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Abstract: Optimizing the stability and control performance of complex networks 

often hinges on effectively identifying critical nodes for targeted intervention. 

Due to their inherent complexity and high dimensionality, large-scale energy 

flow networks, prevalent in domains like power grids, transportation, and 

financial systems, present unique challenges in selecting optimal nodes for 

resource allocation. While numerous centrality measurements, such as Katz 

centrality, eigenvector centrality, closeness centrality, betweenness centrality, 

and PageRank, have been proposed to evaluate node importance, the impact of 

different centrality metrics on stability outcomes remains inadequately 

understood. Moreover, networks manifest diverse structural characteristics—

including small-world, scale-free, and random graph properties—which further 

complicates the optimization problem. This paper systematically investigates 

how-various node centrality measurements influence control stability across 

representative complex network structures. A unified energy-flow dynamical 

model is developed, and performance metrics such as 𝐿1 is employed to quantify 

the network stability implications of employing different centrality metrics. 

Extensive numerical simulations over statistically generated network ensembles 

reveal significant variances in stability outcomes, highlighting the crucial role of 

centrality selection. The findings underscore the sensitivity of energy-flow 

stability to seemingly minor changes in topological node rankings, providing 

practical insights for enhancing control efficiency and robustness in real-world 

networked systems.  
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1 Introduction  

Complex networks serve as fundamental models for analyzing dynamics and stability 

across various scientific and engineering disciplines, including power grids, 

transportation networks, financial systems, and epidemic spread [1–5]. Among these, 

energy-flow networks—where energy broadly defined as physical power, resource 

flow, or economic value propagates among interconnected nodes-are particularly 

critical due to their foundational roles in societal functioning and economic stability. 

Optimizing and controlling such networks efficiently is essential, given their impact on 

public welfare, economic resilience, and infrastructure security [6, 7]. 

However, controlling large-scale energy-flow networks poses significant challenges 

primarily due to their complexity and scale [8]. These networks typically encompass 

thousands of nodes and edges with highly nonlinear dynamics, heterogeneous node 

characteristics, and complex, interconnected topologies. Such intricate structures make 

the identification of optimal control strategies extremely difficult, often demanding 

extensive computational resources and sophisticated analytical tools [9,10]. 

Significant research efforts have been dedicated to the stability optimization of 

energy-flow networks. For instance, studies focusing on power grid stability have 

explored decentralized and distributed control methods, aiming to enhance robustness 

against cascading failures through localized interventions [11]. Similarly, in energy 

transportation networks, optimization models have emphasized the dynamic 

management of resource flows to minimize congestion and improve service reliability 

[12]. In financial systems, network-based stability assessments have highlighted the 

importance of identifying critical nodes whose failure could lead to widespread 

financial contagion, driving regulatory interventions to mitigate systemic risks [13]. 

These studies have substantially advanced our understanding of network dynamics, yet 

rarely address explicitly how different methods of node centrality evaluation impact 

stability optimization outcomes [14-16]. 

Centrality measures provide powerful methods for prioritizing nodes within 

complex networks, offering strategic guidance for targeted control. Commonly utilized 
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centrality metrics such as Katz centrality [17], eigenvector centrality [18], closeness 

centrality [19], betweenness centrality [20], and PageRank [21], each capture distinct 

aspects of node importance. Employing these measures enables decision-makers to 

allocate resources efficiently to critical nodes, thereby maximizing the overall network 

performance [22]. Despite the widespread use of centrality measures in vulnerability 

analysis and influence spreading scenarios, their systematic comparison and relevance 

to stability optimization within energy-flow contexts remain underexplored. 

Investigating the relationship between centrality measures and network control 

performance is particularly meaningful, as it offers practical guidelines for resource 

allocation [25]. By selecting nodes accurately based on centrality analysis, managers 

can strategically invest limited resources into nodes that disproportionately impact 

network stability, thus enhancing performance and resilience with minimal intervention 

[26,27]. 

Therefore, this paper aims to bridge this critical gap by addressing two fundamental 

research questions: (i) How do distinct centrality metrics affect network stability and 

control efficiency in energy-flow dynamics? (ii) To what extent do underlying network 

structures, such as small-world, scale-free, and random topologies, modulate the 

efficacy of centrality-based control strategies? To answer these questions, we present a 

generalized dynamical model of energy flows, utilizing stability metrics such as 𝐿1 and 

Hankel norms. 

Through rigorous numerical simulations across diverse synthetic network 

topologies, this research systematically compares the stability outcomes associated 

with various centrality metrics. Our findings reveal notable differences in performance 

directly attributable to the choice of centrality methods and underline the significant 

interplay between network structure and node prioritization. Ultimately, the insights 

offered by this analysis provide critical theoretical foundations and practical 

implications for optimizing energy-flow networks, guiding effective and efficient 

decision-making in complex, real-world network management scenarios. 

2 Energy Flow Networks Model 

Numerous real-world infrastructures, such as power systems, supply chains, and 

transportation networks, can be conceptualized as energy flow networks [28, 29], where 



 

each node corresponds to a subsystem that stores or processes some resource-like 

quantity, while each directed link carries a positive weight specifying capacity, flow 

rate, or cost. The following formulation, adapted from the buffer-based model of [28] 

yet reframed to underscore resource transfers, offers a unified lens for studying stability 

and control in large interconnected systems. 

2.1 Mathmatical Model 

Power grids, manufacturing lines, and logistics systems can all be viewed through the 

prism of resource flow networks, where each node accumulates or transforms a 

commodity and each directed edge imposes capacity or efficiency constraints [28,29]. 

The broader category of complex networks arises whenever the topology-potentially 

small-world, scale-free, or a hybrid-strongly affects operational outcomes [30-32]. 

Node buffers, edge capacities, and nonnegativity requirements motivate the positive 

linear systems framework [28], ensuring that stored quantities never become negative. 

Small-world designs reduce average path lengths, potentially speeding up 

distribution but increasing the likelihood of regional bottlenecks. Scale-free graphs, 

dominated by a handful of hubs, exhibit robustness under random failures yet suffer if 

key hubs overload [33]. Many real systems combine these traits [34], creating hybrid 

effects on overall stability. Quantifying how different structural patterns translate to 

distinct global performance characteristics remains fundamental when developing 

control policies that preserve nonnegative resource flows. 

Minor modifications in network connectivity, such as inserting shortcuts or 

reassigning link weights, can shift a system's feasible region. A single overloaded node 

may trigger a domino of inefficiencies. By generalizing the buffer viewpoint of [28] to 

emphasize structural versatility, one captures both high-level topological influences 

and the potential for significant interactions across the network. 

This perspective elucidates how each topology interacts with flow constraints, 

guiding more effective allocation and enhancing resilience in large-scale resource 

networks. 
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2.2 Directed Graph and Weighted Adjacency 

Let 

𝒢̂ = (𝒱, ℰ, 𝒮), 

where 𝒱 = {𝑣1, … , 𝑣𝑛} is the node collection, ℰ ⊆ 𝒱 × 𝒱 is the directed edge set, and 

each link 𝑒ℓ has a positive weight 𝑠𝑒ℓ . Writing 𝑠𝑖𝑗  for the weight of (𝑖, 𝑗), the adjacency 

matrix 𝑀𝒢̂ ∈ ℝ
𝑛×𝑛  is given by 

[𝑀𝒢̃]𝑖𝑗
= {

𝑤𝑗𝑖 ,  if (𝑗, 𝑖) ∈ ℰ

0,  otherwise 
 

For node 𝑖, its in-neighborhood is 𝒩𝑖
in = {𝑗 ∣ (𝑗, 𝑖) ∈ ℰ}, and its out-neighborhood 

is 𝒩𝑖
out = {𝑗 ∣ (𝑖, 𝑗) ∈ ℰ}. 

Following [28], suppose there is an origin subset 𝒱𝑜 = {1,… , |𝒱𝑜|} with no incoming 

edges and a destination subset 𝒱𝑑  with no outgoing edges, creating an overall flow from 

external sources to end sinks. 

2.3 Dynamics of Resource States 

Let 𝑦𝑖(𝑡) denote the resource content stored in node 𝑖 at time 𝑡. Define 𝑔𝑖
in  and 𝑔𝑖

out  as 

external input and output flows, respectively, while 𝑣𝑖𝑗  models the transfer rate from 

node 𝑖 to 𝑗. Inspired by [28], the flow balances are 

Σ:
𝑑𝑦𝑖
𝑑𝑡

=

{
 
 
 

 
 
 𝑔𝑖

in − ∑  

𝑗∈𝒩𝑖
out 

 𝑣𝑖𝑗 , 𝑖 ∈ 𝒱𝑜

∑  

𝑗∈𝒩𝑖
in 

 𝑣𝑗𝑖 − ∑  

𝑗∈𝒩𝑖
out 

 𝑣𝑖𝑗 , 𝑖 ∉ 𝒱𝑜 ∪ 𝒱𝑑

∑  

𝑗∈𝒩𝑖
in 

 𝑣𝑗𝑖 − 𝑔𝑖
out , 𝑖 ∈ 𝒱𝑑

 

Hence, an origin node acquires external input and forwards resources to 

outneighboring nodes, while a destination node collects inflows but expends 𝑔𝑖
out . 

Intermediate nodes simply redistribute resources in both directions. 

For stability analysis, we assume linear flows of the form 



 

𝑔𝑖
out = 𝜅𝑖𝑦𝑖 , 𝑣𝑖𝑗 = 𝛼𝑖𝑗𝑠𝑖𝑗𝑦𝑖  

where {𝜅𝑖}𝑖∈𝒱𝑑  and {𝛼𝑖𝑗}(𝑖,𝑗)∈ℰ ∈ 𝛼 are tuning parameters. Each edge (𝑖, 𝑗) thus has a 

distinct 𝛼𝑖𝑗, allowing a nonuniform distribution of flows throughout the network. This 

setup generalizes simpler node-based models by granting edges explicit freedom to 

modulate their individual flow behavior, ensuring a broad range of potential 

configurations. Let 𝐿1: ℝ+ → ℝ+
𝑛  denote the space of Lebesgue-integrable functions 

on ℝ+. For any 𝑓 ∈ 𝐿1, define 

‖𝑓‖𝐿1 = ∫  
∞

0

‖𝑓(𝑡)‖1𝑑𝑡 

Suppose that the system Σ is internally stable, and there exists some 𝛾 > 0 such 

that ‖𝑥‖𝐿1 ≤ 𝛾‖𝜈‖𝐿1 for every 𝜈 ∈ 𝐿1. In that case, the 𝐿1-gain of Σ, denoted by ‖Σ‖1, 

is given by 

‖Σ‖1 = sup
𝜈∈𝐿1

 
‖𝑥‖𝐿1
‖𝜈‖𝐿1

 

Problem 1. Let 𝐿‾ be the target cost for tuning the parameter 𝛼𝑖𝑗. The objective is to 

choose 𝛼𝑖𝑗 ∈ Θ so as to minimize the 𝐿1-gain of Σ, subject to a cost constraint on 𝛼𝑖𝑗 . 

Concretely, 

 

min
𝛼𝑖𝑗∈Θ

 ‖Σ𝜃‖1

 subject to Ψ(𝛼) ≤ Ψ‾ ,

Σ is internally stable, 

 (1) 

where 𝛼𝑖𝑗  is the parameter to be determined, and Ψ: Θ → [0,∞) is a nonnegative 

cost function representing the resources required to implement 𝛼𝑖𝑗 . 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

3 Centrality Measurements for Topology Networks 

3.1 Katz Centrality 

Katz centrality is a classical centrality measure used to evaluate the influence of nodes 

in a network by considering both the direct and indirect connections. Given a directed 

graph  𝐺 = (𝑉, 𝐸) with adjacency matrix  𝐴 ∈ ℝ𝑛×𝑛 , the Katz centrality vector  𝐫 ∈

ℝ𝑛 is defined as the unique solution to the following linear equation: 

 𝐫 = 𝛼𝐴𝐫 + 𝟏 (2) 

where  𝛼 ∈ (0,
1

𝜌(𝐴)
) is a positive attenuation factor satisfying the convergence 

condition, 𝜌(𝐴) denotes the spectral radius of 𝐴, and 𝟏 ∈ ℝ𝑛 is a vector of ones. 

Equivalently, Katz centrality can be written in the closed-form expression: 

 𝐫 = (𝐼 − 𝛼𝐴)−1𝟏 (3) 

This expression shows that Katz centrality accounts for all walks in the network, 

where longer walks are exponentially downweighted by powers of 𝛼. 

In terms of control-theoretic interpretation, Katz centrality can also be understood as 

the steady-state solution of a continuous-time linear dynamical system: 

 
𝑑𝐱

𝑑𝑡
= 𝛼𝐴𝐱 + 𝟏 − 𝐱 (4) 

where the term  𝟏 denotes uniform external input,  𝛼𝐴𝐱 models the influence from 

neighboring nodes, and −𝑥 ensures stability. At steady-state, the dynamics yield the 

same solution as in Eq. (2). 

In practical computations, especially for large-scale or dynamic graphs, iterative 

methods such as Jacobi or power iteration are employed to approximate the solution to 

Eq. (1) due to the high computational cost of matrix inversion. This makes Katz 

centrality particularly suitable for scalable applications in network science and 

optimization. 



 

3.2 Eigenvector Centrality 

Eigenvector centrality is a spectral measure of node importance in a network, which 

accounts not only for the number of direct connections a node has, but also for the 

quality of those connections. Let 𝐺 = (𝑉, 𝐸) be an undirected network with 𝑛 nodes, 

and let 𝐴 ∈ ℝ𝑛×𝑛 denote its adjacency matrix. The eigenvector centrality vector 𝑥 ∈

ℝ𝑛 is defined as the solution of the following eigenvalue problem: 

 𝐴𝑥 = 𝜆𝑥, (5) 

where 𝜆 is the largest eigenvalue of 𝐴. The 𝑖-th entry 𝑥𝑖  of the vector 𝑥 represents the 

centrality of node 𝑖, and it satisfies: 

 𝑥𝑖 =
1

𝜆
∑  𝑛
𝑗=1 𝐴𝑖𝑗𝑥𝑗 (6) 

This implies that a node is central if it is connected to other nodes that are themselves 

central. Unlike degree centrality, which treats all neighbors equally, eigenvector 

centrality assigns higher scores to nodes that are connected to other high-scoring nodes. 

This measure is particularly suitable in applications where influence or importance 

propagates through the network recursively. It is widely used in social network analysis, 

biological systems, and control of complex networks, and serves as the basis for 

PageRank and other link-based ranking algorithms. 

3.3 Closeness Centrality 

Let 𝐺 = (𝑉, 𝐸) be a connected, undirected graph, where 𝑉 denotes the set of nodes with 

cardinality  𝑛 = |𝑉| , and  𝐸 is the set of edges. The shortest path distance between 

node 𝑣 ∈ 𝑉 and another node 𝑤 ∈ 𝑉 is denoted by 𝑑(𝑣, 𝑤). 

Then, the closeness centrality of node 𝑣 is defined as: 

 𝐶clo(𝑣) =
𝑛−1

∑  𝑤∈𝑉,𝑤≠𝑣  𝑑(𝑣,𝑤)
 (7) 

This metric quantifies how efficiently information can be propagated from node 𝑣 to 

all other nodes in the network. A higher value of 𝐶clo (𝑣) indicates that node 𝑣 is, on 

average, closer to other nodes and can thus reach them more quickly. 
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3.4 Betweenness Centrality 

Betweenness centrality is a widely used index for quantifying the influence of a node 

in a network in terms of the control it exerts over information flow. Given a graph 𝒢 =

(𝒱, ℰ) with  |𝒱| = 𝑛 nodes, the betweenness centrality  𝐶𝐵(𝑣) of a node  𝑣 ∈ 𝒱 is 

defined as follows: 

 𝐶𝐵(𝑣) = ∑  𝑠,𝑡∈𝒱
𝑠≠𝑡≠𝑣

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
 (8) 

where  𝜎𝑠𝑡  denotes the total number of shortest paths from node  𝑠 to node  𝑡 , 

and 𝜎𝑠𝑡(𝑣) denotes the number of those paths that pass through node 𝑣. 

The betweenness centrality can be normalized by dividing it by the maximum 

possible value: 

 𝐶𝐵
norm(𝑣) =

2

(𝑛−1)(𝑛−2)
𝐶𝐵(𝑣),  for 𝑛 > 2 (9) 

Betweenness centrality reflects the importance of a node as an intermediary, and is 

particularly relevant in assessing node vulnerability or control over communication in 

distributed and social systems. 

3.5 PageRank Centrality 

PageRank centrality evaluates the influence of nodes in a directed network by 

computing the stationary distribution of a random walk with restarts. Consider a 

network with 𝑛 nodes and let 𝑃 ∈ ℝ𝑛×𝑛 be a column-stochastic matrix representing the 

transition probabilities between nodes. The PageRank vector 𝑥 ∈ ℝ𝑛 is defined as the 

unique solution to the linear system 

 (𝐼 − 𝛼𝑃)𝑥 = (1 − 𝛼)𝑣 (10) 

where 𝛼 ∈ (0,1) is a damping parameter and 𝑣 is a personalization vector with 1⊤𝑣 =

1. 

This formulation models a stochastic process in which, at each step, the walker 

follows outgoing links with probability  𝛼 or teleports to a random node with 

probability  1 − 𝛼 . The resulting vector  𝑥 assigns higher scores to nodes that are 



 

frequently visited in this process, thereby capturing both local connectivity and global 

reachability within the network. 

4 Simulation Experiments and Analysis 

4.1 Practical Guidelines for Metric Selection 

Table 1 summarises heuristic links between infrastructure traits and centrality choice. 

These qualitative rules are later corroborated by quantitative experiments, providing 

practitioners with an a-priori rationale before expensive simulation runs. 

Table 1. Heuristic metric selection for typical networks 

Scenario Dominant risk Suggested metric 

HV grid (hub dominated) Cascading via hubs Betweenness 

/Eigenvector 

Urban transport (meshed) Local congestion Closeness 

Gas pipeline (tree-like) Source isolation Katz 

Internet backbone Traffic ranking PageRank 

4.2 Experimental Setup 

To systematically investigate how different node-centric strategies affect stability in 

energy-flow networks, we focus on a small-world topology that balances local 

clustering with relatively short path lengths. For each simulation, a small-world graph 

with  𝑛 nodes is generated by starting from a ring lattice and rewiring edges at a 

probability 𝑝 ∈ (0,1), producing variations in structural properties. Each node's initial 

energy 𝑥𝑖(0) is drawn uniformly from [0,1], while node- and edgelevel parameters 

( 𝛽𝑖 , 𝛿𝑖𝑗  ) are randomly assigned within [ 0,0.5 ] to reflect diverse transfer capacities. 

Five primary centrality measures (betweenness, closeness, eigenvector, Katz, and 

PageRank) determine node "importance." A set fraction of high-ranked nodes under 

each metric receives additional resources-e.g., gain settings or buffer capacity-aimed at 

minimizing the global 𝐿1 norm of the energy trajectory. This procedure is repeated 

for  𝑀 randomly generated network instances, allowing us to compute ensemble 
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statistics across various small-world realizations. Fig. 1 shows the examples of 

randomly generated energy flow networks for further analysis. 

 

Fig. 1. Randomly generated example networks of Scale-free network, Small-world network, and 

Block-diagonal network with 40 nodes. 

4.3 Results Analysis 

Figure 2 presents the box plots of the 𝐿1-norm simulations for each centrality-based 

allocation strategy across three distinct network topologies-Scale-Free, Small-World, 

and Block-Diagonal. In our experiments, each box plot summarizes the median, 

interquartile range, and outliers, thereby providing a comprehensive visual comparison 

of the performance and robustness of the different centrality measures under varying 

networks. For the Scale-Free networks, the results indicate that betweenness and 

eigenvector centrality measures consistently achieve lower  𝐿1 -norm. This finding 

suggests that in networks characterized by hubdominated structures, nodes that either 

act as bridges (high betweenness) or possess significant global influence (high 

eigenvector values) are more effective at optimizing resource distribution or dampening 

disruptive flows. Conversely, closeness-based allocations tend to exhibit higher 𝐿1-

norm, which could be attributed to the fact that relying solely on shortest path distances 

may neglect the influence of critical hub nodes that are pivotal in maintaining the 

network's overall stability. 

In the case of Small-World networks, the distribution of  𝐿1 -norm becomes 

somewhat narrower, reflecting the more homogeneous connectivity inherent in such 

networks. Here, while betweenness and eigenvector measures still outperform others, 

the differences between centrality metrics are less pronounced compared to the Scale-

Scale-free Network: N=40, E=75     Small-world Network: N=40, k=4, p=0.10    Block-diagonal Network: N=40, Q=5, E=129 



 

Free case. This observation underscores that the overall network structure -

characterized by high clustering and short path lengths-tends to equalize the impact of 

different allocation strategies to some extent. 

For Block-Diagonal networks, which inherently possess community structures with 

relatively sparse inter-module connections, the box plots reveal a distinct behavior. In 

these networks, betweenness centrality again performs well, highlighting the 

importance of inter-community bridges. However, the variability in the 𝐿1-norm is 

higher compared to the Small-World networks, likely due to the uneven distribution of 

connections between modules. Katz and PageRank measures offer competitive 

performance in all three network types, although their effectiveness appears to be more 

sensitive to changes in the rewiring probability  𝑝 increases, alterations in local 

connectivity patterns seem to influence the performance of these measures, leading to 

variations in the corresponding 𝐿1-norm. 

Overall, the experimental results affirm that the choice of centrality metric has a 

significant impact on both the median performance and the robustness of the allocation 

strategy. In energy-flow networks or similar systems, selecting a centrality measure that 

effectively captures the roles of bridging nodes or high-impact hubs can markedly 

enhance stability and performance. These insights align with our initial hypotheses and 

underscore the importance of considering network topology when designing centrality-

based allocation strategies. 

4.4 Monte-Carlo Protocol 

All simulations are averaged over 𝑀 = 200 random graphs. Box-plots in Fig. 2 show 

medians and 95% bootstrap confidence intervals (10000 resamples). Performance 

differences are evaluated with a two-sided Wilcoxon signed-rank test; an asterisk (*) 

denotes 𝑝 < 0.05. 
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Fig. 2. The optimized 𝐿1-norm of energy flow network Σ under Scale-free network, Small-world 

network, and Block-diagonal network with different centrality measurements. 

5 Conclsion 

In this paper, we have investigated how different centrality-based strategies affect the 

stability optimization of energy-flow networks. By constructing a generalized 

dynamical model and applying five widely used centrality measures-Katz, eigenvector, 

closeness, betweenness, and PageRank-we evaluated their impact on minimizing 

the 𝐿1-norm across various network topologies, including scale-free, small-world, and 

block-diagonal structures. Our simulation results demonstrated that the effectiveness of 

each centrality measure strongly depends on the underlying network structure. Notably, 

betweenness and eigenvector centralities showed superior performance in hub-

dominated networks, while differences were less pronounced in more homogeneous 

structures such as small-world networks. These findings emphasize the importance of 

selecting appropriate centrality metrics tailored to the network's structural properties 

and provide practical guidance for designing robust and efficient control strategies in 

large-scale resource flow systems. 
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