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Abstract. Cardiac diseases significantly affect the structure and function of the 

left ventricle (LV) during the cardiac cycle.Purpose: Develop a robust framework 

(UAG) for precise detection and correspondence estimation of aberrant LV my-

ocardial motion, enhancing diagnostic accuracy in cardiac disease management. 

his paper proposes UAG, an innovative framework for LV motion estimation. 

The UAG framework integrates a U-shaped network architecture (R2UNet) for 

precise LV endocardial contour segmentation and a graph neural network (GNN) 

enhanced with attention mechanisms for robust feature matching. Initially, 

R2UNet is trained on cardiac magnetic resonance (CMR) images to extract dis-

criminative features representing key points along the LV myocardial boundary. 

Subsequently, the GNN, combined with the Sinkhorn algorithm, establishes ac-

curate correspondence between landmarks across diverse cardiac phases by lev-

eraging both spatial and semantic feature relationships. Performance evaluation 

on two publicly available cardiac datasets demonstrates UAG’s superiority over 

state-of-the-art methods. Using matching accuracy (ACC) and average perpen-

dicular distance (APD) as evaluation metrics, UAG achieves the highest ACC 

and lowest APD values, outperforming existing techniques in both normal and 

pathological LV contour scenarios. xperimental results validate UAG’s excep-

tional capability in LV motion estimation, particularly for images with abnormal 

contours. The integration of R2UNet’s multi-scale feature extraction and the at-

tention-guided GNN ensures robustness against morphological variations, high-

lighting its potential for clinical applications in cardiac diagnostics. 

Keywords: Left Ventricle, Myocardial Motion, U-shaped Network, Graph 

Neural Network, Image Segmentation, Endocardial Contour 

1 Introduction 

Cardiovascular diseases (CVDs) are the leading cause of mortality globally, with a 

staggering toll of 19.8 million lives lost in 2022 alone [1]. Within the spectrum of 

CVDs, encompassing conditions like coronary artery disease, hypertension, and heart 
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valve ailments, lies a significant impact on the left ventricle's (LV) structure and func-

tion throughout the cardiac cycle. This impact manifests through various phenomena, 

including morphological changes, anomalies in wall motion, and impaired LV func-

tionality. 

Recent research has illuminated the presence of dilatation and hypertrophic altera-

tions in the LV among patients afflicted with coronary artery disease. The cascade ini-

tiated by myocardial ischemia inflicts damage upon myocardial cells, prompting sub-

sequent remodeling and fibrosis processes within the myocardium. These transfor-

mations culminate in irreversible structural modifications in the LV [3]. In parallel, 

hypertension fosters persistent myocardial hypertrophy and chamber dilatation, disrupt-

ing typical ventricular wall motion and impairing diastolic function [4]. Consequently, 

individuals with hypertension often exhibit aberrant LV changes, adversely affecting 

both systolic and diastolic LV function. Similarly, individuals suffering from heart 

valve disease frequently present with LV dilatation and hypertrophy, potentially ac-

companied by proliferative changes [5]. These structural adaptations profoundly influ-

ence LV systolic and diastolic functions, thereby impacting cardiovascular health. 

Moreover, the progression of heart failure manifests as left ventricular failure, ham-

pering efficient blood ejection from circulation. Marked by diminished myocardial con-

tractility and ventricular diastolic dysfunction, left ventricular failure represents a crit-

ical facet of heart failure's impact on cardiac function. Analyzing aberrant exercise pat-

terns induced by cardiovascular diseases (CVDs) holds promise in identifying individ-

uals at heightened risk for heart disease. This analysis offers an early warning mecha-

nism, facilitating timely intervention and treatment to mitigate the risk of CVD-related 

mortality. At present, the acquisition of LV images predominantly involves techniques 

such as echocardiography, magnetic resonance imaging (MRI), and computed tomog-

raphy (CT). Of these, MRI stands out as the preferred modality for analyzing LV my-

ocardial motion owing to its inherent advantages. These include artifact-free imaging, 

elimination of the need for contrast agent injections, non-ionizing radiation, minimal 

impact on muscular tissues, and superior visualization of soft tissues [5,6]. Therefore, 

we utilize MRI images for LV motion estimation in this study. 

Existing methods for LV motion estimation can be divided into three categories: 

deformation-model-based methods, image-registration-based methods, and feature 

tracking. Deformation-model-based methods construct a geometric or topological 

model of the heart to describe LV motion, and then calculate strain information in dif-

ferent myocardial segments for structure analysis. Image-registration-based methods 

utilize cardiac images extracted from different times and build a spatial transformation 

function or deformation map to estimate the LV motion. Feature tracking methods use 

feature point information to track the displacement of marker points on the LV in the 

image sequence, analyze the correspondence between marker points, and realize the 

estimation of LV motion. Compared to the other techniques, methods based on feature 

tracking eliminate the complex model building and parameterization process and can 

be flexibly adjusted according to different image types and qualities, etc. Due to the 

simplicity and flexibility of the feature tracking method, it is often applied in clinical 

scenarios. 
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In feature tracking methodologies, pivotal challenges revolve around feature extrac-

tion and subsequent matching. Feature extraction necessitates image segmentation to 

delineate the LV contours from intricate backgrounds, enhancing edge clarity to facili-

tate the extraction of discernible LV features. Traditional approaches to feature extrac-

tion encompass methods such as Scale-Invariant Feature Transform (SIFT) [7], 

Speeded-Up Robust Features (SURF) [8], and Histogram of Oriented Gradients (HOG) 

[9]. Atehortúa et al. [10] introduced a spatio-temporal saliency descriptor tailored for 

representing dynamic motion patterns observed in cardiac cine MRI sequences. This 

descriptor amalgamates spatial and temporal domain information, quantifying motion 

characteristics by assessing the saliency of motion. Nonetheless, the homogeneity of 

myocardial tissue and the sparse internal features within cine MRI [11] present chal-

lenges for these methods in establishing correspondence between myocardial contours. 

The efficacy of feature matching profoundly influences the ultimate matching out-

come. Graph matching algorithms serve as the cornerstone of LV feature matching 

methods. Wu et al. 12] proposed a left ventricular motion estimation approach leverag-

ing Full Convolutional Network (FCN) feature descriptors for LV myocardial contour 

segmentation and position coordinate extraction. This approach is complemented by a 

graph matching algorithm for feature alignment. However, graph matching algorithms 

necessitate assumptions regarding the LV contour's circular nature. They derive graph 

edges by introducing auxiliary points, typically situated at the LV center, and connect-

ing each point with the auxiliary point and its adjacent counterparts. Yet, deviations 

from the circular LV contour, such as those observed in abnormal cases, lead to misa-

lignment between auxiliary points and the true LV center. Consequently, discrepancies 

arise between the derived graph edges and actual LV features, resulting in suboptimal 

feature matching outcomes. 

The LV motion estimation framework primarily encompasses segmentation and fea-

ture matching processes. U-Net [13] has demonstrated efficacy in medical image seg-

mentation. It incorporates skip connections during the up-sampling phase, facilitating 

the fusion of information from lower and higher levels. This amalgamation enables the 

acquisition of both local and global information simultaneously, enhancing the net-

work's ability to discern relationships between image regions. Consequently, U-Net 

processes medical image data more efficiently, leading to improved segmentation ac-

curacy and operational speed. Recursive Residual U-Net (R2UNet) [14] extends the U-

Net architecture by introducing recursive residual convolution units. Its effectiveness 

in segmentation has been verified across various medical imaging domains, including 

eyeball, skin, and kidney segmentation. However, R2UNet's application in cardiac MRI 

remains limited. 

Graph Neural Networks (GNN) iteratively enrich and update node representations 

within graph structures, thereby enhancing feature matching accuracy by incorporating 

global graph structure information. Sarlin et al. [15] introduced Superglue, a feature 

matching approach leveraging attentional GNNs. By integrating the attention mecha-

nism with GNNs, the model can precisely focus on relevant features for the task at 

hand, thereby enhancing feature matching accuracy. Nonetheless, the applicability of 

attentional GNNs in cardiac MRI feature matching remains unexplored. 



 

In this study, we propose a motion matching framework (UAG) for LV feature 

points. Our framework leverages feature segmentation by R2UNet [14] and feature 

matching using Attention Graph Neural Networks [15]. Experimental results demon-

strate promising matching outcomes. 

2 Methods 

2.1 Dataset 

In this paper, the database of 33 subjects [16] and the MICCAI 2009 challenge database 

[17] are used for training and evaluating the effectiveness of the proposed method. De-

tails information of the datasets are shown in Table 1. The database of 33 subjects, for 

example, consisted of short-axis MRI cases from 33 patients. For each case, 8 to 15 

image slices were taken from the atrioventricular ring to the apex. Each slice is a 

256x256 image. Each case contains an image sequence consisting of exactly 20 frames. 

For all images, LV endocardial contours delineated by experienced cardiologists were 

used as the ground truth. Images slices in 8th and 20th phases for all cases are used as 

the training data for our motion estimation framework, and slices in 1st and 10th phases 

were used to validate the performance of the proposed method. 

Table 1. Details of the databases. 

 33 subjects  MICCAI 2009 

Number of cases  33 cases   15 training cases, 

  15 test cases, 

and 15 online cases 

Number of slices per 

case  

8–15   6-12 

Slice size  256 × 256  256 × 256 

Number of phases  20 phases  20 phases 

Ground truth  LV contours in all phases 

of each case 

LV contours in ED and 

ES phases of each case 

Training data Slices in 8th and 20th 

phases for all cases   

The 15 training cases 

Validation data Slices in 1st and 10th 

phases for all cases   

The 15 test cases and  

the 15 online cases 

2.2 Experimental Setting 

The proposed framework, UAG, integrates R2UNet for image segmentation and atten-

tion GNN for feature matching. Initially, R2UNet is employed to segment the endocar-

dial contour of the left ventricle from cardiac MRI images, with feature extraction con-

ducted during down-sampling. Subsequently, the extracted features are subjected to 

analysis utilizing attention GNN and the Sinkhorn algorithm to estimate the corre-

spondence of points across different MRI scans. 
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In our experimental setup, the R2UNet was initially trained to perform LV endocar-

dial contour segmentation. To enhance the model's generalization capabilities, data 

augmentation techniques, including scaling, vertical flipping, and horizontal flipping, 

were employed to augment the training dataset. This augmentation strategy aimed to 

increase the number of training samples, thereby mitigating overfitting and enhancing 

the overall generalization performance of the R2UNet. Consequently, the training da-

taset comprised a total of 2088 images. 

For assessing matching accuracy, the database comprising 33 subjects provided cor-

responding points located on the LV endocardial contour for all images. These manu-

ally delineated points served as the ground truth for evaluating the effectiveness of the 

GNN network. Additionally, as the MICCAI 2009 challenge database lacked ground 

truth correspondence between endocardial contours from end-diastole (ED) to end-sys-

tole (ES), a robust point matching algorithm [18] was employed to estimate the trans-

formation function between the two endocardial contours. Subsequently, this transfor-

mation function was utilized to map manually outlined points from the source image to 

the target image, thereby establishing their corresponding points. Following the acqui-

sition of the trained segmentation model, the GNN was subsequently trained on the 

same training dataset. 

2.3 Image Segmentation 

Inspired by the deep residual model [19], RCNN [20] and U-Net [13], R2UNet uses a 

recurrent residual convolutional unit in the network structure of U-Net. The network 

structure is shown in Fig 1. Each recurrent residual convolutional unit contains two 

cov.+ReLUs. 

The recursive convolution operation employed in the cov.+ReLUs framework uti-

lized in this study entails a single convolutional layer followed by two subsequent re-

cursive convolutional layers. The adoption of Recurrent Convolutional Layers (RCLs), 

along with RCLs integrated with residual units, in lieu of conventional forward convo-

lutional layers within both encoding and decoding units, facilitates a more efficient de-

velopment of deep models. Additionally, RCLs integrated within the R2UNet architec-

ture incorporate effective feature accumulation mechanisms. These mechanisms ensure 

the attainment of superior and more robust feature representations across different time 

steps, facilitated by feature accumulation within the model. Consequently, the model 

excels in extracting very low-level features crucial for segmentation tasks across di-

verse medical imaging modalities. 



 

 

Fig. 1. The network architecture of R2UNet. 

The initial layer of R2UNet comprises three components: convolution, activation, and 

max pooling. With an input image size of 128×128 pixels, the pooling operation com-

presses the image dimensions, while the augmentation in filter count per layer enhances 

feature depth. Consequently, the output entails a halved image size for sampling, with 

each pixel possessing a feature dimension of 32. This output serves as input for the 

subsequent layer, where a similar sequence of convolution, activation, and pooling 

steps further reduces image size while augmenting feature dimension to 128. This 

down-sampling process is iterated across subsequent layers, resulting in feature extrac-

tion at increasingly coarse scales. Notably, as down-sampling layers increase, extracted 

features become progressively coarser. 

Feature extraction from the first three layers of the network is prioritized for identi-

fying feature points. Within the trained R2UNet, features are extracted from points in 

each layer pre-max-pooling, with the number of features per layer determined by filters. 

To enhance results, multi-scale features from relevant points are extracted, combining 

features from the first layer with those from the second and third layers. Given the 

abundance of features at coarser scales, features from the finest scale of the first layer 

are also concatenated to yield the final feature set. Considering the feature dimensions 

extracted from the first, second, and third layers of R2UNet are 32, 64, and 128, respec-

tively, the combined features from these layers yield a 256-dimensional representation 

of point characteristics within the image. 

For image segmentation we use dice loss as our loss: 

 𝐿𝑂𝑆𝑆1 = 1 −
|𝑋∩𝑌|

|𝑋|+|𝑌|
 (1) 
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The set of pixels in the segmented image in the dataset serves as the ground truth 𝑋, 

and the network model predicts the set of pixels in the segmented image as the predic-

tion value 𝑌, where |𝑋 ∩ 𝑌| denotes the size of the intersection of 𝑋 and 𝑌, while |𝑋| 
and |𝑌| denote the sizes of the respective sets of pixels. 

2.4 Feature Matching 

Attentional GNN.  

We extracted features of feature points from two different cardiac MRIs, one for end-

diastolic(ED) D and one for end-systolic(ES) S, m and n feature points on the left ven-

tricular silhouette according to the method used in this paper, denoted as 𝐷’ ≔
{𝑝1, … , 𝑝𝑚} and 𝑆’ ≔ {𝑝1 , … , 𝑝𝑛}, respectively. The information of each feature point 

can be composed of two parts, the position information of feature point i, 𝑝𝑖 ≔
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), and the feature information 𝑑𝑖, where (𝑥𝑖 , 𝑦𝑖) is the coordinates of the fea-

ture point in the original image, 𝑧𝑖 is the feature point confidence, and 𝑑𝑖 is a 256-di-

mensional feature vector. After obtaining 𝑝𝑖  and 𝑑𝑖, the similarity of feature description 

and location should be taken into account at the same time when performing feature 

matching via the graph neural network, combining the location information and feature 

vectors for location coding. In this paper, we use the Multilayer Perceptron (MLP) to 

fuse 𝑝𝑖  into 𝑑𝑖, and obtain the joint feature 𝑐𝑖 that fuses the location information and 

feature information: 

 𝑐𝑖 = 𝑑𝑖 + 𝑀𝐿𝑃(𝑝𝑖) (2) 

After obtaining the features 𝑐𝑖 of the feature points, they are fed into a GNN that inte-

grates an attention mechanism. This GNN architecture comprises several attention ag-

gregation structures, each comprising a self-attention layer and a cross-attention layer. 

The self-attention layer enhances the specificity of input features for matching pur-

poses, while the cross-attention layer determines matching target points by assessing 

the similarity between feature points across two images. Through iterative processes, 

the feature similarity between feature points and their corresponding target points is 

progressively refined. Given the relatively sparse features on the endocardium of the 

LV in cine MRI, the learning process is comparatively straightforward [9], this paper 

uses three attention aggregation structures. There are two types of undirected edges in 

the graph [21,22], 𝐸𝑠𝑒𝑙𝑓  denotes an internal edge in one image, indicating that feature 

point i connects to other feature points in the same image. 𝐸𝑐𝑟𝑜𝑠𝑠  denotes an external 

edge between two different images, indicating that feature point i connects to other 

feature points in the other image. All the undirected edges 𝐸𝜖{𝐸𝑠𝑒𝑙𝑓 , 𝐸𝑐𝑟𝑜𝑠𝑠}.Infor-

mation is propagated along two types of edges using the message passing formulation 

[23,24]. The feature information 𝑚𝐸→𝑖  is computed by attention aggregation in the 

GNN.𝑚𝐸→𝑖 is the result of aggregation of all feature points { 𝑗: (𝑖, 𝑗)𝜖𝐸}: 

 𝑚𝐸→𝑖 = ∑ 𝑊𝑖𝑗𝑗:(𝑖,𝑗)𝜖𝐸 𝑉𝑖𝑗 (3) 

 𝑊𝑖𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥𝑖(𝑞𝑖
𝑇𝑘𝑗) (4) 



 

The process of obtaining 𝑚𝐸→𝑖 is analogous to a database search by querying 𝑞𝑖  for the 

values 𝑣𝑗 of certain elements based on their keys 𝑘𝑗.We obtain the attention weight 𝑤𝑖𝑗  

from the Softmax function of the 𝑞𝑖 and 𝑘𝑗. For (𝑄, 𝑂)ϵ{𝐷, 𝑆}2, we can denote the ob-

tained 𝑞𝑖, 𝑘𝑗  and 𝑣𝑗  as: 

 𝑞𝑖 = 𝑊1𝑐𝑖
𝑙𝑄

+ 𝑏1, 𝑘𝑖 = 𝑊2𝑐𝑖
𝑙𝑄

+ 𝑏2, 𝑣𝑖 = 𝑊3𝑐𝑖
𝑙𝑄

+ 𝑏3 (5) 

𝑙 denotes the information in layer l of the network where l is computed for 𝐸𝑠𝑒𝑙𝑓  for odd 

numbers and 𝐸𝑐𝑟𝑜𝑠𝑠 for even numbers. The representation 𝑐𝑖
(𝑙+1)𝐷

 of feature point i in 

image D iteratively updated at layer (l+1) is calculated by the following equation: 

 𝑐𝑖
(𝑙+1)𝐷

= 𝑐𝑖
𝑙𝐷

+ 𝑀𝐿𝑃 ([𝑐𝑖
𝑙𝐷

, 𝑚𝐸→𝑖]) (6) 

Where [ , ] denotes tandem operation. All feature points in image S are similarly up-

dated. A number of iterative updates were performed to obtain the feature descriptors 

𝑦𝑖
𝐷 , 𝑦𝑗

𝑆(𝑖𝜖𝐷’, 𝑗𝜖𝑆’) for the two sets of linear projections, take as an example: 

 𝑦𝑖
𝐷 = 𝑊𝑐𝑖

𝐿𝐷
+ 𝑏 (7) 

The structure of the whole network is shown in Fig 2. 

 

Fig. 2. The network architecture of Attentional GNN. 

Feature matching using Sinkhorn algorithm.  

In this paper, we use the Sinkhorn algorithm [25] to compute the final feature point 

matching results. According to Eq.7 to obtain 𝑦𝑖
𝐷 , 𝑦𝑗

𝑆(𝑖ϵ𝐷’, 𝑗ϵ𝑆’),it is necessary to com-

pute to obtain an allocation matrix 𝐴ϵ[0,1]𝑚×𝑛.There are two characteristics of feature 

point matching on the LV endocardium: Feature points on the ED picture to the corre-

sponding feature points on the ES picture have and only one feature point corresponds 

to it. Matching is performed based on the labeled expert points in the existing dataset, 

the number of feature points on the two images is the same, and all feature points can 

be matched, 𝑚 = 𝑛. So we get an allocation matrix 𝐴 that needs to satisfy 𝐴1𝑛 = 1𝑚 

and 𝐴𝑇1𝑚 = 1𝑛. In order to obtain the allocation matrix 𝐴, we also need to compute 
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the score matrix 𝐵ϵ𝑅𝑚×𝑛 and maximize the score∑ 𝐴𝑖,𝑗𝑖,𝑗 𝐵𝑖,𝑗. Constructing separate 

representations for all the m × n potentially possible matches is very difficult, so we 

need to utilize the feature vector similarity of the different feature points between the 

results 𝑦𝑖
𝐷 and 𝑦𝑗

𝑆 obtained from the attentional GNN as the score: 

 𝐵𝑖,𝑗 = 𝑦𝑖
𝐷 ⋅ 𝑦𝑗

𝑆, ∀(𝑖, 𝑗)𝜖𝐷’ × 𝑆’ (8) 

where ⋅ denotes the inner product. To compute the distribution matrix 𝐴 is to compute 

the optimal transmission problem between discrete distributions 1m and 1n of the score 

matrix 𝐵 [26]. By iteratively updating the rows and columns with Sinkhorn algorithm, 

the entropy regularization formulation naturally yields the desired allocation, and it can 

be viewed as a microscopic Hungarian algorithm [27]. The final allocation matrix 

𝐴(𝑖, 𝑗) is obtained, and 𝐴(𝑖, 𝑗) denotes the matching probability between feature point i 

in image D and feature point j in image S. 

Loss. 

In the feature matching process, it is trained by supervised approach through the truth 

value 𝑇 = {(𝑖, 𝑗)} ⊂ 𝐷’ × 𝑆’. The ground truth T is obtained based on the correspond-

ence of expert points between images in the dataset. With this data we minimize the 

negative log likelihood loss: 

 𝐿𝑂𝑆𝑆2 = − ∑ log 𝐴𝑖,𝑗(𝑖,𝑗)𝜖𝑇  (9) 

3 Results 

To assess the performance of the proposed feature matching method, 16 points sampled 

uniformly along the LV endocardial contour of each image serve as reference points, 

with matching accuracy serving as the evaluation metric. This experiment compares the 

performance of UAG with several state-of-the-art graph matching (GM) methods, in-

cluding Spectral Matching with Affine Constraints (SMAC) [28], Integer Projected 

Fixed Point (IPFP) [29], Re-weighted Random Walk Matching (RRWM) [30], and 

Convex Cost Function Graph Matching (CGM) [12], utilizing FCN descriptors [12]. 

Matching accuracy for each case is determined by aggregating accuracy scores across 

all slices. 

The matching accuracy on two databases, the database of 33 subjects and the 

MICCAI 2009 challenge database, is depicted in Fig 3 and Fig 4, respectively. The 

results demonstrate that UAG consistently achieves significantly higher matching ac-

curacy compared to other GM methods. This observation validates UAG's superiority 

over state-of-the-art GM algorithms in addressing the LV correspondence estimation 

problem. 



 

 

Fig. 3. Comparison of matching accuracy obtained by UAG and other methods on the 33-sub-

ject database. 

 

Fig. 4. Comparison of matching accuracy obtained by UAG and other methods on the MICCAI 

2009 database. 

Furthermore, we evaluate the performance of UAG for LV motion estimation by esti-

mating the transformation function between cine MRI images at different image slices. 

The endocardial contour of a given slice, annotated by an expert, is mapped to a corre-

sponding slice based on the estimated transformations. The resultant mapping errors 

are indicative of the performance of LV motion estimation, measured by comparing the 

mapped contour to the original endocardial contour. 
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Table 2. Comparison of APD between UAG and other GM algorithms using the database of 33 

subjects, with optimal results shown in bold. 

 SMAC IPFP RRWM CGM UAG 

1 1.93 1.64 1.62 1.62 1.49 

2 0.96 0.95 0.96 0.94 1.16 

3 1.29 1.23 1.28 1.22 1.27 

4 1.32 1.33 1.35 1.43 1.16 

5 1.51 1.62 1.63 1.62 1.50 

6 1.51 1.49 1.60 1.49 1.85 

7 2.23 2.14 2.08 2.14 2.21 

8 2.05 1.95 1.89 1.73 1.49 

9 2.85 1.39 1.61 1.47 1.86 

10 2.03 1.73 1.84 1.73 1.97 

11 2.61 2.59 2.51 2.64 2.20 

12 1.22 1.11 1.12 1.07 1.16 

13 0.86 0.86 0.86 0.86 1.04 

14 1.67 1.81 1.80 1.89 0.92 

15 1.61 1.31 1.55 1.26 1.51 

16 1.87 1.79 1.88 1.76 1.36 

17 1.94 1.93 2.04 1.68 1.18 

18 0.95 0.94 0.96 0.94 1.04 

19 1.35 1.25 1.30 1.25 1.06 

20 1.66 1.53 1.76 1.53 1.52 

21 2.09 1.99 2.23 2.05 1.34 

22 2.07 2.04 2.06 2.04 1.64 

23 4.94 2.15 2.45 2.29 2.10 

24 2.07 1.80 2.24 1.83 0.98 

25 1.77 1.77 1.69 1.75 2.11 

26 2.53 2.22 2.31 2.24 1.38 

27 3.81 3.64 3.56 3.52 3.21 

28 1.84 1.48 1.84 1.57 1.20 

29 1.75 1.35 1.58 1.34 1.04 

30 2.09 1.96 2.07 1.94 1.06 

31 2.13 2.13 2.36 2.13 1.29 

32 1.52 1.52 1.92 1.55 1.91 

33 2.01 1.97 1.93 1.99 1.76 

Average 1.97 1.71 1.81 1.71 1.52 

 

  



 

Table 3. Comparison of APD between UAG and other GM algorithms using the MICCAI 2009 

challenge database, with optimal results shown in bold. 

 SMAC IPFP RRWM CGM UAG 

1 2.85 1.71 1.92 1.62 0.85 

2 1.80 1.78 1.83 1.71 1.21 

3 2.36 2.00 2.11 1.98 1.21 

4 1.72 1.59 1.84 1.56 1.44 

5 2.41 1.93 2.22 1.89 1.41 

6 1.40 1.42 1.53 1.23 1.33 

7 2.82 2.41 2.79 2.32 2.32 

8 2.83 2.75 2.60 2.76 2.11 

9 2.21 2.23 2.19 2.17 1.80 

10 2.98 2.86 2.91 2.87 1.16 

11 3.30 2.93 3.29 2.92 2.23 

12 4.33 4.30 4.64 4.29 5.82 

13 2.29 2.21 2.22 2.19 2.23 

14 2.67 2.72 2.71 2.71 3.84 

15 2.10 1.99 2.01 2.02 1.17 

16 2.47 1.76 1.81 1.60 1.89 

17 1.54 1.28 1.41 1.21 1.73 

18 2.26 1.86 2.22 1.69 1.22 

19 2.05 1.75 1.97 2.03 1.34 

20 2.10 1.97 2.22 1.99 2.15 

21 3.37 2.28 2.83 2.17 1.65 

22 2.05 2.07 2.08 2.07 3.13 

23 2.06 2.05 2.45 1.91 1.83 

24 1.88 1.86 1.87 1.87 2.28 

25 2.91 2.80 2.75 2.77 2.21 

26 2.34 2.22 2.31 2.22 1.92 

27 2.15 2.04 2.04 2.08 1.37 

28 1.76 1.81 1.79 1.80 1.44 

29 2.46 2.44 2.46 2.44 2.46 

30 2.15 1.88 2.01 1.83 2.02 

Average 2.39 2.16 2.30 2.13 1.96 

For each case, a trained segmentation model is employed to predict the endocardial 

contours of both the source and target images, subsequently estimating the correspond-

ence matrix between these contours. The average perpendicular distance (APD) [17] is 

utilized as a metric to assess the performance of LV motion estimation, where lower 

APD values signify superior performance. 

Experimental results obtained using UAG are compared with SMAC, IPFP, RRWM, 

and CGM methods. The comparison results are summarized in Tables 2 and 3. It is 

evident that UAG consistently exhibits lower APD values compared to other methods 

in the majority of cases, indicating its superiority for LV motion estimation using MRI 

images. 
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4 Discussion 

As depicted in Fig. 3 and Fig. 4, UAG exhibits superior matching accuracy results on 

two publicly available cardiac MRI image databases. Furthermore, UAG demonstrates 

better and more consistent performance across specific cases. Particularly noteworthy 

is its performance on the 33-subject database, where in cases such as 8 and 29, the 

matching accuracy of alternative methods falls below 0.7, while UAG maintains a sta-

ble accuracy level above 0.9. 

The limitations of graph matching methods become apparent when applied to MRI 

scans depicting abnormal LV) contours. In these methods, the LV contour is typically 

assumed to conform to a circular shape. Consequently, auxiliary points are introduced 

at the LV center to establish the graph's edges, connecting each contour point with the 

auxiliary point and its adjacent counterparts, thereby representing the LV's topology 

structure. However, deviations from this circular assumption, often observed in LV 

contours with non-circular structures, can cause auxiliary points to stray from the LV 

contour center. This discrepancy may lead to significant disparities between edges, 

thereby compromising the performance of graph matching (GM) methods in the pres-

ence of LV anomalies. 

In contrast, the proposed UAG framework does not rely on auxiliary points for con-

structing the LV graph. Consequently, UAG achieves remarkable matching accuracy 

even in cases with abnormal LV contours, underscoring its robustness and efficacy in 

accommodating variations in LV morphology (as illustrated in Fig. 5). 

 

Fig. 5. Demonstrate abnormal LV contours. The first and the second lines show corresponding 

slices in ED and ES phases, respectively, for case 8 and case 29. 

Furthermore, as can be seen from Tables 2 and 3, UAG possesses the lowest average 

APD compared to other graph matching methods, and average APD was 0.19 and 0.17 

ED 

ES 

Case 8 Case 29 



 

lower than CGM in the two publicly available cardiac MRI image databases. For each 

case, the UAG yielded the highest number of cases with the lowest APD. 

5 Conclusion 

This paper proposes a LV motion estimation framework, leveraging R2UNet for myo-

cardial segmentation and feature extraction, while employing a graph matching net-

work with an attention mechanism for feature matching. Experimental evaluations are 

conducted on two publicly available cardiac MRI image databases to assess the perfor-

mance of the proposed framework, termed UAG. Results demonstrate that UAG sur-

passes other state-of-the-art methods in terms of feature matching accuracy and LV 

motion estimation accuracy using cardiac MRI images. Notably, UAG exhibits superior 

performance, particularly in matching accuracy and motion estimation accuracy, when 

applied to images with abnormal contours. This finding underscores the robustness of 

the proposed framework against LV contour abnormalities, highlighting its potential 

for clinical applications. 
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