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Abstract. Talking portrait synthesis is a crucial task in computer vision, enabling
realistic animations for applications in virtual communication, entertainment, and
digital media. Current methods primarily focus on short-hair scenarios, where
they rely on rigid segmentation to separate the head from the torso, followed by
head reconstruction and simple compositional strategies to combine the head
back with the torso. However, these methods face significant challenges when
applied to long-haired individuals due to the complex interactions between hair
and body, which can lead to visual artifacts and misalignments. In this work, we
introduce a novel dataset specifically designed for long-haired individuals,
providing a comprehensive benchmark for evaluating head-torso separation in
these complex scenarios. Building upon this dataset, we propose UniGS, a uni-
fied 3DGS-based framework that holistically models the full portrait, eliminating
the need for explicit segmentation. By incorporating audio, eye, and pose features
into a deformation network and utilizing a static-to-dynamic training strategy,
our method achieves superior realism and coherence. Experimental results show
that our approach outperforms existing state-of-the-art techniques in both visual
quality and inference efficiency, and effectively handles the complex visual chal-
lenges posed by long-haired scenarios. Additional comparisons on existing short-
hair datasets further confirm the robustness of our method.

Keywords: Talking Portrait Generation, Head-Torso Separation, 3D Gaussian
Splatting.

1 Introduction

In recent years, neural rendering techniques, particularly Neural Radiance Fields
(NeRF) [1] and 3D Gaussian Splatting (3DGS) [2], have made significant improve-
ments in facial animation and view synthesis, drawing considerable attention to the task
of talking portrait generation [3-6]. These technologies can be applied in a range of
applications, including virtual assistants, film dubbing, and remote communication [7-
8]. Given the human eye’s sensitivity to even the smallest discrepancies, it is essential
to generate lifelike and seamless talking portraits. Inaccurate head-torso separation of-
ten results in distortions such as misalignment, floating heads, or unnatural body mo-
tion, which significantly degrade the user experience in interactive applications.



Despite its importance, head-torso consistency has been largely overlooked in exist-
ing methods. Most current techniques adopt segment-dependent frameworks that divide
the portrait into distinct head and torso regions with a hard boundary at the jawline to
simplify modeling [5,9]. While this enables high-quality head animation, the torso is
typically left static or inadequately processed; then the animated head is simply com-
posited back onto the original body. This approach works well in simple cases like
short-haired individuals, where the head and torso exhibit distinct boundaries and sim-
ilar color tones, allowing for straightforward blending [3,10].

However, when applied to long-haired subjects, these methods struggle signifi-
cantly. Hair often spans the head-torso boundary, causing self-occlusion, dynamic in-
teractions with clothing, and high color contrast at the boundary. These effects disrupt
traditional segmentation strategies, amplifying both geometric and photometric incon-
sistencies, making it difficult to maintain head-torso consistency. Existing methods fail
to adequately address these issues, resulting in misalignments, artifacts, and unrealistic
body motion in long-hair scenarios.

To address this challenge, we introduce a novel dataset focused on long-haired indi-
viduals, providing a comprehensive benchmark for evaluating head-torso consistency
in complex scenarios. Based on this dataset, we propose UniGS, a unified 3DGS frame-
work that addresses head-torso boundary inconsistencies through holistic modeling. By
jointly encoding audio features, eye movements, and head poses within a unified Gauss-
ian field, our method enables consistent animation across the eyes, face, and torso. Fur-
thermore, we adopt a 'static-to-dynamic' training strategy, similar in spirit to canonical-
to-deformation pipelines [11-13], which transitions from learning a stable canonical
field to modeling dynamic deformations. This approach reduces dependence on accu-
rate segmentation and removes the need to separately handle the head and torso, ena-
bling efficient and high-fidelity portrait generation.

We validate our framework through both quantitative and qualitative experiments.
Results demonstrate that our method significantly outperforms existing techniques in
maintaining head-torso consistency and visual realism in long-haired scenarios, while
also achieving efficient portrait rendering.

The primary contributions of this work are as follows:

e We introduce a novel dataset focused on long-haired individuals, filling a key gap
in existing benchmarks and enabling rigorous evaluation of head-torso separation in
complex scenarios.

e We propose UniGS, a unified 3DGS framework that models the entire portrait ho-
listically, offering a novel and effective solution to the head-torso separation prob-
lem without relying on explicit segmentation.

e We demonstrate that our approach outperforms state-of-the-art methods in handling
long-hair scenarios, while also achieving competitive performance on existing short-
hair benchmarks, ensuring efficiency, high-fidelity and generalizability.
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Fig. 1. Comparison of head-torso boundary conditions between existing short-haired benchmarks
(a) and our long-haired dataset (b) Short-haired portraits present clear, color-consistent bounda-
ries, enabling simple segmentation. In contrast, long-haired examples exhibit complex, occlu-
sion-prone boundaries with high color contrast, complicating separation. See highlighted bound-
ary zones and sampled pixel color pairs.

2 Dataset

To systematically investigate head-torso separation under visually complex conditions,
we introduce a new dataset of long-haired talking portraits. Unlike prior benchmarks
[14-16] which predominantly feature short-haired individuals with visually coherent
and easy-to-segment boundaries, our dataset emphasizes cases with significant struc-
tural ambiguity and high appearance variation across the boundary, as shown in Fig. 1.
These include hair occlusions, motion-induced distortions, and color discontinuities be-
tween head and torso regions, all of which pose significant challenges for both geomet-
ric modeling and photometric consistency.

We collected a total of eight videos from YouTube, selecting content published
within the past five years that features long-haired individuals speaking natural sen-
tences. Each subject appears under relatively consistent lighting and pose. The original
videos are in 720p or 1080p resolution, providing high-fidelity footage suitable for both
model training and evaluation.

To standardize the dataset, we apply a facial landmark detector to extract face-cen-
tered regions, using a fixed crop window per video to preserve framing consistency.
All videos are resized to 480 x 480 resolutions to balance detail and computational
efficiency. To minimize distraction and preserve portrait integrity, we manually remove
segments containing occlusions such as hand gestures or large head movements.

While this dataset does not directly improve the performance of existing models, it
serves as a stress test for evaluating head-torso consistency under long-hair conditions.
Our analysis reveals that state-of-the-art segment-dependent frameworks exhibit sig-
nificant performance degradation on this dataset, largely due to their reliance on rigid
region separation and precise segmentation. These results highlight the need for a ho-
listic modeling strategy that treats the portrait as an integrated whole. This underscores
the need for holistic and unified modeling approaches. In response to this limitation,
we introduce a unified 3DGS-based framework that models the entire portrait without



explicit head-torso segmentation, offering a more robust and generalizable solution to
the challenges posed by long-haired scenarios. We detail this framework in the follow-
ing section.

3 Methodology

We propose a unified framework for audio-driven talking portrait synthesis that lever-
ages 3D Gaussian Splatting (3DGS) for holistic head—torso modeling, as shown in Fig.
2. Unlike traditional methods that treat head and torso separately, UniGS ensures spatial
coherence through a single Gaussian field. The model integrates audio, eye, and pose
features to achieve precise lip synchronization and realistic motion modeling.
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Fig. 2. Overview of UniGS. The framework models a unified portrait with 3D Gaussian Splat-
ting, integrating dynamic head and torso motions. Random cloud points are rasterized by the
3DGS Rasterizer (G,) to create an initial 3D structure with initial Gaussian parameters (68,). Con-
ditional inputs, audio, eye, and pose features, are concatenated with the encoded spatial locations
(f,,) derived from hash encoding (3) and processed by a single MLP to predict dynamic updates
(Aw, As, Ar) for the Gaussian parameters. These updates refine the 3D representation, which is
then rasterized by the final 3DGS Rasterizer (G,) to generate the rendered image (I). Loss func-
tions, including static training loss L, and dynamic training loss £, ensure the rendered output
(7) aligns with the ground truth (1), achieving realistic motion and fine-grained details.

3.1 Preliminaries

3D Gaussian Splatting is a point cloud rendering technique that represents scenes using
anisotropic ellipsoidal Gaussians. Each Gaussian primitive is defined by its position
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u € R3, rotation r € R*, scaling s € R3, opacity a € R?, and color feature f € R%. It
is expressed as:

g(x) = exp (=5 (x = )27 (x — ) ()

where the covariance matrix X is derived from r and s. During rendering, a rasterizer
gathers N Gaussians, combining the color ¢ and projected opacity @ of each to com-
pute the pixel color C(p):

C®) = Yiev i@ []_,(1 - &) @)

3DGS explicitly represents scenes with parameters 8 = {u, 1, s, a, f}, which are opti-
mized via gradient descent under color supervision. It employs a densification strategy
to grow primitives and prune redundant ones during training.

3.2 Preprocessing

To generate audio-driven talking portraits, we first preprocess the input data to extract
useful features. The training data consists of a few minutes of speech video from a
single person. Preprocessing begins by resampling the raw audio signal at a rate of 16
kHz. Mel-frequency cepstral coefficients (MFCC) are then extracted from each frame,
which has a duration of 350 ms, using a 40-dimensional filter bank energy and a 25 ms
sliding window step. We then map these MFCC features into speech embedding vectors
using a pre-trained DeepSpeech encoder [17], which captures the semantic elements of
the speech and provides discriminative information essential for precise lip synchroni-
zation.

Next, we use OpenFace toolkit [18] to extract facial action unit parameters, specifi-
cally those related to ocular muscles. These parameters are represented by an eye fea-
ture vector e, which encodes facial movements necessary for accurate eye and facial
expression synthesis.

Finally, we employ 3D Morphable Model (3DMM) [19] to estimate the rotation ma-
trix R € R3*3 and translation vector t € R3, which work as the pose features p and
camera viewpoints cam. The 3DMM allows us to model the three-dimensional geome-
try of the face and account for changes in viewpoint during the video, ensuring that the
generated portrait maintains correct alignment with the speaker’s position and pose.

3.3 Static to Dynamic Gaussian Deformation Training

We initialize a randomly distributed point cloud within a cube, which is fed into a 3DGS
rasterizer to learn the coarse static appearance and structure of the portrait. This process
generates static Gaussian primitives 8, = {1, So, 7o, fo, @0}, @and the rendered static im-
age is:

Iy = G5(6y, cam) 3)

While Gaussian primitives effectively represent the global 3D head, they lack fine-
grained regional position encoding. To address this, we adopt three orthogonal 2D
multi-resolution hash grids [20] to encode projected coordinates u = (x,y, z):



HA%: (a,b) > fay (4)

where the output £4 € RLF is the plane-level geometry feature for the projected coor-
dinate (a, b), with the number of levels L and feature dimensions per entry F. Then the
outputs of these three encoders will be concatenated as:

fu =KX (x,y) ® H(y,2) @ H**(x,2) ()
where € denotes concatenation, and f,, captures plane-level geometry features.

In the deformation prediction network, we employ a 3-layer Multilayer Perceptron
(MLP) to predict the deformation parameters for each Gaussian primitive. The input to
the MLP consists of concatenated feature vectors, including encoded positional infor-
mation f,, audio features a, eye features e, and pose features p. Specifically, for each
Gaussian primitive indexed by i, the deformation prediction is computed as follows:

{Ap;, As;, Ary} = MLP(f,, @ a; @ e; @ p;) (6)

By adding these deformed parameters to the static Gaussian primitives, we obtain dy-
namic primitives 8, = {u + Au, so + As, 1y + Ar, fo, ao}. The final rendered image 1
is then generated using the 3DGS rasterizer:

1=6,(64 cam) (7)
3.4 Loss Function

During initialization, we adopt the training strategy of 3DGS [2], using pixel-wise L,
loss and the D-SSIM term to encourage structural similarity between the rendered im-
age I, (generated by parameters 6,) and the ground truth image I. The static stage loss
is formulated as:

Ly =Ly + 1 Lp_ssim (8)

Following the static network initialization, we proceed to train the dynamic defor-
mation network. This stage aims to refine the model's capacity to capture dynamic re-
gions of interest, such as the hair, torso, and mouth, enhancing motion consistency and
local detail fidelity.

To guide the learning of dynamic deformations, we introduce a region-specific L,
loss:

Li = A - |II; = I;|l, where I; =1-M;, j€ {mouth,hair,torso} 9

Here, I; denotes the masked ground truth image for region j, with M; representing
the corresponding binary mask. This term enforces pixel-wise accuracy within dynam-
ically deformable regions, ensuring the preservation of fine-grained details and motion
alignment.

In addition, we introduce a motion regularization term to promote temporal smooth-
ness and penalize abrupt changes in motion-related parameters, including translation
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(w), rotation (r), opacity (a), and scale (s). The motion loss term L,,,,+i.n IS defined as
the sum of the absolute differences of these parameters:

Linotion = Amotion = (I10¢ll1 + A7 ]|y + [|Aa]ly + [|As]],) (10)

Furthermore, inspired by prior works [10,15,21], we also incorporate a perceptual
loss based on LPIPS, computed over randomly sampled image patches. This loss en-
courages the preservation of perceptual similarity and local texture details.

The overall loss function in dynamic training is formulated as:

Ly=Ls+ ) ij + Linotion T A2L1p1ps (11)

4 Experiments

4.1  Experimental Settings

Implementation Details. Our method is implemented in PyTorch. Adam [22] and
AdamW [23] optimizers are used in training. In the loss functions, A;, Aouth» Anair
Atorsor Amotion @Nd A, are set to 0.2, 0.1, 0.05, 0.1, 1e-5 and 0.2, respectively. We train
our model on a single RTX3090 GPU with 180k iterations, which costs about 1 hour.

Evaluation Protocol. In addition to the longhair dataset introduced in Section 2,
we also collected publicly available speech videos (*"May" and "Lieu™) used in previous
works [10,21] to form shorthair dataset. We evaluate our method on both datasets by
dividing each video into training and testing sets with a 10:1 ratio. We use standard
metrics for quantitative evaluation: PSNR, LPIPS [24], and SSIM [25] assess recon-
struction quality; LMD [26] evaluates facial keypoints alignment; and Sync-C, derived
from SyncNet [27,28], measures audio-visual synchronization. Additionally, we report
training time and inference speed (frames per second, FPS) to evaluate efficiency.
Moreover, Wav2Lip uses ground-truth images, invalidating its PSNR, LPIPS, and
SSIM scores, and its Sync-C is also excluded from discussion since it is used as a train-
ing loss.

4.2 Quantitative Results

We compared the proposed method with several existing approaches, including NeRF-
based methods ER-NeRF [21], as well as the 3DGS-based method TalkingGaussian
[10]. These methods typically model the head and torso separately or focus exclusively
on the head, which inherently results in head-torso separation issues. Additionally, we
conducted comparative analyses with 2D-based methods, such as Wav2Lip [4] and IP-
LAP [29]. Due to the single branch of the Gaussian field, our method achieves an in-
ference speed of 98 FPS, slightly surpassing the 90 FPS of TalkingGaussian [10]. As
shown in Table 1, our method outperforms others in all evaluated metrics in longhair
dataset.

Our method also achieves competitive results on the shorthair dataset, despite being
trained primarily for challenging long-hair scenarios. Notably, our unified 3DGS



framework delivers strong performance in LMD and Sync-C, indicating its robustness
and generalization ability across varying portrait types.

Table 1. Comparison of various methods on Rendering Quality, Motion Quality, and Effi-
ciency on longhair and shorthair dataset. This dual evaluation demonstrates the generalizability
of our method. The best and second-best methods are in bold and underline, respectively.

Dataset Method PSNR? | LPIPS| | SSIM{ | LMD| | Sync-Ct | Time| | FPS?
Wav2Lip - - - 3.705 8.747 - 21.6

IP-LAP 17.43 0.2798 0.594 3.838 3.899 - 3.18
longhair ER-NeRF 17.68 0.2579 0.623 3.324 2.581 2h 32
TalkingGaussian 23.48 0.1339 0.804 2311 4.470 1.5h 90
UniGS(Ours) 25.37 0.1049 0.808 2.241 5.047 1h 98

Wav2Lip - - - 2.991 11.112 - 21.6

IP-LAP 34.98 0.0422 0.907 3.236 7.471 - 3.18

shorthair ER-NeRF 30.97 0.0354 0.906 2911 6.451 2h 32
TalkingGaussian | 31.81 0.0335 0.921 2.695 6.616 1.5h 90
UniGS(Ours) 31.35 0.0349 0.910 2.864 7.262 1h 98

4.3  Qualitative Results

Fig. 3 presents a qualitative comparison of talking portrait synthesis results across var-
ious methods. As it is shown, our proposed method demonstrates superior performance
in generating seamless and high-quality talking portraits in challenging long-haired sce-
narios that involve complex interactions between the head and torso.

The white dash boxes highlight the head-torso separation artifact, which is common
in segment-dependent modeling methods such as ER-NeRF [21] and TalkingGaussian
[10]. These approaches often adopt oversimplified representations of the torso region,
which fail to handle challenging long-haired scenarios involving complex motion or
occlusions. In contrast, our unified modeling framework effectively integrates the dy-
namics of both the head and torso, significantly reducing head-torso separation arti-
facts. This holistic approach overcomes the limitations of independent modeling strat-
egies, resulting in improved alignment and reconstruction quality. Furthermore,
Wav2Lip [4] produces overly smoothed lip motions, and IP-LAP [29] lacks accurate
lip synchronization and detailed representations such as teeth, while our method gener-
ates more precise and realistic facial dynamics.

Overall, these results underscore the effectiveness of our unified framework, which
allows for more accurate and natural interactions between the head and torso, particu-
larly in dynamic and occluded scenarios.
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Fig. 3. Qualitative comparison of long-haired talking portrait synthesis by different methods. The
white dash boxes highlight the unnatural separation of the head and torso, while the blue boxes
indicate incorrect mouth motion or blurred reconstructions. Please zoom in for better visualiza-
tion.

4.4 Ablation Study

To evaluate the effectiveness of various modules and parameter settings in our method,
we conducted ablation experiments. First, we tested different parameter configurations
of the multi-resolution hash grid shown as Table 2. The experimental results indicate
that when L = 12 and F = 2, the model achieves the optimal balance between recon-
struction quality and computational efficiency. Thus, this configuration was adopted
for all experiments. Second, we investigated the impact of Gaussian attribute defor-
mation shown as Table 3. Although altering the position and shape of the Gaussian
attributes slightly reduced the reconstruction quality, it significantly improved dynamic
effects, demonstrating its effectiveness in generating natural dynamic performance.
Overall, these ablation studies highlight the importance of carefully selecting parameter
configurations and the value of Gaussian attribute deformation in enhancing dynamic
realism, ensuring a robust and efficient model for high-quality reconstruction and nat-
ural dynamic performance.

Table 2. the optimal level (L) and dimension (F) of the multi-resolution hash grid

Methods PSNR 1 LPIPS | LMD | Sync-C 1
L=12 F=1 25.07 0.1223 2.252 5.007
L=24 F=1 25.66 0.1177 2.247 4.948
L=12 F=2 25.37 0.1049 2.241 5.047

L=6 F=4 25.30 0.1061 2.268 5.096




Table 3. Ablation study on deformed attributes of Gaussian primitives

Methods PSNR 1 LPIPS | LMD | Sync-C 1
Af, Aa 24.61 0.1457 2.677 4.745
Ap, As, Ar 25.37 0.1049 2.241 5.047
Af,Aa, A, As, Ar 25.40 0.1120 2.379 5.004

5 Ethical Consideration

We hope our method can promote the healthy development of digital industries. How-
ever, it is crucial to acknowledge the potential for misuse, which could lead to harmful
consequences. In recognition of this, we are committed to supporting the development
of tools for detecting deepfakes. We strongly recommend the responsible application
of this technology and similar techniques to mitigate any negative impact.

6 Conclusion

We present UniGS, a unified 3D Gaussian Splatting framework that effectively ad-
dresses the persistent issue of head-torso consistency in talking portrait synthesis, par-
ticularly under the challenging long-haired scene. We introduce a novel longhair da-
taset, which serves as a comprehensive benchmark for evaluating head-torso con-
sistency under complex conditions. By modeling the entire portrait as a single Gaussian
field, our framework eliminates the need for explicit head-torso segmentation, enabling
natural and coherent motion across both regions. Extensive evaluations show that our
UniGS not only surpasses existing 2D-based, NeRF-based, and 3DGS-based baselines
in realism and consistency but also achieves high inference efficiency in long-haired
scenarios. This contribution paves the way for more consistent and expressive talking
portraits in intricate visual settings. Furthermore, our method demonstrates strong gen-
eralization capabilities, as shown by its competitive performance on a widely used
shorthair dataset, proving its broad applicability and robustness.
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