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Abstract. Forward-looking sonar images object detection plays a crucial role in 

marine resource exploration and national defense. Existing methods typically fo-

cus on traditional feature extraction approaches when processing sonar images, 

but these methods have not fully borrowed from the advanced processing mech-

anisms of the human brain in target recognition, leading to less than satisfactory 

performance in forward-looking sonar images with issues such as low resolution, 

dynamic changes, and noise interference. To address this, this paper proposes a 

brain-inspired forward-looking sonar target recognition framework named 

YOLO-VIS. We designed a low-level feature enhancement module based on 

large-kernel convolutions, which simulates the human brain’s preliminary pro-

cessing of images by expanding the receptive field, thereby improving the quality 

of feature extraction. In addition, a visual attention weighting module is pro-

posed, which further enhances the model’s focus on key features by optimizing 

feature selection based on the importance of neurons. Finally, through a multi-

scale feature deep fusion module, the model’s target recognition capability at dif-

ferent scales is improved. Experimental results show that YOLO-VIS signifi-

cantly improves target detection accuracy over existing methods on public da-

tasets, verifying the effectiveness of brain-inspired mechanisms in sonar image 

recognition. 

Keywords: Underwater Object Detection, Brain-Inspired Intelligence, Atten-

tion Mechanism and  Large Kernel Convolution 

1 Introduction 

Target recognition is an enduring hot topic in the field of computer vision. Unlike nat-

ural images captured by optical cameras, in the marine field, object detection is often 

achieved through sonar. However, due to the reverberation of acoustic waves in the 

water column and environmental noise, sonar images commonly face issues such as 

severe noise interference [16], non-rigid deformation of targets, and low resolution. 



These problems make it challenging to construct a stable feature representation for ob-

jects in sonar images, resulting in poor detection performance [38]. 

To tackle this challenge, common object detection algorithms are primarily catego-

rized into two types, one of which is the two-stage detection model. The two-stage 

detection model carries out object detection in two main phases: Proposal Generation 

and Proposal Classification. In the Proposal Generation stage, a series of candidate re-

gions (region proposals) are first generated in the input image, which may contain cer-

tain objects. This step is usually accomplished using a Region Proposal Network 

(RPN). Next, the algorithm performs more precise bounding box regression and object 

category prediction for each candidate region generated in the first stage.  

 

Fig. 1. Two visual pathways in the brain: the dorsal stream for spatial processing and the ventral 

stream for shape recognition, with the ventral stream being crucial for sonar-based underwater 

detection and target identification. 

However, due to the complexity of the process, two-stage models do not perform 

well in practical applications. Currently, more commonly used are single-stage models 

represented by the YOLO framework, which complete the object detection task in a 

single forward pass without the need to generate candidate regions. They directly pre-

dict the category and position of the targets through dense grids or anchor boxes. Since 

they tend to produce a higher rate of false positives, there is still room for improvement 

in practical applications. 

The brain’s recognition mechanism is one of the most important means by which 

humans perceive the external world, primarily manifested in visual perception. Visual 

perception has two pathways: the ventral stream for shape perception and the dorsal 

stream for spatial location perception [27]. Since sonar images are primarily used for 

underwater detection and target recognition, their recognition performance largely re-

lies on the ventral stream of the visual system. Therefore, we focus primarily on the 

ventral stream. This pathway is achieved through a series of hierarchically organized 

processes, as shown in Fig 1. External information reaches the retina through light 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

reflection and is further processed by the retina and the lateral geniculate nucleus (LGN) 

to the striate cortex V1, then through the extra striate cortex V2 and the lateral occipital 

cortex V4, finally arriving at the inferotemporal cortex IT. The features extracted from 

the ventral pathway areas are as follows: First, neurons in the lower-level areas (V1, 

V2) receive visual input and represent simple features. Second, their output is integrated 

and processed by higher cortical levels (V4), which are specialized in representing 

some global representations. Finally, at further hierarchical levels (IT), their output is 

integrated to represent abstract forms, objects, and categories. This hierarchical struc-

ture has been proven beneficial for target recognition tasks [22], inspired by this, we 

hope to simulate this process with deep neural networks to achieve better recognition 

performance on forward-looking sonar. 

In this work, we propose a YOLO-VIS framework that mimics the human brain’s 

recognition mechanism for target identification in underwater forward-looking sonar. 

Specifically, the image is pre-enhanced based on large-kernel convolutions and edge 

detection before recognition. Building on previous research, we introduce an attention 

mechanism based on neuron processing in the Backbone, which can better represent 

features at different levels. To further obtain an abstract representation of features, a 

multi-scale feature deep fusion mechanism is designed at the feature fusion stage, 

which can achieve a deep fusion of features and thus obtain more superior recognition 

results. The main contributions of this work are as follows: 

─ A low-level feature processing method based on large-kernel convolutions and edge 

detection has been developed. This method achieves the enhancement of simple im-

age features by combining the large receptive field provided by large-kernel convo-

lutions with the handling of target edge details by edge convolutions. 

─ An attention mechanism based on importance of neuron has been designed. This 

method, without adding additional sub-networks, calculates the importance of neu-

rons through a designed energy function and scales the corresponding elements of 

the feature map accordingly, achieving stronger feature extraction capabilities. 

─ A multi-scale feature deep fusion mechanism is proposed, which effectively inte-

grates the semantic information of feature maps at different levels and reduces noise 

interference by generating initial differential features and achieving multi-scale fea-

ture fusion through large-kernel convolutions. 

2 Related Work 

2.1 YOLO series 

YOLO (You Only Look Once) [19] is a real-time object detection system that uses a 

single neural network to predict bounding boxes and class probabilities for detected 

objects in an image. YOLO was first introduced in 2016 by Joseph Redmon, and has 

since undergone several updates to improve its performance. The YOLO algorithm [24] 

divides an input image into a grid of cells and predicts bounding boxes for objects 

within each cell. The predictions are made using a convolutional neural network that 



processes the entire image in a single forward pass, rather than scanning the image 

multiple times with a sliding window as some other object detection systems do.  

Haoting Zhang et al. [36] proposed a object detection model for forward- looking 

sonar images based on an improved YOLOv5. By introducing the IoU k-means algo-

rithm and the CoordConv method, they effectively improved the detection accuracy 

and speed. Jian Yang et al. [34] combined the lightweight characteristics of Mo-

bileNetV2 with the self-attention mechanism of SENet based on YOLOv5, and pro-

posed the Fast-YOLOv5 network. They enhanced model performance through methods 

such as noise augmentation and K-Means label preprocessing. Liangfu Ge et al. [6] 

targeting the characteristics of low resolution and feature similarity in underwater sonar 

images, introduced the SimAM module, which realized a parameter-free attention 

mechanism and enhanced the feature focusing ability of CNN, verifying its generaliza-

tion capability. Ken Sinkou Qin et al. [17] applied the YOLOv7 model to underwater 

obstacle and real-time sonar image object detection. By introducing the cross-attention 

mechanism and the MGGN module, they improved the model’s feature extraction abil-

ity and the detection accuracy for targets in sonar images. 

2.2 Attention Mechanism 

Since the introduction of the self-attention mechanism [28] by Vaswani et al.,attention 

mechanisms have rapidly advanced, particularly in their ability to capture long-range 

dependencies. Self-attention computes the similarity between elements in a sequence, 

yielding significant improvements in tasks such as machine translation. However, its 

computational complexity scales quadratically with the sequence length, leading to in-

efficiencies when processing long sequences or large datasets. Linformer [32] ad-

dresses this issue by reducing the attention complexity from O(n²) to O(n) using low-

rank approximation, significantly enhancing the ability to handle long sequences. Nev-

ertheless, Linformer still faces challenges in capturing long-range dependencies, par-

ticularly in dealing with complex relationships. 

Coordinate Attention (CA) [9] was introduced to refine the attention mechanism by 

incorporating spatial positional information, showing particularly strong performance 

in image-related tasks. CA decomposes the input feature map into two 1D encoding 

vectors, enabling it to capture both spatial and channel dependencies simultaneously. 

However, CA focuses primarily on spatial-channel relationships and overlooks the fu-

sion of multimodal information. The Multimodal Attention Network (MAN) [10] im-

proves performance in multimodal tasks by integrating cross-modal information. MAN 

not only addresses spatial and channel relationships but also establishes deep connec-

tions across different modalities. However, it incurs higher computational costs, and 

coordinating modalities remains a significant challenge. Swin Transformer [15] has 

made notable progress in image tasks by introducing sparse connections, which allevi-

ate the limitations of traditional attention mechanisms. Brain-inspired attention mech-

anisms [2], which emulate selective attention in the brain, further enhance model per-

formance on complex tasks. These mechanisms adaptively focus on the most relevant 

input features and establish deep connections across modalities, thereby effectively 

merging diverse information to improve the model’s adaptability and robustness. 
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Fig. 2. Overview of the YOLO-VIS framework. This framework designs a Large Kernel Edge 

Convolution Module to enhance the low-level feature details in forward-looking sonar images. 

It introduces a C2AT into the original Backbone to enhance feature extraction capabilities. A 

Multi-Scale Feature Fusion Unit is designed to enhance the effectiveness of feature fusion. 

3 Methods 

3.1 Overall Architecture 

An overview of the architecture of YOLO-VIS is depicted in Fig 2. Our underwater 

sonar image object detection model consists of the LKECM, AT backbone, and neck 

parts. Similar to the human visual cognitive process, LKECM enhances the low-level 

features of the image based on large-kernel convolutions. The AT backbone is an im-

provement on the CSPDarknet53 in the YOLO framework, using the C2AT module to 

replace the original C2f to achieve a richer gradient information flow. In the neck part, 

we adopt the MAFPN design, replace C2f with C2AT, and by using the Multi-Scale 

Feature Fusion Unit (MSFFU) to replace the original Concatenate operation, a more 

accurate feature fusion result is achieved. 

3.2 Large Kernel Edge Convolution Module 

Target detection in forward-looking sonar images faces a significant challenge [18]: 

noise and complex backgrounds in underwater environments often lead to blurred target 

edges, making it difficult for models to accurately capture boundary information, which 

in turn results in poor performance. Traditional convolution operations typically focus 

on extracting global features while neglecting edge details, which is particularly prob-

lematic in underwater object detection. To address this issue, we introduces a novel 

Large Kernel Edge Convolution Module (LKECM), as shown in Fig 3, which combines 

the advantages of large-kernel convolution and edge detection convolution. It empha-

sizes edge information while extracting conventional features. Specifically, inspired by 

the considerations of large-kernel convolution in [5], we introduce a 9×9 large-kernel 

convolution in the feature preprocessing part to obtain a larger receptive field, which is 



crucial for the recognition tasks in downstream processing. Additionally, it acts as a 

high-pass filter, achieving implicit enhancement of high-frequency information. 

 

 

Fig. 3. The proposed Large Kernel Edge Convolution Module (LKECM) employs large-kernel 

convolutions to obtain a larger receptive field and multiple-dimensional edge convolutions, 

achieving more accurate low-level feature representation. 

Edge information is processed by the lower-level regions of the human brain after 

receiving visual input; therefore, we simulate this process with Sobel convolution. The 

gradient magnitude is calculated as √𝐺𝑥
2 + 𝐺𝑦

2 to obtain a combined edge feature map 

from the horizontal (𝐺𝑥) and vertical (𝐺𝑦) edges. The formula for the entire process is 

as follows: 

 𝑌 = 𝛼 ∗ 𝐿𝐾𝐸𝐶𝑜𝑛𝑣(𝑥) + 𝛽 ∗ 𝐴𝑑𝑑(𝑆𝑜𝑏𝑒𝑙𝑥(𝑥), 𝑆𝑜𝑏𝑒𝑙𝑦(𝑦)) (1) 

where 𝛼 and 𝛽 are adjustable parameters that control the contribution of edge features. 

3.3 C2AT 

The backbone network of YOLO-VIS has been improved from the Backbone structure 

of YOLOv8. The original Backbone employs a series of convolutional and deconvolu-

tional layers, using the C2f module as the basic building block to achieve good feature 

extraction capabilities. However, the C2f structure performs poorly in feature extrac-

tion on sonar images [3], against this backdrop, we propose a novel C2AT module, as 

shown in Fig 4, which resembles the intermediate feature processing part of the human 

brain and enhances the feature extraction capability. The C2AT module is derived from 

the C2F module in YOLOv8 and introduces an efficient Visual Attention (VisAT) 

mechanism. Traditional attention mechanisms have limitations that need to be ad-

dressed; one is the computation of attention for either positions or channels, and the 

other is the generation of attention weights through additional subnetworks, which does 

not align with the actual processing of neurons. To overcome these shortcomings, 

Lingxiao Yang and others have proposed an efficient attention mechanism module 

based on the human brain’s attention mechanism. By designing an attention mechanism 

without additional parameters, it achieves accurate feature extraction. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

To better implement attention, it is necessary to evaluate the importance of each 

neuron. In neuroscience, neurons rich in information typically exhibit firing patterns 

that differ from those of their surrounding neurons. Moreover, activated neurons usu-

ally inhibit their neighboring neurons, a phenomenon known as spatial suppression. In 

other words, neurons with a spatial suppression effect should be assigned higher  

 

Fig. 4. The C2AT introduces the VisAT module into the original C2F module, incorporating 

neuron weight scaling for feature maps without designing additional sub-networks, thereby 

achieving feature attention functionality. 

importance. The simplest way to find these neurons is to measure the linear separability 

between a target neuron and other neurons. Based on these neuroscience findings, the 

following energy function is defined: 

 𝑒𝑡(𝑤𝑡 , 𝑏𝑡 , 𝒚, 𝑥𝑖) = (𝑦𝑡 − 𝑡̂)2 +
1

𝑀−1
∑ (𝑦𝑜 − 𝑥̂𝑖)

2𝑀−1
𝑖=1  (2) 

By introducing binary labels and adding a regularization term, the final energy func-

tion is defined as follows: 

 𝑒𝑡(𝑤𝑡 , 𝑏𝑡 , 𝒚, 𝑥𝑖) =
1

𝑀−1
∑ (−1 − (𝑤𝑖𝑥𝑖 + 𝑏𝑡))2 + (1 − (𝑤𝑖𝑡 + 𝑏𝑡))2𝑀−1

𝑖=1 + 𝜆𝑤𝑡
2 (3) 

According to [35], an analytical solution is proposed for the equation. 

 {
𝑤𝑡 = −

2(𝑡−𝜇𝑡)

(𝑡−𝜇𝑡)2+2𝜎𝑡
2+2𝜆

𝑏𝑡 = −
1

2
(𝑡 + 𝜇𝑡)𝑤𝑡

 (4) 

Where 

 {
𝜇𝑡 =

1

𝑀−1
∑ 𝑥𝑖

𝑀−1
𝑖=1

𝜎𝑡
2 =

1

𝑀−1
∑ (𝑥𝑖 − 𝜇𝑡)2𝑀−1

𝑖=1

 (5) 

Therefore, the goal of optimizing the energy function becomes solving the following 

equation: 



 𝑒𝑡
∗ =

4(𝜎̂2+𝜆)

(𝑡−𝑢)2+2𝜎̂2+2𝜆
 (6) 

Eq. 6 indicates that the lower the energy, the more distinct the neuron is from its 

surrounding neurons, making it more important for visual processing. Studies indicate 

that attention regulation in the mammalian brain typically manifests as a gain (i.e.,  

 

 

Fig. 5. The MSFFU module addresses the difficulty of multi-level feature interaction during fea-

ture fusion by designing deep fusion of multi-channel features and introducing large-kernel con-

volutions, achieving effective expression of multi-scale features. 

scaling) effect on neuronal responses. Therefore, we use a scaling operator instead of 

addition for feature refinement. The specific operation is shown in Eq. 7. 

 𝑋̃ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(
1

𝐸
)⨀𝑋 (7) 

where E groups all inputs across channel and spatial dimensions. A sigmoid function 

is added to constrain excessively large values in E; it does not affect the relative im-

portance of each neuron since the sigmoid is a unitary function. 

3.4 Multi-Scale Feature Fusion Unit 

Similar to how the human brain performs feature fusion in the IT area to aggregate 

different features into a unified representation and enhance the performance of subse-

quent recognition tasks, YOLOv8 employs the concept of Feature Pyramid Network 

(FPN) in part of its neck. However, this approach in forward-looking sonar image de-

tection has limitations such as localized feature fusion, a tendency to use simple oper-

ations, insufficient utilization of multi-scale learning mechanisms, difficulties in multi-

level feature interaction during feature aggregation, and a lack of consideration for the 

coupled interaction between features. Therefore, we introduce the MSFFU, which 

through a series of carefully designed operations, effectively integrates the semantic 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

information from different feature maps and reduces noise interference, thereby ad-

dressing many of the issues with feature fusion in existing methods, as shown in Fig 5. 

Specifically, for the two input feature maps F1 and F2, the following operations are 

performed: First, a pixel-wise subtraction is conducted between F1 and F2 to compute 

their difference. Subsequently, to ensure the non-negativity of the result, the absolute 

value of the subtraction outcome is taken. Next, to further extract and refine this differ-

ence information, a convolution operation is performed using a 3 × 3 convolution ker-

nel, which aims to capture local spatial features. Finally, the result of the convolution 

is activated using a Sigmoid function, yielding a continuous attention map ranging be-

tween 0 and 1. This map reflects the degree of difference between the two feature maps 

at the pixel level, encoding complementary information between the feature maps. 

Subsequently, a multi-scale feature learning mechanism is employed to enhance the 

effect of feature fusion, which realizes multi-scale integration based on convolutions 

with different kernel sizes, and is accomplished by the Multi-scale Feature Dense Fu-

sion Unit (MFDFU). The MFDFU unit consists of convolution operations in four 

branches, where three branches perform specific convolution fusion operations, includ-

ing one 3 × 3 convolution and two large-kernel convolutions, while the remaining 

branch operates with 1 × 1 convolutions. The results from these four branches are con-

catenated to obtain the fused feature. This process can be represented by Eq. 8. 

 𝑌 =  𝐶𝑜𝑛𝑐𝑎𝑡 (𝐶3(𝑋), 𝐿𝐾𝐶7(𝑋), 𝐿𝐾𝐶9(𝑋), 𝐶1(𝑋)) (8) 

where LKC7 and LKC9 represent convolutional kernels of size 7 and 9, respectively. 

Finally, feature fusion is performed through a Channel-wise Convolution Block 

(CWCB) [4], which specifically involves concatenating two feature inputs channel-

wise, followed by a 3 × 3 depth-wise convolution operation [7] to obtain the fused 

difference feature Ci.  

We applies the MSFFU to the upper and lower layer concatenation stage of the neck 

part in YOLOv8, aiming to address the issue of neglecting feature differences between 

layers during feature fusion in this part, while enhancing the multi-scale features of the 

neck part, thereby further improving the overall performance of the model. 

4 EXPERIMENT AND RESULT ANALYSIS 

4.1 Dataset and Experiments Setup 

UATD (Underwater Acoustic Target Detection) dataset [33] is a multibeam forward-

looking sonar dataset used for underwater target detection, collected by the Pengchen 

Lab using a Tritech Gemini 1200ik Multibeam Forward Looking Sonar in coastal and 

lake areas. The dataset comprises 10 classes, including cubes, spheres, cylinders, hu-

man bodies, cylindrical cages, rectangular cages, metal cans, tyres, aircraft, and 

BlueROV. It is divided into three separate sets: the training set containing 7600 images, 

the validation set containing 800 images, and the test set also containing 800 images.  



The computational platform used in this study is a work station equipped with an 

NVIDIA RTX 3090Ti, and the PyTorch serves as the software framework. The code-

base employed is mmdetection. 

4.2 Comparative experiment 

In the comparison phase, we selected the state-of-the-art single-stage object recognition 

models represented by YOLO, including: YOLOv3, YOLOv5, YOLOv6, YOLOv7, 

YOLOv8, YOLOv9, YOLOv10, YOLO11 and YOLO12. Among these, the training  

Table 1. Performance comparison of object detection model on the UATD dataset. P is the 

Params and G is GFLOPs.  The bold represents the best results. 

Type Model P G mAP mAP@s mAP@m mAP@l 

Two-

Stage 

Cascade 

R-CNN[1] 
69.2 204.3 0.81 0.038 0.373 0.361 

Dynamic 

R-CNN[37] 
68.7 198.5 0.814 0.128 0.367 0.357 

Faster 

R-CNN[21] 
41.5 180.1 0.808 0.063 0.362 0.332 

Mask 

R-CNN[8] 
44.1 192.6 0.783 0.117 0.35 0.336 

Sparse 

R-CNN[23] 
38.9 175.4 0.824 0.151 0.351 0.353 

Single-

Stage 

YOLOv3[20] 93.6 283.3 0.713 0.057 0.244 0.238 

YOLOv5[12] 9.1 24.0 0.814 0.025 0.372 0.388 

YOLOv6[14] 16.4 44.9 0.821 0.088 0.359 0.342 

YOLOv7[30] 6.2 13.9 0.802 0.04 0.32 0.318 

YOLOv8[11] 11.2 28.6 0.835 0.213 0.388 0.414 

YOLOv9[31] 7.2 26.7 0.816 0.188 0.352 0.455 

YOLOv10[29] 7.2 21.6 0.819 0.134 0.355 0.464 

YOLO11[13] 9.4 21.5 0.842 0.219 0.388 0.467 

YOLO12[25] 9.3 21.4 0.856 0.203 0.364 0.477 

Ours YOLO-VIS 9.6 25.7 0.862 0.219 0.397 0.449 
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Fig. 6. Recognition results of the improved method in real scenarios 

and testing of all models were conducted based on the small size models. Meanwhile, 

we also compared several two-stage recognition models improved from R-CNN, in-

cluding: Cascade R-CNN, Dynamic R-CNN, Faster R-CNN, Mask R-CNN, and Sparse 

R-CNN. As shown in Table 1, first, we can observe that two-stage models generally 

perform relatively well on most metrics. However, for the detection of small targets, 

the performance of these models is generally lower, which may be due to the fact that  

Table 2. Ablation comparison of model performance improvement on the UATD dataset. 

C2AT MSFFU LKECM mAP mAP@s mAP@m mAP@l 

   0.835 0.213 0.388 0.414 

✓   0.848 0.221 0.383 0.468 

✓   0.837 0.183 0.384 0.475 

✓   0.849 0.214 0.394 0.446 

✓ ✓  0.857 0.193 0.387 0.424 

✓ ✓  0.855 0.217 0.385 0.447 

✓ ✓  0.839 0.205 0.396 0.458 

✓ ✓ ✓ 0.862 0.219 0.397 0.449 

mailto:mAP@s
mailto:mAP@m
mailto:mAP@l


 

Fig. 7. Comparison of the PR-curve before and after the improvement. 

small targets are usually more difficult to detect and prone to being missed. The single-

stage YOLO series models still achieve decent scores on some metrics; for instance, 

YOLO12 achieves 0.856 mAP, surpassing the performance of most two-stage models 

and attaining the best results among existing models. Notably, the YOLO series demon-

strates particularly outstanding performance in large object detection. 

For our proposed YOLO-VIS, the method achieved the highest scores on the vast 

majority of metrics listed. This indicates that YOLO-VIS not only surpasses existing 

methods in overall detection performance but also demonstrates outstanding effects in 

handling detection tasks for targets of varying sizes. This reflects that drawing inspira-

tion from the human brain’s recognition mechanism has a guiding role in improving 

the accuracy of underwater sonar image recognition. Fig 6 presents the performance 

results of our model on actual forward-looking sonar images. 

Given the practical significance of model size and computational efficiency in real-

world applications, we conducted a comprehensive analysis of parameter counts 

(Params) and computational complexity (GFLOPs) across all evaluated models. Our 

findings reveal that although the proposed model does not achieve optimal lightweight 

characteristics, it demonstrates comparable efficiency metrics to all two-stage architec-

tures and remains competitive with the majority of single-stage counterparts. This bal-

anced performance profile ensures robust practical applicability without compromising 

detection accuracy. 

4.3 Ablation Experiment 

To evaluate the practical effectiveness of individual components in our proposed 

method, we conducted systematic ablation studies on the UATD dataset. First, we pre-

sent a comparison of the improved PR curves before and after the modifications, as 

shown in Fig. 7. The experimental results demonstrate that the enhanced YOLO-VIS 

achieves significant performance improvements across all detection categories com-

pared to the baseline YOLOv8 model. The specific improvements in the results can be 

found in Table 2, which elucidates the impact of the proposed elements on the overall 

detection performance. The results indicate that the proposed LKECM, C2AT, and 

MSFFU modules all contribute to the enhancement of detection performance. 
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Specifically, LKECM significantly increases the performance of various evaluation 

metrics through preprocessing, suggesting that the priority given to low-level feature 

processing in the brain-inspired recognition mechanism is effective. The introduction 

of C2AT has led to a significant improvement in performance, indicating that a mech-

anism similar to the human brain’s visual attention can be effectively applied in actual 

target recognition processes. The introduction of MSFFU has caused a slight decline in 

the recognition performance for small targets to some extent, but it has simultaneously 

led to a substantial improvement in the recognition performance for large targets. When 

multiple components are combined, the overall performance is enhanced, and we be-

lieve that this trade-off is acceptable. Through these three optimization measures, the 

best results on most metrics have been achieved when compared to the original 

YOLOv8 model. 

5 Conclusion 

This paper proposes a brain-inspired forward-looking sonar target recognition technol-

ogy named YOLO-VIS. Firstly, in response to the characteristics of forward-looking 

sonar images, which have low brightness and unclear edges, the method employs large-

kernel convolutions with a large receptive field and edge convolutions in different di-

rections to achieve low-level feature enhancement. Then, without introducing addi-

tional sub-networks, an attention weighting mechanism based on neuron weights is de-

signed and applied to the C2f module. Moreover, a multi-scale feature deep fusion 

method is adopted in the feature fusion stage to obtain more accurate feature represen-

tation. Extensive experimental results on the UATD dataset show that YOLO-VIS sur-

passes existing recognition methods in multiple performance metrics. In the future, we 

will explore its potential in real-world forward-looking sonar recognition tasks. 
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