effectiveness of contrastive learning. 

Concretely, for each mini-batch, multiple views (original and style-enhanced) are 

generated. Positive pairs include views from the same class and the sample’s own aug-

mented views, while negative pairs are views from different classes. 

The loss function is defined as: 

 

2

1 ( ) ( )

exp( / )1
log

| ( ) | exp( / )

B
i p

SupCon

i p P i i aa A i

z z
L

P i z z



=  

−
=


 


 (14) 

where 2B represents the total number of samples (including original features and 

augmented features), iz  denotes the normalized feature representation of the i-th sam-

ple, ( )P i  represents the set of positive samples of the same class as sample i, ( )A i  

represents the set of all samples excluding sample i itself, and   is the temperature 

coefficient. By minimizing 
SupConL , the model can learn more discriminative feature 

representations. 

3.3 Classification Loss  

To ensure robust anti-spoofing performance, an Attribute-Aware Multi-Head Clas-

sification Loss is introduced. Inspired by domain generalization, this approach uses 

classification supervision to directly address diverse attack types and distributions, 



enabling the model to learn subtle, discriminative features. Multiple fully connected 

layers are employed at the top of the model, each dedicated to a specific data subset. 

This multi-head structure supports fine-grained learning, capturing the distinct charac-

teristics of different data distributions. 

During forward propagation, samples in the batch are partitioned into subsets ac-

cording to their dataset IDs. For each subset, the corresponding feature representation 

is extracted and passed through the respective classifier to generate prediction proba-

bilities ˆ
iy .  

 ˆ ( ( ) )i i i iy FC feat scale=   (15) 

where   represents the Sigmoid activation function, and iscale  is the scaling fac-

tor used to adjust the output. This process ensures that each classifier focuses only on a 

specific type of sample, enabling the learning of more targeted discriminative features. 

For each subset, binary cross-entropy loss is calculated as follows: 

 

1

1
ˆ ˆ[ (1 ) (1 )]

i

B

amc k k k k

k

L y logy y log y
B =

= − + − −  (16) 

where ky   represents the ground truth label of the k-th sample, and ˆ
ky  denotes the 

probability predicted by the model. To balance the influence of each subset during over-

all training, the classification losses of all subsets are averaged to obtain the final at-

tribute-aware multi-head classification loss: 

 

1

1
i

K

amc amc

i

L L
K =

=   (17) 

where K represents the number of subsets, and in this model K=3. This averaging 

strategy ensures that each subset's classifier is adequately optimized during training, 

preventing insufficient training of any subset's classifier due to data imbalance. 

The Attribute-Aware Multi-Head Classification Loss considers not only class labels 

but also the specific attributes of each sample. Combined with the style augmentation 

module and the contrastive learning module, this improved classification loss contrib-

utes to a complete training framework that fosters richer and more detailed feature rep-

resentations. 

3.4 Overall Loss Function 

Combining all the losses, this paper’s overall loss function is: 

 
1 2 3total amc SupCon diversity contentL L L L L  = + + +  (18) 

where 1 , 2 , and 3  are hyperparameters balancing the influence of each loss 

component. 

4 Experiments 

4.1 Experimental Settings 

Datasets and Protocol: This paper conducts evaluations on four widely used FAS da-

tasets: Oulu-NPU (O) [52], CASIA-MFSD (C) [53], Idiap Replay-Attack (I) [54], and 

MSU-MFSD (M) [55]. Following standard practice, each dataset is considered a 
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distinct domain, and a leave-one-out protocol is employed for cross-domain evaluation. 

For instance, O&C&I→M indicates that O, C, and I are used for training, while M 

serves as the testing domain. Similarly, O&M&I→C, O&C&M→I, and I&C&M→O 

represent the other leave-one-out configurations. 

Implementation Details: Face detection and cropping are performed with MTCNN 

[56], and all images are resized to 256×256. For a fair comparison with state-of-the-art 

approaches, this paper adopts ResNet-18 as the backbone. Training is conducted using 

SGD with an initial learning rate of 5e-3 and a batch size of 96 per domain. 

For the DSG model, the number of style bases is set to 64. The weight for the style 

diversity loss is 0.01, the weight for the content consistency loss is 0.1, and the weight 

for the supervised contrastive loss is also 0.1. All hyperparameters are tuned on a vali-

dation set. 

Evaluation Metrics: This paper employs Half Total Error Rate (HTER) and Area 

Under the Curve (AUC) to evaluate performance. HTER, calculated as the average of 

the false acceptance rate and false rejection rate, assesses overall classification accu-

racy. AUC measures the model’s discriminative ability across varying decision thresh-

olds. By jointly considering HTER and AUC, this paper provides a comprehensive 

evaluation of both accuracy and robustness. 

Table 1. Evaluated on four widely-used benchmark datasets: CASIA (C), Idiap Replay (I), 

MSU-MFSD (M), and Oulu-NPU (O). 

Methods O&C&M to I O&C&I to M O&M&I to C I&C&M to O 

HTER AUC HTER AUC HTER AUC HTER AUC 

MMD-AAE[34] 31.58 75.18 27.08 83.19 44.59 58.29 40.98 63.08 

MADDG[13] 22.19 84.99 17.69 88.06 24.50 84.51 27.98 80.02 

NAS-FAS[37] 14.51 93.84 19.53 88.63 16.54 90.18 13.80 93.43 

ANRL[40] 16.03 91.04 10.83 96.75 17.83 89.26 15.67 91.90 

SSDG-R[12] 11.71 96.59 7.38 97.17 10.44 95.94 15.61 91.54 

SSAN-R[14] 8.88 96.79 6.67 98.75 10.00 96.67 13.72 93.63 

PatchNet[41] 13.40 95.67 7.10 98.46 11.33 94.58 11.82 95.07 

SA-FAS[42] 6.58 97.54 5.95 96.55 8.78 95.37 10.00 96.23 

TTDG[36] 6.50 97.98 7.91 96.83 8.14 96.49 10.00 95.70 

DSTN(ours) 5.00 98.91 8.57 96.78 9.02 94.95 9.76 96.56 

4.2 Cross-Domain Performance 

Cross-domain generalization performance was evaluated under both leave-one-out 

(LOO) and limited-source-domain conditions to assess the proposed method’s effec-

tiveness on unseen domains. 

Leave-One-Out (LOO): Under the LOO setting, training was conducted on three 

source domains, with the remaining dataset serving as the target domain. Methods for 

comparison were divided into two categories: traditional face anti-spoofing approaches 



and domain generalization-based face anti-spoofing approaches (DG-FAS). Table 1 

presents the performance comparison across four LOO settings. Several observations 

emerge from Table 1. Traditional face anti-spoofing methods [7,17,18] perform poorly 

on all four cross-dataset benchmarks because they do not consider learning generaliza-

ble features, resulting in performance degradation on unseen domains. Although DG-

FAS methods [12-16] improve generalization to some degree, they typically rely on 

manually defined domain labels for coarse-grained domain alignment. This approach 

does not guarantee that extracted features remain unaffected by domain-specific styles, 

thus limiting performance gains. In contrast, the proposed DSTN achieves the best re-

sults in two of the test settings. This indicates that the instance-level style augmentation 

strategy effectively learns style-robust features, significantly enhancing generalization 

on unseen domains. 

Table 2. Comparison results on the constrained source domain. 

Methods M&I to C M&I to O 

 HTER(%) AUC(%) HTER(%) AUC(%) 

MS_LBP[43] 51.16 52.09 43.63 58.07 

SSDG-M[12] 31.89 71.29 36.01 66.88 

ANRL[40] 31.06 72.12 30.73 74.10 

SSAN-R[14] 30.00 76.20 29.44 76.62 

EBDG[16] 27.97 75.84 25.94 78.28 

SA-FAS[42] 25.51 81.41 20.74 86.32 

AMEL[44] 24.52 82.12 19.68 87.01 

IADG[45] 24.07 85.13 18.47 90.49 

DSTN(ours) 20.79 86.78 17.85 90.56 

 

Limited-Source Domains: To verify the approach’s effectiveness with a small num-

ber of source domains, an additional experiment was conducted using only two source 

domains. Following previous work [45], the MSU-MFSD (M) and Idiap Replay-Attack 

(I) datasets were used as source domains, while the remaining two datasets, CASIA-

MFSD (C) and Oulu-NPU (O), served as target domains for testing. Table 2 provides 

the results. Even in this highly restrictive scenario, the proposed method still outper-

forms current state-of-the-art methods. This further confirms the effectiveness of the 

instance-based domain generalization approach on unseen target domains. Unlike 

methods that enforce domain alignment across all source domains, instance-level style 

augmentation enables stronger generalization capability without mandating full domain 

adaptation. 

Performance Variation Analysis: Performance differences (e.g., O&C&M→I: 

HTER=5.00% vs. O&M&I→C: HTER=9.02%) stem from dataset disparities in acqui-

sition conditions, attack types, and style asymmetry. CASIA-MFSD (C) contains di-

verse low-quality attacks, while Idiap (I) focuses on high-quality replays. Larger style 

gaps between source-target domains (e.g., O&M&I→C) challenge DSG's coverage, 

whereas smaller gaps (O&C&M→I) align better with generated styles. Complex attack 
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types in unseen domains (C) further degrade performance. Despite variations, DSG 

consistently outperforms existing methods, demonstrating effective multi-domain gen-

eralization. Future work will address extreme domain gaps via adaptive style selection. 

In summary, the proposed method demonstrates remarkable performance in cross-

domain face anti-spoofing tasks, validating the effectiveness of diversified style gener-

ation and instance-level alignment strategies. 

4.3 Ablation Studies 

This section first presents ablation studies to examine the contribution of each compo-

nent to the model’s performance, followed by an investigation of the impact of different 

contrastive learning losses. All ablation experiments are conducted under the 

O&C&M→I setting. 

Table 3. Ablation study of each component on O&C&M→I. 

Baseline SupCon Amc DSG HTER(%) AUC(%) 

✓ ✓   13.95 92.35 

✓ ✓ ✓  8.40 95.78 

✓ ✓ ✓ ✓ 5.00 98.91 

 

Table 3 shows the ablation results for each component. The baseline uses only the 

same backbone network (ResNet-18) as in [42] and the SupCon loss , achieving an 

HTER of 13.95% and an AUC of 92.35%. Incorporating the Amc loss improves per-

formance to an HTER of 8.40% and an AUC of 96.78%. Adding the proposed DSG 

module further reduces the HTER to 5.00% and increases the AUC to 98.91%. These 

improvements indicate that each component complements the others, and using them 

together significantly enhances the model’s performance.   

Table 4. Ablation study of each style augmentation on O&C&M→I. 

Style Augmentation HTER(%) AUC(%) 

MixStyle[46] 9.00 95.72 

SSA[14] 8.29 96.98 

SHM[47] 7.18 96.34 

CSA[45] 6.86 98.14 

DSG(ours) 5.00 98.91 

 

To validate the effectiveness of DSG, a comparison was made with different style 

augmentation strategies such as MixStyle and SSA. As shown in Table 4, DSG signif-

icantly outperforms other style augmentation methods. This can be attributed to DSG’s 

ability to dynamically generate diverse styles, supported by the style diversity and con-

tent consistency losses, which guide the model toward more robust style-invariant rep-

resentations. 



In addition, to confirm the effectiveness of the SupCon loss, a comparison was car-

ried out with different contrastive learning losses, including SimCLR, SimSiam, and 

the triplet loss. Table 5 shows that while traditional contrastive losses or the triplet loss 

offer some improvements, they fall short of the performance achieved with SupCon. 

By leveraging class label information, SupCon constructs richer sets of positive and 

negative pairs within each batch, facilitating the learning of more discriminative fea-

tures. 

Table 5. Ablation study of each contrastive loss on O&C&M→I. 

Style Augmentation HTER(%) AUC(%) 

SimCLR[48] 12.53 92.42 

SimSiam[49] 8.89 95.93 

Triplet[50] 7.75 96.11 

SupCon[51] 5.00 98.91 

4.4 Visualization and Analysis 

To gain deeper insight into the performance of the DSG method during style augmen-

tation, t-SNE (t-distributed Stochastic Neighbor Embedding) was employed to visual-

ize the style-enhanced features. By embedding high-dimensional features into a two-

dimensional space, it becomes possible to observe the diversity in style base selection 

among different methods. 

 

       (a) Ours(DSG)                    (b) SSA 

Fig. 2. T-SNE feature visualization of different styles of augmentation. The blue dots represent 

the original features, while the red ones represent the enhanced features. Compared to SSA 

[14], DSG generates more diverse features. 

As shown in Figure 2, distributions of features generated by DSG appear more scat-

tered and diverse in the two-dimensional space. This indicates that DSG can dynami-

cally learn and select a wide range of style bases, including relatively rare ones. In 

contrast, other style augmentation methods produce more concentrated feature distri-

butions, suggesting that their style bases are not sufficiently diverse and may be limited 

to certain dominant styles. 
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This enhanced diversity can be attributed to the learnable style bases introduced by 

the DSG approach. Through its dynamic weight generation mechanism, DSG tends to 

select style bases that differ from the current features, ensuring that the model encoun-

ters a broader range of style variations during training. Consequently, the model’s gen-

eralization capability to unseen domains is improved. 

In contrast, traditional style augmentation methods often rely on fixed or predefined 

style bases, lacking thorough exploration of style diversity and resulting in decreased 

performance when encountering rare or unseen styles. 

5 Conclusion 

This study proposes a new DSTN to enhance the generalization capability of face anti-

spoofing models. DSG, a plug-and-play module within this framework, can be easily 

integrated into any deep learning architecture without substantial modifications. By in-

troducing learnable style bases and a dynamic weight generation mechanism, DSG pro-

duces instance-level, diversified style-augmented features, thereby enriching feature 

diversity. This augmentation strategy exposes the model to a wider range of style vari-

ations during training, enabling the learning of style-invariant representations and ulti-

mately improving performance on unseen domains. 

Experimental results across multiple cross-domain face anti-spoofing benchmarks 

demonstrate that the proposed approach achieves superior results, confirming both the 

effectiveness and generalizability of DSG. Ablation studies further highlight the critical 

role of the DSG module in increasing feature diversity and enhancing model robust-

ness.In essence, DSG provides an effective and flexible solution for improving feature 

diversity and generalization capability. Due to its modularity, DSG can be broadly ap-

plied to other computer vision tasks that require enhanced feature diversity, such as 

image classification, object detection, and semantic segmentation. 

Future work will involve extending DSG to various tasks and models, examining its 

performance on larger-scale datasets and more complex architectures. Additionally, ef-

forts will be made to integrate DSG with other data augmentation and regularization 

methods to further enhance model performance and robustness. 
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