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Abstract. Surface defect detection in leather manufacturing faces challenges in-

cluding multi-scale defects, scarce samples, and texture interference. This study 

proposes an optimized YOLOv11 framework integrating attention mechanisms, 

cross-scale feature fusion, and few-shot learning. The backbone network employs 

spatial-channel attention and feature redundancy reduction to enhance defect dis-

crimination. A cross-scale attention mechanism adaptively fuses multi-resolution 

features for improved small defect detection. A ProtoNet module addresses sam-

ple scarcity while ensuring localization precision. Evaluations on industrial 

leather datasets and public benchmarks demonstrate the model’s effectiveness, 

achieving 81.0% mAP on leather defects and 79.2% on steel surfaces with 3.02M 

parameters and real-time inference (70.3 FPS). The framework outperforms con-

ventional methods in accuracy and robustness, offering a practical solution for 

automated quality inspection in texture-rich industrial scenarios.  

Keywords: Surface Defect Detection, Tiny Target, Convolutional Neural Net-

work, Deep Learning. 

1 Introductionx 

Leather quality impacts product performance and commercial value across industries. 

Processing-induced defects like scratches, spots, cracks and wrinkles compromise aes-

thetics, durability and functionality [1]. Current leather surface defect detection rely on 

inefficient manual visual checks, while experienced inspectors can identify complex 

defects, these approaches suffer from low productivity, subjective standards, and 

worker fatigue [2], resulting in inconsistent defect detection [1, 3].   

 Recently, the rapid advancements in computer vision and deep learning technolo-

gies have been notable, some traditional machine vision methods, such as Convolu-

tional Neural Network (CNN)-based defect detection algorithms have demonstrated 

notable success in identifying surface defects in various industries such as steel [4, 5], 



textile [6, 7], and electronics [8], providing new ideas and inspiration for leather defect 

detection [1, 9, 10]. 

However, current methodologies face several critical challenges in leather defect de-

tection applications. First, the scarcity of defect samples limits training data and under-

mines deep learning model performance [1, 11, 12]. Second, identifying minute defects 

in high-resolution leather detection images presents a significant technical challenge, 

as models often struggle to detect these defects due to their minuscule size relative to 

the total surface area. [1]. Third, leather defects exhibit significant variations in mor-

phology and size even within the same category, while some defects exhibit similarities 

to the intricate texture of leather backgrounds [13, 14]. The cross-scale recognition dif-

ficulty primarily stems from the combination of significant variations in defect sizes 

and the high resolution of the images, which together pose a considerable challenge. 

 

Fig. 1. Typical Defect Examples. Four typical leather defects were selected for this study. De-

fects (b) and (d) display a significant discrepancy in scale relative to the image dimensions, oc-

cupying minimal regions of the visual field. Defect (c) demonstrates pronounced intra-defect 

size heterogeneity. Defects (a) and (c) exhibit relatively low contrast against the background 

To address the identified challenges, we introduce a surface defect detection approach 

utilizing YOLO11, which incorporates attention mechanisms alongside feature optimi-

zation techniques. We adopt YOLO11 as our defect detection model due to its anchor-

free architecture and dual optimization through enhanced C3K2 modules with global 

context awareness and C2PSA components with position-sensitive attention, which 

collectively enable robust multi-scale defect localization. To further enhance this 

framework, we integrate the Convolutional Block Attention Module [15] with adaptive 

residual connection weights (ResCBAM) to enhance feature extraction through spatial-

channel attention, focusing on defect regions while suppressing background interfer-

ence. Subsequently, We apply Spatial and Channel Reconstruction Convolution 

(SCConv) [16] to eliminate feature redundancy in high-level representations. To im-

prove discrimination in few-shot scenarios, Prototypical Networks (ProtoNet) 

strengthen feature separation between background and defects. Additionally, a cross-

scale attention (CSA) mechanism enhances small defect detection through multi-scale 

feature integration. The CIoU loss [17] is adopted for precise defect localization during 

bounding box regression. 
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In our study, we performed comprehensive assessments using leather defect data 

sourced from actual leather manufacturing lines to verify the effectiveness of the pro-

posed approach. To further evaluate the generalization capability of our model, we ad-

ditionally introduced the publicly available NEU-DET dataset [18] for comprehensive 

evaluation. 

In summary, this research endeavors to establish an efficient and precise automated 

detection method specifically designed to address the unique requirements and chal-

lenges associated with leather defect inspection. The proposed method seeks to enhance 

automation and efficiency in the quality inspection process of leather products, thereby 

contributing to the advancement of intelligent manufacturing within the leather indus-

try.  

2 Related Works 

Deep learning has made remarkable advancements in the field of computer vision, lead-

ing to its increasing integration into industrial surface defect detection. One major 

breakthrough in this field is the application of CNNs, which effectively detect surface 

defects through their capacity to learn localized image features and hierarchical repre-

sentations [19]. As research on CNN architectures has deepened, numerous CNN-based 

image detection networks have emerged, with widely used examples including Faster 

R-CNN [20], SSD [21], and the YOLO series [22]. 

2.1 Two-stage Detection 

Faster R-CNN utilizes a two-stage architecture that integrates a Region Proposal Net-

work to combine region proposal and object detection tasks. For example, Liu et al. 

[23] proposed an aircraft engine blade defect detection system based on improved 

Faster R-CNN that addresses the challenges of detecting tiny defects and discontinuous 

defects through RoI Align, Feature Pyramid Network, and improved non-maximum 

suppression algorithms. Similarly, Zhou et al. [24] combined Faster R-CNN with max-

imum entropy threshold segmentation, Canny edge detection, as well as projection fea-

ture and skeleton extraction methods to build a comprehensive crane surface crack de-

tection and measurement system. Despite the widespread application of Faster R-CNN 

across various fields, its capacity for real-time processing often falls short of the rigor-

ous demands associated with industrial surface detection. 

2.2 One-stage Detection 

To address the aforementioned issues, a growing number of scholars have transitioned 

to employing faster single-stage detection approaches, including SSD and YOLO. For 

example, Li et al. [25] introduced a lightweight detection model by integrating the SSD 

network with MobileNet architecture. Through a systematic optimization of network 

structure and parameter configuration, their approach achieved efficient real-time de-

tection of surface defects on container sealing interfaces, including cracks and dents, 



while preserving detection accuracy. Yan et al. [11] developed LGP-YOLO for light 

guide plate defect detection that uses specialized RFM and SDM modules to overcome 

challenges of complex backgrounds, low contrast, and multi-scale defects. Similarly, 

Pan et al. [26] proposed YOLO-ACF by integrating an Adaptive Complementary Fu-

sion module into YOLOv5, improving photovoltaic panel defect detection by reducing 

false positives and undetected defects within intricate backgrounds. Additionally, to 

improve the detection of surface defects in hot-rolled strip steel, Huang et al. [27] in-

corporated the CSE module, Swin Transformer, and ASFF into YOLOv5, successfully 

overcoming difficulties in identifying small defects and distinguishing between defect 

classes. In addition to these methodologies, research has also explored the application 

of Generative Adversarial Networks (GANs) for defect detection, wherein adversarial 

training is employed to develop discriminators capable of identifying anomalies in im-

ages [28, 29]. 

3 Methods 

3.1 Overall network architecture 

 

Fig. 2. DASC-YOLO network architecture 

A schematic diagram of the proposed model architecture is presented in Fig. 2. The 

model foundation employs YOLOv11, the latest version of the YOLO series. While 

preserving the original head structure of YOLOv11, modifications have been made to 

its backbone and neck components to improve the detection of surface defects in leather 

materials, all while ensuring optimal inference speed. 

In the backbone network, the ResCBAM and SCConv modules are chosen to reduce 

feature redundancy and background interference: ResCBAM is preferred over the 

standard CBAM due to its residual connection that preserves critical spatial information 

while refining attention-aware features, making it more effective for complex materials 

like leather; SCConv is selected over other convolution methods because of its dual-

reconstruction mechanism, which effectively balances channel-wise feature compres-

CBS

CBS

C3k2

CBS

C3k2

CBS

C3k2

CBS

C3k2

SPPF C2PSA

Concat

Upsample

C3k2

Upsample

Concat

C3k2

CBS

Concat

C3k2

CBS

Concat

C3k2 Detect

Proto

ResCBAM

CSA Detect

Detect

head

SCConv

neckbackbone

CBS = Conv2d BatchNorm SiLU

C3k2 = Conv Split Conv

C3k *N

C

C3k=True

C3k2 = Conv Split Conv

BottleNeck *N

C

C3k=False

C3k = Conv

Conv

BottleNeck *2 C Conv

BottleNeck Conv= Conv +

SPPF = Conv MaxPool MaxPool MaxPool C Conv

C2PSA = Conv Split Conv

PSABlock *N

C

PSABlock Conv= Conv ++Attention



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

sion and spatial enhancement, ensuring better preservation of high-level semantic fea-

tures without losing spatial detail. For the neck, The CSA module improves multi-scale 

feature fusion by adopting a simplified, RFBNet-inspired design that reduces feature 

interaction complexity. By utilizing fewer branches, it enhances computational effi-

ciency while preserving high accuracy in defect detection across multiple scales. And 

ProtoNet enhances model generalization under data scarcity by leveraging prototype 

learning. By constructing a learnable defect prototype representation space, ProtoNet 

enforces feature compactness within classes while maintaining separation between dif-

ferent classes, allowing the model to effectively recognize various defect types even 

with limited samples, thereby reducing overfitting and improving performance on un-

seen data. This integrated framework achieves balanced accuracy and efficiency for 

industrial defect detection with limited samples. 

3.2 Cross-Scale Attention 

To overcome the difficulties arising from substantial variations in defect dimensions, 

inspired by the RFBNet framework [30], we have designed and incorporated a Cross-

Scale Attention (CSA) module into the neck of  YOLOv11. This module significantly 

improves the perception of defects across multiple scales by employing a cross-scale 

feature interaction mechanism, while satisfying real-time requirements for industrial 

surface detection. The core architecture comprises three essential components: a small-

object enhancement branch, a global context branch, and an adaptive fusion unit. 

 

Fig. 3. Schematic diagram of the Cross-Scale Attention 

As shown in Fig. 3, the CSA module is designed with a dual-branch architecture. The 

small-object enhancement branch extracts local detail features through a compression-

expansion convolutional layer, effectively reducing computational costs while preserv-

ing microscopic defect textures. The global context branch is tasked with capturing 

semantic information via adaptive average pooling. It processes features through a con-

volutional layer with channel compression ratio of 4 to generate channel attention 

weights, and aligns spatial dimensions using bilinear interpolation. 
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The features derived from both the small-object enhancement branch and the global 

context branch are merged using learnable weighting, followed by feature fusion using 

1×1 convolutions, and the attention scores will be subsequently computed. The compu-

tational formulation of the CSA module is expressed as follows: 

 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝜆𝑠 ⋅ 𝐹𝑠(𝑥),  𝜆𝑔 ⋅ 𝐹𝑔(𝑥)] (1) 

 𝐹𝑐𝑠𝑎 = 𝛼 ⋅ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓𝑢𝑠𝑖𝑜𝑛 ⋅ 𝐹𝑓𝑢𝑠𝑖𝑜𝑛) ⋅ 𝑥 + (1 − 𝛼) ⋅ 𝑥 (2) 

In this formulation, 𝑥 represents the input feature map. 𝐹𝑠(𝑥) and 𝐹𝑔(𝑥) denote the out-

puts from the small-object branch and global context branch respectively, 

with 𝜆𝑠 and  𝜆𝑔 being their corresponding learnable weights. Following concatenation 

of these outputs, a 1×1 convolution is employed for feature fusion, after which the at-

tention scores are computed through a sigmoid activation function. The resultant fea-

tures are then integrated with the original input features via residual connection, 

where 𝛼 serves as an additional learnable weight parameter governing this integration. 

3.3 ProtoNet 

To address the challenge of constrained model accuracy resulting from the limited 

leather defect samples, as well as the variability in the size and morphology of these 

defects, we have proposed a prototype learning-based ProtoNet module. This module 

directs the network to achieve feature space compactness within classes and separation 

between classes through the creation of a learnable defect prototype space. As depicted 

in Fig. 4, the ProtoNet consists of three key components: learnable prototypes, similar-

ity computation, and adaptive residual connection.  

We have designed a lightweight feature encoder aimed at reducing the computational 

overhead from prototype matching operations. The architecture employs 1×1 convolu-

tional layers for dimensionality reduction followed by group convolution (groups=4) to 

achieve channel decoupling, complemented by a single Dropout layer (rate=0.1) to pre-

vent overfitting in few-sample scenarios. The encoded features are compressed into 

compact representations through adaptive pooling and flattening operations, ensuring 

efficient prototype similarity computation while maintaining discriminative power. 

In the context of prototype representation learning, the module initialization phase 

constructs a library of learnable prototypes 𝐏 ∈ 𝑅𝐾×𝐶，where K is the predefined num-

ber of prototypes. Then, L2 normalization is then applied to constrain the vector space 

of the prototype vectors 𝐩𝑘 and the encoded features 𝐟𝑖.The pixel-wise similarity score 

matrix: 

 𝐒 =
𝐟𝑖𝐩𝑘

𝑇

𝜏
  (3) 
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Fig. 4. Schematic diagram of the ProtoNet 

Where 𝜏 is a learnable temperature coefficient that adjusts the sharpness of the match-

ing probability distribution. When generating spatial attention maps via Softmax, a de-

coupled branch strategy is adopted: the background prototype produces a single-chan-

nel suppression mask, while multiple defect prototypes generate enhancement masks 

through max-pooling, effectively decoupling normal texture regions from potential de-

fect responses. At the final stage, an adaptive residual weighting mechanism is em-

ployed to augment the input features through prototype attention. 

 𝐅𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = 𝐅𝑖𝑛𝑝𝑢𝑡 ⊙ (1 + 𝛼 ⋅ 𝐌𝑓𝑜𝑟𝑒) − 𝐅𝑖𝑛𝑝𝑢𝑡 ⊙ (𝛽 ⋅ 𝐌𝑏𝑎𝑐𝑘) (4) 

Here, 𝛼 and 𝛽 are learnable parameters initialized to 0.5, while 𝐌𝑓𝑜𝑟𝑒 and 𝐌𝑏𝑎𝑐𝑘 rep-

resent the foreground and background attention maps respectively. The parameter 𝛼 

dynamically modulates the feature enhancement intensity in defective regions, whereas 

𝛽 suppresses feature interference from background areas. The residual structure pre-

serves the integrity of original features, thereby avoiding potential feature deviation 

caused by excessive reliance on prototype matching. 

3.4 Enhanced Backbone Design and Loss function 

To enhance the backbone network of YOLOv11, modifications have been made to 

maintain the efficiency of feature extraction while reducing the interference caused by 

intricate background textures present in leather materials. We propose two key im-

provements: Firstly, we have restructured the standard CBAM attention mechanism by 

incorporating residual connections, creating a ResCBAM module that implements a 

dual-path "Identity Mapping + Attention Refinement" architecture through element-

wise summation of original and CBAM-processed features. This residual-enhanced de-

sign preserves critical spatial information while refining attention-aware features. The 

ResCBAM structure is depicted in Fig. 5 (a). Secondly, we have incorporated the stand-

ardized SCConv module into deeper network layers to address feature redundancy and 

background interference challenges. The dual-reconstruction mechanism of SCConv 
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strategically balances channel-wise feature compression and spatial enhancement, par-

ticularly crucial for preserving semantic richness in high-level features that often suffer 

from spatial detail degradation. Collectively, these synergistic modifications maintain 

computational efficiency while improving feature discrimination capability for com-

plex surface defect patterns. 

 

Fig. 5. Schematic diagram of (A) ResCBAM and (B) CIoU 

For the defect detection tasks, the accurate regression of bounding boxes is essential 

for effective defect localization. Traditional IoU loss functions, limited by their sole 

focus on overlap area, often result in suboptimal localization. To address this, we use 

the CIoU loss, which enhances geometric optimization by integrating overlap metrics, 

center distance penalties, and aspect ratio constraints, enabling multidimensional re-

finement of bounding box accuracy [17]. IoU can be mathematically expressed as: 

 𝐼𝑜𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
 (5) 

And the CIoU Loss is defined as: 

 ℒ = 1 − IoU +
𝑑

𝑒2 + 𝛼𝑣 (6) 

As illustrated in the Fig. 5 (b),  𝑑 indicates the distance between the centroids of the 

predicted bounding box and the ground truth box, while 𝑒  denotes the diagonal distance 

of their minimal enclosing rectangle. The definitions of 𝛼 and 𝑣 are as follows. 

 𝛼 =
𝑣

(1−IoU)+𝑣
 (7) 

 𝑣 =
4

𝜋2 (arctan (
𝑤𝑔𝑡

ℎ𝑔𝑡 ) − arctan (
𝑤

ℎ
))

2

 (8) 

Here, (𝑤𝑔𝑡 , ℎ𝑔𝑡) and (𝑤, ℎ) denote the width and height of the ground truth bounding 

box and the predicted bounding box, respectively. 
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4 Experiments 

4.1 Dataset 

High-resolution images were acquired utilizing 8K line scanning cameras on actual 

leather production lines. These images were subsequently cropped to dimensions of 

2048×2048 pixels to align with practical inspection standards. Expert quality inspectors 

annotated defect types including black and white dots, color streaks, and concatenation 

flaws. To validate that the proposed method in this study extends beyond leather appli-

cations, comparative experiments were also conducted using the NEU-DET dataset 

[18] which comprises 1,800 grayscale images (200×200 pixels) depicting steel strip 

defects categorized into six distinct types. Each defect category, such as scratches and 

inclusions, is represented by 300 samples. 

To ensure robust validation, a 5-fold cross-validation protocol was applied to the 

training set, following an 8:2 split of the leather defect and NEU-DET datasets into 

training and test partitions. Strict separation between all subsets guaranteed no image 

overlap, thereby upholding evaluation reliability. The methodology for dataset parti-

tioning is detailed in Table 1. 

Table 1. Details of Leather Defect Dataset and NEU-DET 

Dataset Defect Type Train Test Total 

Leather De-

fect Dataset 

Black dot 219 55 274 

White dot 81 21 102 

Concat 142 36 178 

Colorstreak 95 24 119 

Total  537 136 673 

NEU-DET 

crazing 240 60 300 

inclusion 240 60 300 

patches 240 60 300 

pitted 240 60 300 

Rolled-in 240 60 300 

scratch 240 60 300 

Total  1440 360 1800 

 

4.2 Experiments setup 

The experiments were performed utilizing a high-performance computing system fea-

turing an Intel Core i7-7820X CPU operating at 3.60GHz, complemented by 80GB of 

RAM. The computational capabilities were further enhanced by the inclusion of dual 

NVIDIA GeForce RTX 3090 GPUs, each possessing 24GB of dedicated memory. Ub-

untu 20.04 LTS served as the foundational operating system for the software environ-



ment, which included support for CUDA 12.2 acceleration. Program execution was fa-

cilitated through Python version 3.10.0, while PyTorch version 2.5.1 served as the pri-

mary framework for deep learning applications.  

Several essential hyperparameters are configured in the training process to maintain 

a balance between computational cost and model performance. For basic settings, high-

resolution 2048×2048 images are processed with a batch size of 16 across 300 training 

epochs. We employ the AdamW optimizer with an initial learning rate of 0.001, which 

decays to 5% of its starting value. Overfitting is addressed through the application of 

L2 regularization, configured with a 0.0005 weight decay parameter. 

In the context of leather defect detection within industrial applications, the lightest 

YOLO configuration serves as the backbone network, strategically chosen to preserve 

both detection accuracy and processing speed. All comparative models are configured 

to maintain equivalent minimal-scale parameters. In public benchmark assessments that 

emphasize accuracy, our framework, along with YOLO-based comparative models, 

consistently employs large-scale architectures to facilitate equitable performance com-

parisons. 

4.3 Metrics 

To ensure accurate and effective evaluation of model performance in our experimental 

results, we selected the following objective evaluation metrics:  

Precision reflects prediction accuracy, while recall indicates detection completeness. 

In object detection, high precision with low recall suggests under-detection from over-

caution, whereas low precision with high recall signals over-detection due to leniency. 

The definitions of Precision and Recall are as follows: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

TP

TP+FN
 (9) 

For a thorough evaluation of the model's effectiveness, we adopted the F1-score—a 

balanced measure combining precision and recall. This metric balances false positives 

and negatives while offering a robust performance measure for class-imbalanced sce-

narios. The definitions of F1-score is as follows: 

 𝐹1 =
2

1

Precision
+

1

Recall

=
2×Precision×Recall

Precision+Recall
 (10) 

AP (Average Precision) and mAP (mean Average Precision) are standard evaluation 

metrics in object detection. AP comprehensively evaluates single-class detection per-

formance, while mAP extends this to multi-class scenarios by averaging AP values 

across all categories, enabling unbiased model comparisons through a unified bench-

mark. The definitions of AP and mAP are as follows: 

 𝐴𝑃 = ∫  
1

0
𝑃(𝑅)d𝑅, 𝑚𝐴𝑃 =

∑  𝑁
1 ∫  

1
0 𝑃(𝑅)d𝑅

𝑁
 (11) 
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4.4 Comparison experiment on leather dataset 

To verify our model's efficacy in leather defect detection against existing methods, all 

models were trained from scratch under identical experimental conditions with opti-

mized parameters. We selected representative YOLO mdoels (v5, v8, and v11) as in-

dustry-standard benchmarks. 

 For fair comparison, our proposed model and the YOLOv5/YOLOv8 implementa-

tions all employed their smallest available variants, while YOLOv11 was evaluated 

using models ranging from N to L sizes during training and testing. The experimental 

results are presented in Table 2. 

Table 2. Comparison of different object detection models on leather defect dataset 

Method 
AP(%) 

mAP Params GFlops FPS 
Black  White  Color  Concat 

Faster 

R-CNN 
75.6 70.4 72.7 63.8 70.6 165.69M 76.80 67.7 

SSD 74.7 66.9 73.4 70.1 71.3 26.28M 1443.28 8.43 

Yolov5n 83.4 68.8 78.3 76.1 76.7 4.13M 37.30 94.2 

Yolov8n 74.4 43.5 57.6 56.2 57.9 3.16M 45.35 92.0 

Yolo11n 82.8 68.3 92.3 65.4 77.2 2.59M 32.98 87.0. 

Yolo11s 78.2 72.5 84.7 73.6 77.6 9.43M 110.33 44.0 

Yolo11l 73.7 70.7 88.3 79.1 78.0 25.31M 446.84 14.9 

ours 78.3 77.3 86.9 81.6 81.0 3.02M 35.80 70.3 

As shown in the Table 2, YOLOv5n and YOLO11n achieved the highest AP in black 

dot and color streak detection respectively, while our model demonstrated superior per-

formance in white dot detection and concatenated tasks, attaining the highest AP val-

ues. Additionally, our model exhibited a higher mAP compared to other models, sur-

passing Faster R-CNN, SSD, YOLOv5n, YOLOv8n, YOLO11n, YOLO11s, and 

YOLO11l by 10.4%, 9.7%, 4.3%, 23.1%, 3.8%, 3.4%, and 3% respectively. Analyzing 

defect sample distribution and detection performance, our model better balances many-

shot and few-shot accuracy. Based on the experimental outcomes, it is evident that both 

Faster R-CNN and SSD exhibit limitations in processing images with dimensions of 

2048×2048, as evidenced by their relatively low mAP. Furthermore, SSD specifically 

suffers from a significant reduction in FPS when handling such oversized input images. 

 Our model adds only 0.43M parameters, the second most efficient design, with 

merely 2.82 GFLOPs increase over YOLOv11n's computational load. This optimiza-

tion preserves real-time FPS while achieving superior detection performance compared 

to other YOLO variants and other detection models, demonstrating effective balance 

between accuracy and speed. 

4.5 Ablation 

To validate the significant role of our proposed modules and the modifications intro-

duced for leather defect detection, we individually incorporated CBAM, ResCBAM, 



CSA, ProtoNet, and SCConv into YOLO11 and conducted combination tests to inves-

tigate the contributions of different modules to the model performance. 

The experimental results are summarized in Table 3. Integrating CBAM modules 

enhanced mAP and precision metrics, with residual-equipped ResCBAM achieving the 

strongest gains (1.3% mAP and 1.8% precision improvements over baseline). While 

recall slightly decreased, possibly due to attention over-focus compromising detection 

coverage. Although computational costs reduced FPS, the modules maintained param-

eter efficiency. 

The CSA module achieved improvements of 1.2% mAP and 0.9% precision with 

minimal FPS reduction, demonstrating an effective accuracy-speed trade-off. While 

standalone SCConv and ProtoNet(K=2,4) integrations did not enhance mAP greatly, 

each contributed a 0.4% F1-score gain through precision/recall improvements. This in-

dicates SCConv’s spatial-channel decoupled convolutions mitigate redundant feature 

interference, while ProtoNet's prototype feature alignment enhances defect category 

discriminability. The ablation study results of our experiments on CBAM and SCConv 

are consistent with those reported by Zhang et al. [31] and Li et al. [32]. 

We also investigated the impact of varying prototype numbers (K) on ProtoNet. Ex-

perimental results demonstrate that ProtoNet achieves optimal performance when K=4, 

whereas configurations with K=2 or K=8 exhibit degraded results. This phenomenon 

may be attributed to insufficient prototype quantities failing to adequately match the 

data distribution (K=2) or excessive prototypes introducing noise that compromises 

model performance (K=8). Consequently, we adopted K=4 as the prototype configura-

tion for final model. 

Table 3. The result of ablation experiment on the leather defect dataset 

Model mAP Pre Recall F1 Params FPS 

Yolo11 77.2 75.8 75.2 75.5 2.59M 87.1 

Yolo11-CBAM 78.3 76.2 73.5 74.8 2.59M 80.8 

Yolo11-ResCBAM 78.5 77.6 72.4 74.9 2.59M 79.9 

Yolo11-CSA 

(w/o weighted fusion) 
77.9 76.7 73.5 75.1 2.68M 83.9 

Yolo11-CSA 78.4 76.7 74.3 75.5 2.68M 83.5 

Yolo11-SCConv 77.5 76.7 75.0 75.8 2.71M 81.9 

Yolo11-ProtoNet(K=2) 77.3 76.6 75.2 75.9 2.84M 80.5 

Yolo11-ProtoNet(K=4) 78.0 76.5 75.4 75.9 2.84M 80.4 

Yolo11-ProtoNet(K=8) 77.1 75.4 74.9 75.1 2.84M 79.7 

Yolo11-ResCBAM-CSA 79.5 79.1 75.9 77.4 2.68M 78.1 

Yolo11-ResCBAM-CSA-

SCConv 
80.4 79.8 76.2 78.0 2.81M 73.1 

Ours 81.0 80.2 76.4 78.3 3.02M 70.3 

 

Progressive combination of all four modules produced substantial improvements 

across all metrics: 3.8% mAP, 4.4% Precision, 1.2% Recall, and 2.8% F1-score. Com-

prehensive analysis reveals that our modified ResCBAM contributes most significantly 
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to mAP and Precision improvements, albeit with detectable speed compromise. Com-

plementary modules achieve balanced F1-score enhancement through Precision and 

Recall optimization while maintaining reasonable detection speed, thus preventing per-

formance imbalance from single-metric over-optimization. 

To select an appropriate loss function, we evaluated multiple IoU-based losses in-

cluding CIoU [17], EIoU [33], MDPIoU [34], PowerfulIoU [35], ShapeIoU [36], SIoU 

[37], and UnifiedIoU [38]. After extensive experimentation, CIoU was ultimately se-

lected as the optimal choice owing to its stable loss convergence characteristics and 

superior mAP performance, with the comparative results visually presented in the Fig. 

6. 

 

Fig. 6. IoU Loss Curve 

4.6 Comparison experiment on NEU-DET dataset 

For additional validation of the model's defect detection ability, we employed the NEU-

DET benchmark dataset for training and testing. The performance metrics of compara-

tive models were extracted from their original publications, while YOLO-series models 

were trained under identical software/hardware environments as our framework, em-

ploying optimized hyperparameters to ensure experimental fairness. For comprehen-

sive performance evaluation, all YOLO-series models in this section adopted the large 

architecture to compare full-capacity models in steel surface defect detection. Within 

this dataset, crazing and rolled-in scale defects present particular identification chal-

lenges, attributable not only to low contrast with background textures but also to high 

inter-class similarity among defect categories - both representing critical issues in in-

dustrial surface defect inspection. 

The experimental results are presented in the Table 4. MSFT-YOLO, LDD-YOLO, our 

method, improved Faster R-CNN, Efficient-D1, and SCRL-EMD-FR achieved the best 

detection performance on crazing, inclusion, patches, pitted, rolled-in, and scratches 

defects respectively. Our model maintains robust detection capabilities for low-contrast 

defects (crazing and rolled-in), while exhibiting superior performance on more visually 



distinct defect types. Although YOLOv7 achieves the highest inference speed (104 

FPS), our large-scale architecture strikes an optimal balance between detection accu-

racy and processing efficiency. Notably, our solution achieves state-of-the-art compre-

hensive performance with a mAP of 79.2%, indicating its overall superior performance 

in defect detection tasks. 

Table 4. Comparison of different object detection models on NEU-DET dataset 

Method 
AP(%) 

mAP(%) FPS 
Cr In Pa Pi Ro Sc 

Improved Yolo3[39] 38.9 73.7 93.5 74.8 60.7 91.4 72.2 64.5 

Yolov5 33.0 84.1 90.4 80.5 60.4 84.5 72.2 72.3 

Yolov6[14] 28.9 83.2 90.9 74.4 67.5 85.4 71.7 56.1 

Yolov7[14] 47.4 83.2 93.7 84.9 55.4 88.7 75.6 104.0 

Yolov8 36.1 83.6 89.3 84.4 66.2 93.2 75.5 77.4 

Yolo11 49.8 76.7 93.7 85.2 64.3 84.2 75.6 72.9 

Improved Yolox[40] 55.1 83.0 93.6 86.1 59.7 84.2 77.0 100 

SSD300[39] 41.1 79.6 83.9 83.9 62.1 83.6 71.4 37.4 

SSD500[39] 41.7 76.3 86.3 85.1 58.1 85.6 72.4 29.0 

EfficientDet-D0[41] 56.8 69.8 88.2 78.4 69.3 25.9 64.7 / 

EfficientDet-D1[41] 49.4 77.5 88.7 81.3 72.7 49.3 68.8 / 

Faster R-CNN[42] 50.1 79.1 79.2 87.4 64.9 90.5 75.1 / 

Libra R-CNN[43] 38.3 81.3 88.4 81.3 67.8 88.2 73.3 12.0 

RT-DETR[44] 37.2 78.5 91.2 79.0 59.9 90.4 72.6 30.1 

SCRL-EMD-FR[45] 46.8 83.0 92.8 85.2 58.5 95.1 76.9 14.4 

SCRL-EMD-RN[45] 45.3 73.4 93.4 83.5 56.1 84.3 72.7 16.1 

HA-YOLO[46] 52.4 80.4 86.9 75.0 66.1 89.8 75.1 / 

ES-NET[47] 56.0 87.6 88.3 87.4 60.4 94.9 79.1 53.0 

SN-TOOD[48] 39.2 79.2 86.6 80.5 56.5 85.2 71.2 / 

MSFT-YOLO[49] 56.9 80.8 93.5 82.1 52.7 83.5 74.9 30.6 

LDD-YOLO[50] 42.2 87.8 94.1 86.3 65.6 93.4 78.2 / 

Ours 55.7 79.6 94.9 84.9 68.5 91.8 79.2 55.8 

5 Conclusion 

This study introduces an advanced YOLOv11 framework aimed at addressing critical 

challenges associated with the detection of surface defects in industrial environments. 

Specifically, it focuses on issues related to multi-scale defect variations, a scarcity of 

defect samples, and complex texture interference. The research delineates three key 

innovations: 1) An improved backbone network that integrates ResCBAM and SCConv 

modules, which effectively mitigates background noise from intricate leather textures 

while maintaining efficient feature extraction and enhancing the representation of dis-

criminative defect features; 2) A cross-scale attention mechanism that utilizes feature 

fusion strategies to address scale sensitivity challenges across defects of varying sizes; 
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and 3) A ProtoNet employing CIoU loss functions that facilitates the synergistic opti-

mization of precise localization and classification in scenarios with limited sample 

availability, thereby enhancing adaptability to the morphological diversity of leather 

defects. The model has been rigorously evaluated using both self-collected datasets of 

leather defects and established public benchmarks for steel surface defects, demonstrat-

ing superior performance, computational efficiency, and real-time inference capabili-

ties. Future research endeavors will focus on developing adaptive optimization strate-

gies tailored to diverse industrial inspection contexts, thereby accommodating varying 

requirements for speed and accuracy. 
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