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Abstract. Graph Convolutional Networks (GCNs) have shown great promise in 

semi-supervised node classification tasks. However, existing Graph Convolu-

tional Networks (GCNs) face two key challenges: 1) While addressing the limi-

tations of incomplete or noisy graph structures, the structural information of the 

graph remains underutilized; 2) the scarcity of labeled data, limiting the ability 

to learn comprehensive embeddings. In response to these challenges, we propose 

a novel Multi-channel Fusion Graph Convolutional Networks with pseudo-label, 

which learn a connected embedding by fusing the multi-channel graphs infor-

mation and node features. First, to explore the latent information within the orig-

inal data, we design a graph generation module to extend and reconstruct the 

original data into multiple graphs. Meanwhile, a multi-channel approach is em-

ployed to embed and fuse these graphs, capturing the complementarity across 

different channels. Second, to address the issue of label sparsity, we design a 

confidence propagation-based information gain filtering module to generate 

high-quality pseudo-labels. 

Extensive experiments on three benchmark datasets demonstrate that our method 

outperforms other approaches. 

Keywords: Graph convolutional networks, Multi-channel, Pseudo labeling, 

Semi-supervised, Classification learning. 

1 Introduction 

Graph Neural Networks (GNNs) and their variants have demonstrated outstanding per-

formance across various graph-based tasks, including node classification [1], [2], [3], 

[4], [5], [6], [7], [8], link prediction [9], [10] and graph classification [11]. GNNs em-

ploy a computational paradigm known as message passing [12], in which feature ag-

gregation serves as a key component. In this process, at every convolution layer, nodes 

aggregate features from their connected neighbors, propagating information through 

the network topology. This iterative process enriches node embeddings, thereby en-

hancing the model’s effectiveness in processing graph-form data. 



 

Node classification is a core task in GNNs, widely used in areas like social network 

analysis, bioinformatics, and recommendation systems. Although GNNs and their var-

iations have shown notable success in semi-supervised node classification, most exist-

ing methods heavily rely on predefined graph structures (i.e., adjacency matrices) to 

learn node embeddings. However, the edges (relationships) in these graphs are typically 

manually defined, which may not fully capture the latent patterns and global infor-

mation in the data. This restriction limits the expressive potential of GNNs. In response, 

recent studies [13], [14], [15],[16] have introduced dual-channel or multi-channel 

frameworks to enhance the modeling capability of GNNs for node relationships. For 

instance, AM-GCN [17] generates a k-nearest neighbor graph from the node feature 

matrix and simultaneously extracts node embeddings from the kNN graph, the original 

graph, and their combination, thereby enhancing the model’s capacity to capture both 

local and global structural information. Additionally, other studies [14] have proposed 

constructing multiple adjacency matrices to enhance the connectivity between nodes, 

facilitating more efficient message passing in GCNs. 

Although these methods contribute to the success of GNNs in semi-supervised node 

classification, several challenges remain. First, the alternative graph structures con-

structed in existing models are often simplistic, limiting their ability to capture complex 

structural information and reducing the model's expressive power. Second, limited la-

bels hinder effective GNN training. To overcome this limitation, some studies have 

introduced pseudo-label generation mechanisms, such as MFGCN [18], which employs 

a similarity-based pseudo-label generation method. However, such approaches may in-

troduce noisy pseudo-labels, potentially degrading the overall model performance. 

This paper proposes a multi-channel fusion graph convolutional network with 

pseudo-labels for semi-supervised node classification tasks. In this model, the graph 

generation module processes the original graph data using two graph construction al-

gorithms: multi-scale feature fusion and edge-augmented graph fusion, resulting in 

multiple complementary feature graphs. Next, we design a multi-channel fusion mod-

ule that applies GCN encoders for convolution operations and fusion of these graphs. 

To ensure consistency in the embeddings across different graphs during training, we 

introduce a consistency function. Finally, we propose a confidence propagation-based 

information gain filtering mechanism for selecting and generating pseudo-labels, This 

mechanism facilitates node classification. Our primary contributions are outlined be-

low: 

1. Considering that graphs generated from a single perspective may not effectively sup-

port downstream tasks, we design a method to generate multiple graphs for pro-

cessing by the GCN encoder, enabling the acquisition of richer node representations. 

2. We have designed an end-to-end Graph Neural Network (MCF-GCN) model em-

ploying multi-channel encoding to process multiple generated graphs while enforc-

ing consistency constraints, ultimately fusing them to generate node representations. 

3. To overcome the scarcity of labeled data, we propose generating pseudo-labels with 

confidence propagation and information gain filtering, enabling the selection of 

more reliable pseudo-labels. 
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2 Preliminaries 

2.1 Graph Convolutional Networks 

A common type of GNN is the Graph Convolutional Network (GCN), developed by 

Kipf and Welling [3]. In a GCN, node representations are updated by aggregating in-

formation from their neighbors using a symmetrically normalized adjacency matrix, 

denoted as 𝐀̂. The symmetrically normalized adjacency matrix with self-loops is de-

fined as: 

                                                    𝐀̂ = 𝐃̃−
1
2𝐀̃𝐃̃−

1
2                                                      (1) 

Here, 𝐀̃ = 𝐀 + 𝐈 represents the adjacency matrix with self-loops added, and 𝐃̃ is the 

degree matrix of 𝐀̃. The GCN aggregates information using this normalized matrix, and 

its two-layer formulation is expressed as: 

                                     𝐙GCN = 𝜎(𝐀̂ ReLU(𝐀̂𝐗𝐖(0))𝐖(1))                               (2) 

where 𝐖(0) and 𝐖(1) represent the learnable weight matrices for the first and sec-

ond layers of the GCN, respectively. 𝜎 and ReLu are nonlinear activation functions. 

𝐙GCN represents the ultimate result from the two-layer GCN. 

3 METHOD 

In this section, we present the Multi-Channel Fusion Graph Convolutional Networks 

with pseudo-label. The architecture of MCF-GCN is depicted in Fig. 1. Our approach 

is composed of the following components: 

(1) Graph Generation Module: The module can uncover diverse information within 

graph data by leveraging both graph topology and node feature information to 

extract rich latent information, thus enabling graph reconstruction and providing 

edge information for supporting subsequent modules. 

(2) GCN-based Mutil-channel Fusion Module: This module fuses node embeddings 

from muti-channels using GCNs. The fused embeddings are then used for node 

classification. 

(3) Pseudo-Label Generation Module: To address the problem of label sparsity, We 

propose a novel mechanism for selecting pseudo-labels. We first perform an 



 

initial screening through confidence propagation and then apply an information 

filtering mechanism to identify pseudo-labels with higher reliability. 

Fig. 1: The framework of MCF-GCN: The model consists of three key modules. The graph gen-

eration module constructs an edge-augmented fusion graph 𝒜𝑇 and a multi-scale feature fusion 

graph 𝒜𝐹  from the original data. A multi-channel independent GCN extracts and integrates 

multi-channel information from the original graph  𝒜, the generated graphs 𝒜𝑇 and  𝒜𝐹. The 

pseudo-label generation module supe-vises training by assigning high-quality pseudo-labels to 

unlabeled nodes. 

3.1 Graph Generation 

Edge-Augmented Graph Fusion 

From the input graph adjacency matrix, inspired by the edge modification, We ran-

domly remove a fraction of the edges and simultaneously add an equal number of edges 

in a uniform manner. In this way, we are trying to maximize the preservation of the 

properties of the raw graph while capturing the information of the multi-order nodes of 

the graph with the new edges. 

In our experiments, given an adjacency matrix 𝒜, we first set a fixed scale P which 

searches in the range [0.1,0.2,0.3, … ,0.9]. Following the EM algorithm, we can get m 

new adjacency matrices, denoted as 𝐀𝑡 = {𝐀𝑡1, 𝐀𝑡2, 𝐀𝑡3, … , 𝐀𝑡𝑛} . Then, the edge-

based fusion graph 𝒢𝑇 = (𝒜𝑇 , 𝑋), where 𝒜𝑇 can be obtained by the following equa-

tion: 

                                                     𝒜𝑇 =
1

𝑛
∑  

𝑛

𝑖=1

𝐀𝑡𝑖
                                              (3) 
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Multi-Scale Feature Fusion Graph 

To grasp the topological relationships between nodes in feature space, we generate 

a graph based on cosine similarity from the node feature matrix 𝐗. This approach helps 

identify connections between nodes with similar characteristics while minimizing the 

impact of outliers. 

We begin by computing the cosine similarity matrix𝑆 ∈ ℝ𝑛×𝑛 for n nodes. Let 𝐱𝑖 

and 𝐱𝑗 represent the feature vectors of nodes 𝑣𝑖 and 𝑣𝑗 , respectively. The cosine simi-

larity 𝑆𝑖,𝑗 between these two nodes is calculated as follows: 

                                                       𝑆𝑖,𝑗 =
⟨𝐱𝑖 , 𝐱𝑗⟩

∥ 𝐱𝑖 ∥⋅∥ 𝐱𝑗 ∥
                                          (4) 

Then, we select the top k similar nodes for each node to update the edges, where k is 

randomly chosen from the range of  [8,16,32, … , 𝑆]. Finally, we obtain a set 𝐀𝑓 =

{𝐀𝑓1 , 𝐀𝑓2, 𝐀𝑓3 … , 𝐀𝑓𝑚}, where the elements inside 𝐀𝑓 represent the corresponding ad-

jacency matrices. 

Then, to obtain multi-scale neighborhood information and reduce the impact of 

noise, the feature-based fusion graph is defined as 𝐺𝐹 = (𝐀𝐹 , 𝐗), where 𝐀𝐹  is obtained 

by the following equation: 

                                                         𝒜𝐹 =
1

𝑚
∑  

𝑚

𝑖=1

𝐀𝑓𝑖                                            (5) 

3.2 GCN-based Mutil-channel Fusion Module 

Given a graph 𝒢 = (𝒜, 𝒱, 𝒳), we use the edge-augmented fusion and multi-scale fea-

ture fusion methods to obtain the graphs 𝒢𝑇 = (𝒜𝑇 , 𝒳)}, 𝒢𝐹 = (𝒜𝐹 , 𝒳)  in feature 

space and topology space, respectively. We take the GCN-based encoder to learn the 

embeddings. We input 𝒢 into the two-layer GCN as follows: 

                                                 𝑍1 = ReLU(𝒜̂𝑋𝑊(0))𝑊(1)                                 (6) 

where 𝑍1 denotes the embedding result learned from the raw graph. 

 Similarly, 𝒢𝐹 and 𝒢𝑇 are input into the independent GCNs to obtain graph embed-

dings 𝑍2 and 𝑍3, respectively. For the three graph embeddings, namely 𝑍1, 𝑍2, and 𝑍3. 

we perform embedding fusion to generate Z 

                                                          𝑍 =
1

3
∑  

3

𝑖=1

𝑍𝑖                                                    (7) 

We assume that the subset 𝑉𝐿 = {𝑣1, 𝑣2, … , 𝑣𝐿} of the node set  V is the labeled train-

ing set, and the corresponding labels are𝑌𝐿 = {𝑦1 , 𝑦2, … , 𝑦𝐿}. Additionally, 𝑉𝑈 is the set 

of unlabeled nodes, and we can obtain the entire set 𝑉 = 𝑉𝐿 ∪ 𝑉𝑈. For each node 𝑣𝑙 ∈
𝑉𝐿, there are two types of labels: the real label 𝑦𝑙 and the predicted label 𝑍𝑙. The cross-

entropy error for node classification over all labeled nodes is then expressed as: 



 

                                                𝐿0 = − ∑  

𝑣𝑙∈𝑉𝐿

∑  

𝐶

𝑡=1

𝑦𝑙
𝑡 ln 𝑍𝑙

𝑡                                      (8) 

Here, C represents the total number of classes, 𝑦𝑙
𝑡 is the real label of node 𝑣𝑙  for class 

t, and 𝑍𝑙
𝑡  is the predicted probability for node 𝑣𝑙  belonging to class t. 

To ensure that 𝑍2and 𝑍3 remain close to 𝑍1 in the embedding space, we impose a 

consistency constraint that minimizes their deviation from the original graph embed-

dings. This ensures structural and feature similarity between the augmented and raw 

graphs. The constraint is defined as:   

                                     𝐿1 =∥ 𝑍2nor − 𝑍1nor ∥𝐹
2+∥ 𝑍3nor − 𝑍1nor ∥𝐹

2                      (9) 

Here, 𝑍1nor, 𝑍2nor and 𝑍3nor denote the L2-normalized embedding matrices of 𝑍1, 𝑍2 

and 𝑍3,, respectively. By directly minimizing their distance, we enforce consistency 

and maintain stable representations. 

3.3 Pseudo-Label Generation 

Pseudo-labels play a crucial role in semi-supervised classification tasks, helping to mit-

igate the issue of label scarcity. However, existing pseudo-labeling methods often suf-

fer from noisy labels and unreliable predictions, which can degrade model performance. 

To address this, we propose a confidence-based pseudo-label refinement approach that 

integrates confidence propagation and high-quality pseudo-label selection. Specifi-

cally, our method first propagates prediction confidence across the graph to enhance 

label consistency, then selects the most informative pseudo-labels based on an infor-

mation gain criterion. 

Given a graph 𝐺 = (𝑉, 𝐸), where V is the set of nodes and E is the set of edges, each 

node 𝑣 ∈ 𝑉 has an associated feature vector 𝑥𝑣 ∈ ℝ𝑑. The goal is to classify nodes into 

C classes in a semi-supervised setting, where only a small subset of nodes has ground-

truth labels. 

Let 𝑓𝜃(𝑥𝑣) be a Multi-Layer Perceptron (MLP) that outputs the class probability dis-

tribution for node 𝑣 : 

                                           𝑦pred,𝑣 = softmax(𝑓𝜃(𝑥𝑣)) ∈ ℝ𝐶                                     (10) 

where 𝑦pred,𝑣 represents the predicted probability over C classes. 

Since MLP operates independently on each node without considering graph struc-

ture, its predictions may be noisy or inconsistent. To address this, we introduce a con-

fidence propagation mechanism followed by information gain-based pseudo-label se-

lection. 

To refine the confidence scores and leverage graph structure, we define an iterative 

confidence propagation process. Let 𝑦prop,𝑣
(𝑡)

 be the propagated confidence of node 𝑣 at 

iteration 𝑡. The update rule is: 
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                                         𝑦prop,𝑣
(𝑡+1)

= 𝛼 ∑  

𝑢∈𝑁(𝑣)

𝑦prop,𝑢
(𝑡)

+ (1 − 𝛼)𝑦pred,𝑣                      (11) 

where 𝑁(𝑣) is the set of neighbors of node 𝑣, 𝛼 ∈ (0,1) is a propagation factor con-

trolling the influence of neighboring nodes, The sum ∑𝑢∈𝑁(𝑣) 𝑦prop,𝑢
(𝑡)

  aggregates con-

fidence scores from neighbors. 

This can be expressed in matrix form using the adjacency matrix 𝐴 of the graph: 

                                              𝑌prop
(𝑡+1)

= 𝛼𝐴𝑌prop
(𝑡)

+ (1 − 𝛼)𝑌pred                                    (12) 

where𝑌prop ∈ ℝ𝑁×𝐶  is the confidence matrix for all 𝑁 nodes. 

The steady-state solution after sufficient iterations (assuming convergence) is: 

                                                   𝑌prop = (1 − 𝛼)(𝐼 − 𝛼𝐴)−1𝑌pred                                 (13) 

where (𝐼 − 𝛼𝐴)−1 can be interpreted as a smoothed label propagation operator. Af-

ter propagation, 𝑌prop contains refined pseudo-label probabilities, making the predic-

tions more consistent with the graph structure. 

To prevent overly confident predictions, we apply row-wise normalization: 

                                                          𝑌prop =
𝑌prop

∑  𝑐 𝑌prop,𝑐

                                                  (14) 

ensuring that the confidence distribution sums to 1 for each node. 

After confidence propagation, we generate pseudo-labels by selecting the class with 

the highest probability: 

                                                       𝑦̂𝑣 = arg 𝑚𝑎𝑥  𝑐 𝑌prop,𝑣,𝑐                                           (15) 

To filter out unreliable pseudo-labels, we compute the maximum confidence score 

for each node: 

                                                        𝑝𝑣 = max 𝑐 𝑌prop,𝑣,𝑐                                                    (16) 

A threshold 𝜏 is used to select only high-confidence pseudo-labels: 

                                                  𝑉pseudo = { 𝑣 ∈ 𝑉 ∣∣ 𝑝𝑣 > 𝜏 }                                           (17) 

where 𝑉pseudo is the set of pseudo-labeled nodes. However, this selection does not 

consider graph consistency, which we address next. 

Since individual node confidence may still be misleading, we introduce an infor-

mation gain (IG) score to evaluate the consistency of a pseudo-label with its local neigh-

borhood. 

For each node 𝑣, we define its information gain score as the average confidence of 

its neighbors for the same predicted class: 



 

                                                  IG(𝑣) =
1

∣ 𝑁(𝑣) ∣
∑  

𝑢∈𝑁(𝑣)

𝑌prop,𝑢,𝑦̂𝑣
                                  (18) 

This score quantifies how strongly node 𝑣’s pseudo-label aligns with its neighbor-

hood. A higher score means the node and its neighbors consistently predict the same 

class with high confidence. 

To select high-quality pseudo-labels, we take the top 𝑘 nodes per class with the high-

est IG scores: 

                             𝑉selected(𝑐) = arg max  𝑣∈𝑉pseudo,𝑦̂𝑣=𝑐 IG(𝑣) , for each class 𝑐          (19) 

where𝑉selected(𝑐) contains the top 𝑘 pseudo-labeled nodes for class 𝑐. The final re-

fined pseudo-labels are: 

                                           𝑦̂𝑣 = {
𝑦̂𝑣,     if𝑣 ∈ 𝑉selectesd

unlabeled,     otherwise    
                                      (20) 

We define 𝑄𝑣  as a one-hot encoded distribution corresponding to the refined pseudo-

label 𝑦̂𝑣: 

                                                     𝑄𝑣(𝑐) = {
1, if 𝑐 = 𝑦̂𝑣 ,
0, otherwise.

                                                (21) 

The KL divergence between 𝑄𝑣  and 𝑃𝑣 for node 𝑣 is given by: 

                                          KL(𝑄𝑣 ∥ 𝑃𝑣) = ∑  

𝐶

𝑐=1

𝑄𝑣(𝑐) log
𝑄𝑣(𝑐)

𝑃𝑣(𝑐)
.                                    (22) 

Since 𝑄𝑣  is a one-hot distribution, only the term corresponding to 𝑐 = 𝑦̂𝑣  is non-

zero, and the expression simplifies to: 

                                                        KL(𝑄𝑣 ∥ 𝑃𝑣) = − log 𝑃𝑣(𝑦̂𝑣).                                      (23) 

Thus, the overall pseudo-label loss over all selected nodes 𝑉selected becomes: 

                                                 ℒpseudo = ∑  

𝑣∈𝑉selected

− log 𝑃𝑣(𝑦̂𝑣),                                      (24) 

where 𝑃𝑣(𝑦̂𝑣) denotes the predicted probability of node 𝑣 for the refined pseudo-la-

bel 𝑦̂𝑣. 

Therefore, the final loss function of the model is formulated as follows: 

                                                           𝐿 = 𝐿0 + 𝐿1 + 𝜆ℒpseudo                                              (25) 

where 𝜆 is a balance hyper-parameter. 
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4 EXPERIMENTS 

In this section, we compare our model with several popular graph-based semi-super-

vised node classification models. Subsequently, we conduct ablation experiments to 

evaluate the performance of each component of MCF-GCN. The model accuracy and 

its visualization further demonstrate the effectiveness of MCF-GCN. 

4.1 Datasets and Experimental Setup 

Our experiments are based on three citation graphs: Cora, CiteSeer, and PubMed [20], 

with nodes indicating papers and edges indicating citations. Node features are gener-

ated using a bag-of-words representation, and each node has a class label. For node 

classification, we use the default dataset split: 20 instances for training, 500 for valida-

tion, and 1000 for testing, with the remaining labels unused [21]. Statistics for these 

datasets are summarized in Table 1. 

Table 1:  Dataset statistics 

Dataset Classes Nodes Edges Features 

Cora 7 2708 5429 1433 

Citeseer 6 3327 4732 3703 

PubMed 3 19717 443328 500 

 

The learning rate is set to 0.01, and the Adam optimizer [19] is used, with a hidden 

layer dimension of {32,64,128}. The dropout rate for the adjacency matrix is 0.5, 

weight decay is set to 5e-4. A two-layer Graph Convolutional Network is applied to 

each dataset. In our experiment, 𝑚  and 𝑛 are set to the same value, with both parame-

ters ranging from {1,2,3,4,5,6}. A sensitivity analysis is conducted to evaluate their 

impact. 

In addition, The selection of pseudo-labels involves three key parameters: the 

smoothing factor 𝛼, the pseudo-label confidence threshold 𝜏,  and the maximum num-

ber of pseudo-labels per class 𝑘 . The smoothing factor 𝛼  controls the influence of 

neighboring nodes during confidence propagation and is chosen from {0.5, 0.6, 0.7, 

0.8, 0.9}. The pseudo-label confidence threshold 𝜏  determines the minimum confi-

dence required for a node to be considered as a pseudo-label, with values selected from 

{0.7, 0.8, 0.9, 0.95}. The maximum number of pseudo-labels per class 𝑘 restricts the 

number of selected pseudo-labels based on information gain and is chosen within the 

range of [30 - 100]. 

4.2 Baselines 

We compare our proposed MCF-GCN with state-of-the-art semi-supervised classifica-

tion learning methods, including the following five categories: 

• Base encoder: GCN [3], SGC [8], GAT [6]. 

• Sampling-based encoder: FastGCN [22]. 



 

• Multi-scale information fusion-based encoder: N-GCN[13]. 

• Graph generation fusion-based encoder: MOGCN[23], PA-GCN[24]. 

• Pseudo labeling-based encoder: MFGCN[18]. 

4.3 Experiment Results 

Node Classification 

We use the proposed overall architecture to perform node classification tasks on the 

Cora, CiteSeer, and PubMed citation network datasets.We report the average accuracy 

when using a training set of 20 nodes per class and compare it with other methods. The 

results are shown in Table 2. 

Table 2:  Node classification results 

Model 
Dataset 

Cora Citeseer PubMed 

GCN 81.51 70.72 78.80 

GAT 82.48 72.08 79.08 

SGC 81.90 72.21 78.30 

FastGCN 80.70 70.70 79.40 

N-GCN 83.00 72.20 79.50 

MOGCN 83.10 72.40 79.20 

PA-GCN 83.60 70.40 79.30 

MFGCN 75.10 71.90 79.10 

Ours 85.60 74.10 81.00 

 

MCF-GCN outperforms the multi-scale information fusion-based encoders 

(MOGCN, N-GCN, PA-GCN), multi-view fusion-based encoder (MFGCN), and sam-

pling-based encoder (FastGCN) on the three datasets. 

Ablation Experiment.  

To clearly demonstrate the effectiveness of the two modules in the model, we conducted 

ablation experiments to highlight the contribution of each component. The design of 

the two ablation experiments is as follows, with the results selecting the highest average 

accuracy, as shown in Table 3. 

1. GCN #A: GCN \#A refers to a variant of GCN,which serves as the basic GCN 

integrated with the graph generation and multi-channel fusion modules. 

2. GCN #B: GCN \#B refers to a variant of GCN, which serves as the basic GCN 

integrated with the pseudo-label generation module. 

For GCN # A, combining the multi-channel fusion module with GCN after graph 

generation results in a slight improvement in node classification accuracy: 1.1%, 2.1%, 

and 0.4% on the Cora, Citeseer, and PubMed datasets, respectively, compared to the 

baseline. 
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Table 3:  Accuracy(%) of ablation experiments on three datasets 

Model 
Dataset 

Cora Citeseer PubMed 

GCN 81.5 70.9 79.4 

GCN #A 82.6 73.0 79.8 

GCN #B 83.8 73.4 80.3 

For GCN # B, combining the pseudo-label generation module with GCN signifi-

cantly improves node classification, achieving increases of 2.3%, 2.5%, and 0.9% on 

the Cora, Citeseer, and PubMed datasets, respectively, compared to the GCN baseline. 

Meanwhile, we compare our method with other traditional pseudo-label-based node 

classification approaches, with the results presented in Table 4. This demonstrates that 

our pseudo-labeling module effectively addresses the label sparsity issue in semi-su-

pervised node classification. 

Table 4:  Accuracy(%) of Pseudo-label generation methods on three datasets 

Model 
Dataset 

Cora Citeseer PubMed 

GCN-LP[25] 82.6 72.6 79.6 

Self-training[26] 80.8 71.0 77.0 

GCN-Feature-sim 82.5 71.5 79.0 

GCN #B 83.8 73.4 80.3 

 

To evaluate whether the pseudo-labels generated by our method are of higher quality 

than those produced by other approaches, we analyze the neighborhood consistency of 

pseudo-labels generated by different methods, as shown in Fig. 2. The results demon-

strate that our method produces higher-quality pseudo-labels with better neighborhood 

consistency compared to other approaches. 

 

Fig. 2: Pseudo-Label Neighborhood Consistency Analysis of Four Pseudo-Label Generation 

Methods 



 

Classification Result Visualization.  

In order to more intuitively demonstrate the effectiveness of our proposed model, we 

perform a visualization task (distribution of raw data and classification results of GCN, 

GAT, and MCF-GCN) on the Cora and Citeseer datasets using the t-SNE [27] algo-

rithm. As shown in Fig. 3, the visualization results of GCN and GAT are unsatisfactory, 

as there is no clear boundary between different classes. In contrast, the proposed model 

performs better, with a larger inter-class distance and smaller intra-class distance. 

 

(a) GCN  on Cora                     (b) GAT on Cora                       (c) Ours on Cora 

 

   (d) GCN on Citeseer              (e) GAT on Citeseer      (f) Ours on Citeseer 

Fig. 3: The visualization of classification results of GCN, GAT, and Our method on Cora, 

Citeseer datasets. 

5 Conclusion 

This paper proposes an end-to-end multi-channel Graph Convolutional Network (MCF-

GCN) model for semi-supervised node classification. Our model constructs multiple 

graphs by processing the original topology and node features from different perspec-

tives. A multi-channel GCN encoder is then employed to extract features from these 

graphs and integrate them, enabling a more comprehensive representation of node in-

formation. Furthermore, we introduce a pseudo-label generation mechanism based on 

confidence propagation and information gain filtering, which effectively selects high-



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

quality pseudo-labels to mitigate the issue of label sparsity. Experimental results on 

three public datasets demonstrate that our model outperforms existing methods, vali-

dating its effectiveness in semi-supervised node classification. 
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