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Abstract. Long-term time series forecasting remains a significant challenge due 

to complex temporal dependencies, scale variability, and noise interference. Ex-

isting deep learning methods often struggle to capture fine-grained temporal fea-

tures, particularly in multivariate scenarios where spatio-temporal correlations 

vary across different resolutions. To address these limitations, we propose 

MWDN (multi-scale wavelet decomposition network), a novel forecasting 

framework that integrates multi-scale decomposition with frequency-aware mod-

eling. MWDN employs a wavelet-based module to iteratively decompose the in-

put into detail and approximation sequences, effectively separating seasonal and 

trend components. These are then processed in parallel via a dual-branch archi-

tecture, enabling efficient modeling of variable dependencies across frequencies. 

To further enhance representation, a multi-scale fusion module aggregates infor-

mation across resolutions, improving prediction accuracy while mitigating infor-

mation loss. Extensive experiments on multiple benchmark datasets show that 

MWDN consistently achieves state-of-the-art or second-best performance on 

both short- and long-term forecasting tasks. Ablation studies validate the effec-

tiveness of the decomposition strategy and architectural design. MWDN offers a 

robust and scalable solution for multivariate time series forecasting. The source 

code is publicly available at: https://github.com/take-off-ddl/MWDN. 

Keywords: Long-term Time Series Forecasting, Wavelet Decomposition, 

Multi-scale Modeling, Spatio-temporal Dependency. 

1 introduction 

Long-term time series forecasting has become a pivotal technology for enabling intel-

ligent decision-making across a wide range of domains. In the transportation sector, 

accurate traffic flow prediction [1] supports real-time congestion mitigation and route 

optimization. Meteorological agencies depend on precise weather forecasts [2] to en-

hance disaster preparedness and guide agricultural planning. In finance, stock market 

prediction [3] is essential for developing resilient investment strategies in volatile trad-

ing environments. The energy industry, in particular, benefits from electricity demand 
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forecasting [4] to maintain grid stability and optimize power distribution. These mis-

sion-critical applications underscore the growing demand for advanced forecasting ar-

chitectures capable of capturing complex temporal dynamics over extended horizons. 

Traditionally, time series forecasting [5,6] has been dominated by statistical meth-

ods. However, with the emergence of large-scale datasets and the growing availability 

of high-performance computing resources, deep learning approaches have gained sig-

nificant attention due to their superior performance on complex forecasting tasks. The 

development of diverse architectures—such as recurrent neural networks (RNNs), con-

volutional neural networks (CNNs), and Transformer-based models—has further ex-

panded the landscape of modeling strategies for time series data. 

Multivariate time series inherently exhibit complex spatio-temporal dependencies. 

Accurately and efficiently modeling both inter-variable correlations and underlying 

temporal dynamics remains a fundamental challenge in this field. Specifically, long-

term time series often display intricate patterns such as seasonality, periodicity, and 

long-term trends [7]. Additionally, ongoing stochastic fluctuations and dynamic exter-

nal influences introduce diverse temporal behaviors across multiple scales (hours, days, 

weeks, and months). As the forecasting horizon extends, model performance frequently 

deteriorates, often leading to significant increases in MSE and MAE values. 

Our research is motivated by the need to enhance the modeling of spatio-temporal 

and inter-variable dependencies for long-term forecasting. Previous work has shown 

that multi-scale decomposition of time series is an effective strategy for extracting 

meaningful features. Notably, Autoformer [8] proposed decomposing a time series into 

trend and seasonal components, resulting in improved forecasting accuracy. In real-

world scenarios, many physical systems simultaneously exhibit both trend and seasonal 

characteristics, each associated with distinct frequency patterns. 

In this paper, we introduce a novel multi-scale decomposition approach that facili-

tates fine-grained feature extraction across different resolutions. We propose a multi-

scale wavelet decomposition network (MWDN) for long-term time series forecasting 

to address the aforementioned challenges. To capture the complex patterns in both the 

time and frequency domains, we leverage wavelet decomposition to unify analysis 

across these domains. Specifically, MWDN employs multi-level wavelet decomposi-

tion to split the original time series into multiple approximation and detail sequences. 

To prevent noise amplification from over-decomposition, we adopt an iterative decom-

position strategy. For seasonal-trend separation, we introduce adaptive filters to disen-

tangle these two components. A dual-branch architecture is then used to independently 

model the seasonal and trend sequences, allowing the model to more effectively under-

stand and extract representative features from each. To integrate multi-resolution fea-

tures, we further propose a multi-scale fusion module (MFM) that efficiently aggregates 

diverse representations, preserving valuable spatio-temporal and inter-variable depend-

encies. Our main contributions can be summarized as follows: 

• We introduce a novel deep forecasting model, MWDN, which integrates multi-scale 

wavelet decomposition with three core components: the Wavelet Multi-scale De-

composition Module (WMDM), the Multi-Resolution Feature Extraction Module 

(MFEM), and the Multi-Scale Fusion Module (MFM). WMDM employs an iterative 
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decomposition strategy to suppress noise and enhance robustness, while MFEM uses 

a dual-branch parallel structure to independently model seasonal and trend compo-

nents, efficiently capturing both variable and spatio-temporal dependencies with re-

duced computational cost. 

• We propose a resolution-aware framework that processes time series at different 

scales using distinct resolution branches. The MFM effectively fuses cross-resolu-

tion features to minimize noise interference and preserve essential information, 

thereby enhancing the expressiveness of the learned representations. 

• Extensive experiments on multiple benchmark datasets demonstrate that MWDN 

consistently achieves state-of-the-art (SOTA) performance in both short-term and 

long-term forecasting tasks, validating its effectiveness and generalizability across 

diverse domains. 

2 Related Work 

Time series forecasting has been a central focus across various fields, including finance, 

healthcare, and environmental science. Classical methods, such as [9], Holt-Winters 

[10], and Prophet [11], rely on predefined statistical assumptions to model temporal 

patterns. While effective for simple and stationary time series, these methods struggle 

with the complexity and non-stationarity of real-world data, limiting their applicability 

in dynamic and nonlinear scenarios. 

In recent years, deep learning methods have significantly advanced time series mod-

eling. RNN-based approaches [12,13] leverage recurrent architectures to capture se-

quential dependencies but encounter difficulties in modeling long-term patterns due to 

vanishing gradients. On the other hand, TCN-based models [14] address this issue by 

employing convolutional kernels to capture temporal variations over extended hori-

zons. MLP-based methods [15,16] further enhance modeling capacity by encoding tem-

poral dependencies into fixed parameter spaces. More recent variants have introduced 

additional mechanisms for improved feature extraction: TPA-LSTM [17] incorporates 

attention to capture hierarchical temporal patterns, while DeepTCN [18] utilizes dilated 

convolutions for multi-scale representation learning. However, these models still lack 

effective methods to disentangle mixed-frequency components, which are essential for 

modeling real-world signals involving overlapping periodicities. Despite the progress 

made, these methods continue to struggle with fully addressing the multi-scale dynam-

ics inherent in time series data, underscoring the need for architectures specifically de-

signed to handle such complexities. 

Transformer-based architectures have emerged as a powerful alternative for time se-

ries forecasting. By leveraging self-attention mechanisms, these models effectively 

capture long-range dependencies. Autoformer [8] introduces a decomposition frame-

work that separately models seasonal and trend components, while FEDformer [19] 

incorporates frequency-domain information to improve efficiency and scalability. 

PatchTST [20] utilizes patching mechanisms to extract both local and global temporal 

features, and Crossformer [21] leverages hierarchical embeddings to model cross-time 

and cross-variable dependencies. These advancements highlight the versatility of 



Transformer-based models; however, their reliance on specific decomposition strate-

gies or architectural assumptions limits their generalizability across diverse datasets. 

Recent innovations aim to bridge this gap: FEDFormer [19] incorporates Fourier trans-

forms for frequency domain learning, while Timesnet [7] proposes adaptive multi-pe-

riodicity detection. These hybrid approaches demonstrate the benefits of combining 

spectral analysis with sequence modeling, though their fixed decomposition strategies 

limit adaptability to varying data characteristics. 

Multi-scale processing plays a crucial role in time series analysis by enabling the 

separation of signals into components with varying frequencies. Techniques like wave-

let transforms provide a flexible framework for decomposing time series into high-fre-

quency details and low-frequency trends, thereby facilitating the extraction of both lo-

cal and global patterns. Recent works have explored integrating multi-scale decompo-

sition with deep learning architectures. For instance, TimeMixer [22] independently 

models trend and seasonal components to enhance predictive accuracy, while DLinear 

[16] adopts a simplified linear decomposition approach. Notable developments also in-

clude the introduction of a multi-level wavelet CNN by MICN [23], which effectively 

captures hierarchical temporal patterns, and the frequency-enhanced Transformer in 

FEDformer [19], which integrates wavelet analysis into the attention mechanism. These 

studies demonstrate the potential of combining traditional signal processing techniques 

with modern machine learning models. However, the effective integration of multi-

scale features remains an open challenge: (1) most wavelet networks rely on fixed de-

composition scales, and (2) cross-variable dependency modeling is still under-explored. 

3 Model 

In multivariate time series forecasting, we are given a historical observation sequence 

𝐗 = {𝐱𝟏, … , 𝐱𝐋} ∈ 𝐑𝐋×𝐍 with 𝐋 time steps and 𝐍 variates, The forecasting objective is 

to predict the future 𝑇 time steps 𝑌 = {𝑋𝐿+1, … , 𝑥𝐿+𝑇} ∈ 𝑅𝑇×𝑁. 

 

3.1 Structure Overview 

The proposed model architecture is illustrated in Fig. 1. Our framework begins by de-

composing the normalized multivariate time series using a wavelet transformation mod-

ule, generating multi-scale sequences that include both approximation and detail coef-

ficient sequences. These multi-resolution representations capture cross-variable feature 

relationships at different frequency levels, where each decomposition level corresponds 

to distinct temporal granularities. As the decomposition level increases, the approxima-

tion coefficients narrow their frequency bandwidth, producing finer-grained detail co-

efficients. The selection of decomposition levels and wavelet basis functions is crucial 

for extracting meaningful multi-resolution features. While higher decomposition levels 

provide more detailed coefficients, they may also introduce high-frequency noise and 

irrelevant patterns that can negatively impact prediction accuracy. By introducing 

wavelet decomposition, not only can the features of time series data at different scales 

be extracted, but also the impact of noise data on the model can be reduced to a certain 

extent. 
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The architecture consists of three core components: (1) Wavelet Multi-scale Decom-

position Module (WMDM), (2) Multi-resolution Feature Extraction Module (MFEM), 

and (3) Multi-scale Fusion Module (MFM). Each resolution branch processes the coef-

ficients through dual decomposition: seasonal components (Xs), which capture strong 

periodic fluctuations (daily/weekly cycles), are processed by multi-receptive field 

CNNs with hierarchical dilated convolutions to preserve temporal resolution. In con-

trast, trend components (Xt ), which represent slow-evolving patterns, are modeled 

through a Frequency-Enhanced Transformer Encoder architecture that captures long-

range dependencies via attention mechanisms. The feature extraction module fuses the 

seasonal and trend components using learnable parameters, followed by dynamic 

weight adjustment across scales in the fusion module. Final predictions are recon-

structed through an inverse wavelet transform and linear projection, synthesizing infor-

mation from both approximation and detail coefficients. The subsequent sections elab-

orate on the implementation details of each component. 

 

Fig. 1. Architecture of the proposed MWDN. 

3.2 Wavelet Multi-scale Decomposition Module 

Previous studies have primarily focused on globally processing time series as a whole, 

often overlooking the temporal and spatial information embedded at different granular-

ities and resolutions. Decomposing time series components at varying granularities and 

resolutions can simplify processing modules and enhance the accuracy of model pre-

dictions. To address this challenge, we introduce a wavelet-based multi-scale decom-

position module. We utilize a multi-level discrete wavelet transform (DWT) to decom-

pose the time series data, which involves an iterative process using low-pass and high-

pass filters at multiple levels to extract sequence representations at different granulari-

ties and resolutions. The filter coefficients depend on the selected wavelet basis 



function. The high-pass filter output is considered detailed information, referred to as 

detail coefficients and denoted as D, while the low-pass filter output corresponds to 

low-frequency information, known as approximation coefficients and denoted as 𝐴. 

Through an iterative decomposition process, the approximation coefficients from each 

previous level are further decomposed into new approximation and detail coefficients, 

enabling deeper sequence analysis. The entire WMDM process for handling time series 

can be mathematically expressed as: 
𝑋𝐴𝑚

, 𝑋𝐷𝑚
, 𝑋𝐷𝑚−1

, … , 𝑋𝐷1
= WMDM(𝑋, 𝑚, ψ) (1) 

Where X represents the original input time series, 𝑚 denotes the decomposition level, 

𝐴 represents the low-frequency component obtained through wavelet decomposition, 

and 𝐷 represents the high-frequency component. The term ψ refers to the wavelet type, 

and WMDM refers to the decomposition process. The sequences XAi
 and XDi

 represent 

the approximation and detail coefficient sequences at the 𝑖-th level of wavelet decom-

position, respectively. 

As shown in Fig. 2, since we adopt an iterative decomposition approach, the detail 

coefficient sequence at the m-th level, XDm
, is obtained by decomposing the approxi-

mation coefficient sequence at the (m − 1)-th level, yielding both the approximation 

and detail coefficient sequences at the 𝑚-th level. To prevent excessive noise from con-

taminating the forecasting task, we retain only the approximation coefficient sequence 

at the highest decomposition level. A wavelet decomposition at level m produces m +
1 outputs: m  detail coefficient sequences and one approximation coefficient sequence. 

To process these m + 1 outputs effectively, we employ m + 1 branches, each corre-

sponding to a different granularity and resolution. The multi-scale input-output repre-

sentation is formulated as follows: 

𝑋 ∈ 𝑅𝑁×𝐿 , 𝑋𝐴𝑖
∈ 𝑅𝑁×𝐿𝑖 , 𝑋𝐷𝑖

∈ 𝑅𝑁×𝐿𝑖 , 𝑖 = 1,2, … , 𝑚 

where L represents the original length of the time series, N denotes the number of 

variables, and Li corresponds to the reduced sequence length after decomposition. 

 

Fig. 2. Architecture of the WMDM. 
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3.3 Multi-resolution Feature Extraction Module 

After applying the Multi-resolution Wavelet Decomposition Module (MWDM), the 

original time series is decomposed into m + 1 sub-sequences at varying resolutions and 

granularities, consisting of one approximation coefficient sequence and m detail coef-

ficient sequences. These sub-sequences represent the low-frequency (coarse-scale) and 

high-frequency (fine-scale) components of the original series, respectively. To effec-

tively extract frequency-specific features at multiple resolutions, we introduce a Multi-

resolution Feature Extraction Module. Unlike traditional seasonal-trend decomposition 

methods[19,24], which rely on predefined filters and assumptions, we propose a learn-

able adaptive frequency filtering mechanism that can further disentangle the high-fre-

quency and low-frequency content from each sub-sequence produced by the MWDM. 

In this context, the high-frequency components are typically interpreted as seasonal 

patterns, capturing short-term fluctuations, while the low-frequency components corre-

spond to trends, representing long-term dynamics. To better model these distinct tem-

poral behaviors, we process the seasonal and trend components separately, thereby en-

hancing the model’s ability to capture both short-term variations and long-term depend-

encies across multivariate time series. The proposed filtering operation is implemented 

via Fast Fourier Transform (FFT) and Inverse FFT (IFFT), enabling frequency-domain 

decomposition. Specifically, we apply a Discrete Fourier Transform (DFT) to the input 

series, followed by trainable low-pass and high-pass filters. These filters are parame-

terized by learnable cutoff frequencies and steepness factors, allowing the model to 

dynamically adapt the frequency separation for each individual feature. The decompo-

sition process is formally defined as follows: 

FFT. The Discrete Fourier Transform (DFT) maps the input sequence 𝐗𝐭 from the time 

domain to the frequency domain, facilitating spectral analysis. The Fast Fourier Trans-

form (FFT) can be used to efficiently compute: 

ℱ(𝑋) = ∑ 𝑋𝑡−𝐿+𝑛

𝐿−1

𝑛=0

⋅ 𝑒−𝑗
2π𝑛

𝐿 (2) 

Where X denotes a L-length window extracted from the original time series. The 

transformed frequency representation is then given by Xfreq = FFT(X). 

Adaptive Frequency Filter. The input signal is decomposed into a high-frequency 

seasonal component 𝐒 and a low-frequency trend component 𝐓 via adaptive frequency-

domain filtering. Both filters are constructed using a trainable cutoff frequency 𝑓cut and 

a sharpness control parameter 𝜆, with the sigmoid function 𝜎 enabling a smooth transi-

tion between passed and suppressed frequencies. 

The seasonal component S is extracted using an adaptive high-pass filter: 

𝑆 = ℱ−1 (𝑋fe ⋅ σ((𝑓 − 𝑓cut) ⋅ λ)) (3) 

Similarly, the trend component T is obtained using an adaptive low-pass filter: 

𝑇 = ℱ−1(𝑋fe ⋅ σ(−(𝑓 − 𝑓cut) ⋅ λ)) (4) 



Here, ℱ−1 denotes the inverse Fourier transform, and f represents the frequency do-

main variable. 

The proposed frequency-based filter employs a learnable low-pass filter to capture 

long-term trends and a high-pass filter to extract short-term seasonal variations. This 

adaptive approach enables the model to separate temporal patterns across frequency 

bands, enhancing forecasting stability and accuracy. Unlike traditional methods with 

fixed heuristics, the trainable filters allow the model to automatically learn trend and 

periodic structures from data, improving flexibility and generalization across diverse 

scenarios. 

To further exploit the decomposed components, a dual-branch architecture is 

adopted, where each branch independently models the trend or seasonal signal. As 

shown in Fig. 3, this parallel design preserves distinct temporal dynamics while ena-

bling efficient, specialized processing. 

 

Fig. 3. Architecture of the proposed MFEM. 

Trend Variations Extractor. To capture low-frequency variations and long-term de-

pendencies within the time series, we design a Trend Variations Extractor based on a 

Transformer architecture enhanced with frequency-aware attention mechanisms. This 

module focuses on extracting trend-related features from the low-frequency component 

of the decomposed time series. Given a low-frequency time series extracted via the 

frequency-domain filters, denoted as 𝑥𝑡 ∈ 𝐑𝑁×𝐿𝑖  , we first apply zero-padding and a 

linear projection to aligned the sequence with the model’s input dimensions and embed 

it into a higher-dimensional latent space to facilitate the extraction of complex depend-

encies: 

𝑋𝑡 = Padding(𝑥𝑡) ∈ 𝑅𝑁×𝑃 (5) 

𝑋𝑡 = Embedding(𝑋𝑡) ∈ 𝑅𝑁×𝐷 (6) 
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Here, P denotes the padded sequence length, and D is the dimension of the latent 

space. The embedding step increases the representational capacity of the input, allow-

ing the model to better learn complex patterns in subsequent stages. 

Next, the embedded sequence is passed through a stack of frequency-enhanced 

Transformer Encoder layers, where each layer performs the following operations: 

𝑋𝑡 = BatchNorm(𝑋𝑡 + FEMSA(𝑋𝑡 , 𝑋𝑡 , 𝑋𝑡)) (7) 

𝑋𝑡 = BatchNorm (𝑋𝑔 + MLP(𝑋𝑡)) (8) 

In this context, BatchNorm(·) denotes batch normalization[25], which stabilizes 

and accelerates training. MLP(·) is a multi-layer feedforward neural network that per-

forms nonlinear feature transformations. As shown in Fig. 4, The Frequency-En-

hanced Multi-Head Self-Attention (FEMSA) mechanism leverages multiple inde-

pendent attention heads, each of which is enhanced to emphasize relevant frequency 

patterns. This allows the model to capture diverse long-term dependencies across tem-

poral patches more effectively. Each head can attend to different frequency components 

or temporal structures, and the outputs are subsequently aggregated to form a compre-

hensive representation of the sequence. 

 

Fig. 4. Architecture of the frequency-enhanced multi-head self-attention. 

Finally, a linear projection is applied to transform the output into the target dimen-

sionality for downstream forecasting tasks: 

𝑋𝑡 = Linear(𝑋𝑡) ∈ 𝑅𝑁×𝐷 (9) 

This architecture ensures that long-term trend patterns are effectively captured and 

modeled for use in multi-scale forecasting. 

Season Variations Extractor. To capture high-frequency fluctuations and short-term 

dependencies within the time series, we design a dedicated extractor tailored for 



seasonality-related features. These components often reflect abrupt changes, local pe-

riodicities, or anomalous behaviors that cannot be effectively modeled using global 

trend extractors. Therefore, we utilize a convolution-based structure with diverse kernel 

sizes to extract such local and periodic patterns. 

Given the high-frequency component extracted via the frequency filter, denoted as 

xs ∈ RN×Li , we first pad and project it into a high-dimensional representation to facil-

itate subsequent feature extraction: 

𝑋𝑠 = Padding(𝑥𝑠) ∈ 𝑅𝑁×𝑃 (10) 

𝑋𝑠 = Embedding(𝑋𝑠) ∈ 𝑅𝑁×𝐷 (11) 

To capture local dependencies at multiple temporal scales, we apply a series of 1D 

convolutional blocks with varying kernel sizes. These blocks are stacked to progres-

sively expand the receptive field: 

𝑋𝑠 = ReLU(Conv1d(𝑋𝑠)) (12) 

These high-frequency signals often correspond to short-term variations such as sea-

sonal fluctuations or outlier events, which are difficult to identify through long-term 

modeling alone. The convolution-based structure complements the global trend extrac-

tor and enhances the model’s capability in capturing dynamic local patterns and rapid 

transitions. 

Finally, the outputs from both the trend and seasonal branches are concatenated and 

linearly projected to ensure dimensional consistency for subsequent multiresolution fu-

sion. The final feature representation of the multiscale feature extraction module 

(MFEM) is defined as: 

𝑋𝑊𝑖
= Linear(Concat(𝑋𝑡 , 𝑋𝑠)) ∈ 𝑅𝑁×𝐿𝑖 , 𝑖 = 1,2, … , 𝑚 (13) 

Here, XWi
serves as the unified feature embedding, preserving both short-term and 

long-term dynamics across resolutions, and is fed into the subsequent Multi-resolution 

Fusion Module (MFM) for final prediction. 

3.4 Multi-scale Fusion Module 

To fully exploit the multi-resolution characteristics inherent in time series data, we de-

sign the Multi-scale Fusion Module (MFM). This module receives feature representa-

tions extracted at multiple temporal resolutions, each corresponding to different win-

dow lengths L1, L2, … , Lm. The feature representation at the i-th resolution is denoted 

as: 

𝑋𝑊𝑖
∈ 𝑅𝑁×𝐿𝑖 , 𝑖 = 1,2, … , 𝑚 

where N denotes the number of variables, and Li indicates the temporal resolution at 

the i-th scale. Each representation integrates both long-term trends (from the Trend 

Variations Extractor) and short-term seasonal dependencies (from the Seasonal Varia-

tions Extractor). 

To effectively integrate information across scales, we first apply the Inverse Discrete 

Wavelet Transform (IDWT) to restore the original temporal structure: 

𝑋𝐷1
, 𝑋𝐷2

, … , 𝑋𝐷𝑚
, 𝑋𝐴𝑚

= IDWT(𝑋𝐷1
, 𝑋𝐷2

, … , 𝑋𝐷𝑚
, 𝑋𝐴𝑚

) (14) 

Next, all reconstructed features are concatenated along the feature axis and projected 

to a unified output dimension T using a linear transformation: 
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𝑌 = Linear (Concat(𝑋𝐷1
, 𝑋𝐷2

, … , 𝑋𝐷𝑚
, 𝑋𝐴𝑚

)) , 𝑌 ∈ 𝑅𝑁×𝑇 (15) 

After feature fusion, the output Y ∈ RN×T is transposed to align the time dimension, 

followed by an inverse transformation using Reversible Instance Normalization 

(RevIN) to restore the original value scale. The process is defined as: 

𝑌𝑡𝑟𝑎𝑛𝑠 = Transpose(𝑌) ∈ 𝑅𝑇×𝑁 (16) 

𝑌̂ = RevIN−1(𝑌𝑡𝑟𝑎𝑛𝑠) (17) 

Here, RevIN−1(⋅) denotes the inverse normalization operation, which utilizes the 

original mean and standard deviation of each instance for de-normalization. This en-

sures both numerical consistency with the original input and the physical interpretabil-

ity of the predicted outputs. 

4 Experiments 

4.1 Experimental Setup 

Datasets. To comprehensively evaluate the performance of the proposed model on mul-

tivariate time series forecasting tasks, we conduct experiments on nine widely-used 

public datasets. We follow standardized preprocessing procedures adopted in previous 

studies to ensure fair comparison. A summary of the dataset specifications is provided 

in Table 1. 

Table 1. Datasets for long term forecasting tasks. 

Datasets Frequency Variables Length 

ETTh1/ETTh2 Hourly 7 17,420 

ETTm1/ETTm2 15 minutes 7 69,680 

Weather 10 minutes 21 52,696 

Electricity Hourly 321 26,304 

Traffic Hourly 862 17,544 

Baselines and Evaluation Metrics. To validate the effectiveness of our model, 

MWPM, we benchmark it against a comprehensive set of state-of-the-art time series 

forecasting models. These include PatchTST(2023), TimesNet(2023), DLin-

ear(2023), FEDformer(2022), Autoformer(2021), and Informer(2021), covering a 

diverse range of modeling paradigms. For evaluation, we adopt two standard metrics 

widely used in prior literature: Mean Squared Error (MSE) and Mean Absolute Error 

(MAE). 

Implementation Details. All experiments are implemented using the PyTorch frame-

work and conducted on a single NVIDIA GeForce RTX 2080Ti GPU with 11GB 

memory. Following standard practice in previous works such as Informer, Autoformer 

and PatchTST, we normalize all datasets to zero mean and unit variance before training. 



The model is evaluated under a long-term forecasting setting with prediction lengths of 

96, 192, 336, and 720. 

We use a batch size of 16 and train for a maximum of 30 epochs, employing early 

stopping based on the validation loss to prevent overfitting. The Adam optimizer is 

utilized for optimization. MSE is used both as the training loss function and as one of 

the evaluation metrics, along with MAE. All other hyperparameters are aligned with 

those used in recent time series forecasting benchmarks to ensure a fair and consistent 

comparison. 

4.2 Multivariate Long-Term Forecasting Results 

To evaluate the effectiveness of our proposed model in long-term time series forecast-

ing, we follow prior studies and report results on seven widely-used benchmark datasets 

across four forecasting horizons (96, 192, 336, and 720). Table 2 presents a compre-

hensive comparison between our method and several state-of-the-art baselines. Across 

a total of 56 evaluation points (7 datasets × 4 horizons × 2 metrics), our model consist-

ently outperforms most Transformer-based and MLP-based architectures in terms of 

both MSE and MAE. For example, on the ETTh1 dataset with prediction lengths of 336 

and 720, our model achieves average MSE values of 0.426 and 0.449, respectively, 

outperforming strong baselines such as PatchTST and TimesNet. On the ETTm1 da-

taset, our model surpasses the previous best result (0.387), achieving a new state-of-

the-art with an MSE of 0.341—an improvement of 11.1%. Similarly, on the Electricity 

dataset with a prediction length of 720, both MSE and MAE results show significant 

improvements over existing methods, highlighting the superior forecasting ability of 

our model in electricity demand scenarios. 

On the Weather dataset, our method yields notable performance gains at prediction 

horizons of 192 and 336, achieving MSE values of 0.208 and 0.266, respectively. These 

represent 5% and 4% improvements over the previous best results (0.219 and 0.278), 

clearly demonstrating the robustness and generalizability of our approach across vary-

ing temporal patterns. 

These experimental results suggest that the proposed dual-branch parallel module, 

which separately models short- and long-term dependencies, effectively reduces fore-

casting errors over long horizons, enhances trend extraction, and improves model ro-

bustness. Additionally, the use of wavelet-based multi-scale and multivariate decom-

position allows the model to capture cross-variable relationships at varying temporal 

resolutions, thereby improving the modeling of spatiotemporal dependencies in time 

series data. While the performance gain on the Traffic dataset is relatively marginal, we 

attribute this to the complex spatiotemporal dynamics inherent in traffic data. In such 

cases, adaptive frequency decomposition may introduce noise, slightly affecting pre-

diction accuracy. Nonetheless, our model still achieves the best or second-best perfor-

mance across the majority of datasets, underscoring its strong adaptability and effec-

tiveness in a wide range of time series forecasting scenarios. 

4.3 Ablation Studies 

To comprehensively assess the effectiveness of each component within our proposed 

architecture, we conduct ablation studies on the ETT datasets. All models are trained  
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Table 2. Multivariate long-term forecasting results. Four commonly used prediction lengths 

(96,192,336,720) from the literature are considered for each dataset. The bold is the best. 

Model 

 

Metric 

MWDN 

(ours) 

PatchTST 

(2023) 

TimesNet 

(2023) 

DLinear 

(2023) 

FEDformer 

(2022) 

Autformer 

(2021) 

Informer 

(2021) 

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

E
T

T
m

1
 

96 0.284 0.336 0.329 0.367 0.338 0.375 0.345 0.372 0.379 0.419 0.505 0.475 0.672 0.571 

192 0.332 0.329 0.367 0.385 0.374 0.387 0.380 0.389 0.426 0.441 0.553 0.496 0.795 0.669 

336 0.370 0.335 0.399 0.410 0.410 0.411 0.413 0.413 0.445 0.459 0.621 0.537 1.212 0.871 

720 0.376 0.345 0.454 0.439 0.478 0.450 0.474 0.453 0.543 0.490 0.671 0.561 1.166 0.823 

Avg 0.341 0.336 0.387 0.400 0.400 0.406 0.403 0.407 0.448 0.452 0.588 0.517 0.961 0.734 

E
T

T
m

2
 

96 0.234 0.280 0.175 0.259 0.187 0.267 0.193 0.292 0.203 0.287 0.255 0.339 0.365 0.453 

192 0.248 0.274 0.241 0.302 0.249 0.309 0.284 0.362 0.269 0.328 0.281 0.340 0.533 0.563 

336 0.288 0.373 0.305 0.343 0.321 0.351 0.369 0.427 0.325 0.366 0.339 0.372 1.363 0.887 

720 0.352 0.396 0.402 0.400 0.408 0.403 0.554 0.522 0.421 0.415 0.433 0.432 3.379 1.388 

Avg 0.281 0.331 0.281 0.326 0.291 0.333 0.350 0.401 0.305 0.349 0.327 0.371 1.410 0.810 

E
T

T
h

1
 

96 0.370 0.384 0.414 0.419 0.384 0.402 0.386 0.400 0.376 0.419 0.449 0.459 0.865 0.713 

192 0.392 0.410 0.460 0.445 0.436 0.429 0.437 0.432 0.420 0.448 0.500 0.482 1.008 0.792 

336 0.426 0.452 0.501 0.466 0.491 0.469 0.481 0.459 0.459 0.465 0.521 0.496 1.107 0.809 

720 0.449 0.466 0.500 0.488 0.521 0.500 0.519 0.516 0.506 0.507 0.514 0.512 1.181 0.865 

Avg 0.422 0.441 0.469 0.454 0.458 0.450 0.456 0.452 0.440 0.460 0.496 0.487 1.040 0.795 

E
T

T
h

2
 

96 0.293 0.376 0.302 0.348 0.340 0.374 0.333 0.387 0.358 0.397 0.346 0.388 3.755 1.525 

192 0.326 0.364 0.388 0.400 0.402 0.414 0.477 0.476 0.429 0.439 0.456 0.452 5.602 1.931 

336 0.390 0.444 0.426 0.433 0.452 0.452 0.594 0.541 0.496 0.487 0.482 0.486 4.721 1.835 

720 0.403 0453 0.431 0.446 0.462 0.468 0.831 0.657 0.463 0.474 0.515 0.511 3.647 1.625 

Avg 0.353 0.409 0.387 0.407 0.414 0.427 0.559 0.515 0.437 0.449 0.450 0.459 4.431 1.729 

W
ea

th
er

 

96 0.167 0.223 0.177 0.218 0.172 0.220 0.196 0.255 0.217 0.296 0.266 0.336 0.300 0.384 

192 0.208 0.251 0.225 0.259 0.219 0.261 0.237 0.296 0.276 0.336 0.307 0.367 0.598 0.544 

336 0.266 0.295 0.278 0.297 0.280 0.306 0.283 0.335 0.339 0.380 0.359 0.395 0.578 0.523 

720 0.352 0.396 0.402 0.400 0.408 0.403 0.554 0.522 0.421 0.415 0.433 0.432 3.379 1.388 

Avg 0.245 0.278 0.259 0.281 0.259 0.287 0.265 0.317 0.309 0.360 0.338 0.382 0.634 0.548 

E
le

ct
ri

ci
ty

 

96 0.151 0.243 0.181 0.270 0.168 0.272 0.197 0.282 0.193 0.308 0.201 0.317 0.274 0.368 

192 0.174 0.270 0.188 0.274 0.184 0.289 0.196 0.285 0.201 0.315 0.222 0.334 0.296 0.386 

336 0.208 0.304 0.204 0.293 0.198 0.300 0.209 0.301 0.214 0.329 0.231 0.338 0.300 0.394 

720 0.217 0.313 0.246 0.324 0.220 0.320 0.245 0.333 0.246 0.355 0.254 0.361 0.373 0.439 

Avg 0.188 0.283 0.205 0.290 0.192 0.295 0.212 0.300 0.214 0.327 0.227 0.338 0.311 0.397 

T
ra

ff
ic

 

96 0.447 0.291 0.462 0.295 0.593 0.321 0.650 0.396 0.587 0.336 0.613 0.388 0.719 0.391 

192 0.493 0.332 0.466 0.296 0.617 0.336 0.598 0.370 0.604 0.373 0.616 0.382 0.696 0.379 

336 0.507 0.339 0.482 0.304 0.629 0.336 0.605 0.373 0.621 0.383 0.622 0.337 0.777 0.420 

720 0.528 0.367 0.514 0.322 0.640 0.350 0.645 0.394 0.626 0.382 0.660 0.408 0.864 0.472 

Avg 0.494 0.332 0.481 0.304 0.620 0.336 0.625 0.383 0.610 0.376 0.628 0.379 0.764 0.416 

under identical settings, and the proposed modules are incrementally integrated into the 

backbone network to evaluate their individual contributions to overall performance. 



Wavelet Multi-scale Decomposition Module. To investigate the contribution of the 

proposed Wavelet Multi-scale Decomposition Module (WMDM), we conduct ablation 

experiments on the ETT datasets by varying the decomposition depth. Specifically, we 

evaluate three configurations with 2, 3, and 4 levels of wavelet decomposition. All ex-

periments are conducted under identical training settings and hyperparameters to ensure 

a fair comparison. Table 3 presents the performance across different decomposition 

levels. The results indicate that a three-level decomposition consistently yields the best 

forecasting accuracy. For instance, on the ETTm1 dataset with a prediction horizon of 

336, the three-level model achieves an MSE of 0.370, outperforming the two-level var-

iant (MSE = 0.375) and the four-level counterpart (MSE = 0.374). Similar trends are 

observed on other horizons and datasets. 

The performance degradation observed with four-level decomposition suggests that 

excessive decomposition may over-fragment temporal structures, thereby impeding the 

model’s ability to capture coherent long-term dependencies. In contrast, insufficient 

decomposition limits the model’s capacity to isolate meaningful short-term patterns, 

reducing its overall expressiveness. Notably, the ETTh2 dataset demonstrates the high-

est sensitivity to decomposition depth. With a prediction length of 336, the three-level 

configuration achieves an MAE of 0.444, compared to 0.449 and 0.448 for the two-

level and four-level settings, respectively. These results underscore the effectiveness of 

moderate multi-scale decomposition in capturing both high-frequency and low-fre-

quency components essential for accurate time series forecasting. 

Overall, the ablation study validates that the proposed WMDM enhances temporal 

representation learning, and that an appropriate decomposition depth is critical for 

achieving optimal forecasting performance across varying datasets and prediction 

lengths. 

Table 3. Performance comparison with different wavelet decomposition levels on ETT datasets 

(MSE/MAE). Bold indicates best results. 

 

Dataset 

 

Horizon 

 

Level=2 Level=3 Level=4 

MSE MAE MSE MAE MSE MAE 

ETTm1 
336 0.375 0.341 0.370 0.335 0.374 0.339 

720 0.383 0.350 0.376 0.345 0.380 0.348 

ETTh1 
336 0.432 0.458 0.426 0.452 0.430 0.456 

720 0.455 0.471 0.449 0.466 0.453 0.469 

ETTh2 
336 0.395 0.449 0.390 0.444 0.394 0.448 

720 0.408 0.458 0.403 0.453 0.407 0.457 

Multi-resolution Feature Extraction Module. In this study, we introduce MWDN, a 

long-term time series forecasting framework based on a multi-scale wavelet decompo-

sition model. Our model employs the Wavelet Multi-scale Decomposition Module 

(WMDM) to perform multi-scale decomposition of time series, effectively capturing 

both time and frequency domain information at different resolutions. Through the 

Multi-resolution Feature Extraction Module (MFEM), we propose a novel seasonal-
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trend decomposition approach and a dual-branch parallel architecture that separately 

models components at different frequencies. Additionally, we incorporate a frequency-

domain enhanced attention mechanism within the MFEM to strengthen its ability to 

capture spatiotemporal correlations at various frequencies. The Multi-scale Fusion 

Module (MFM) is used to aggregate spatiotemporal features from multiple resolutions, 

further improving the model's performance on multivariate time series forecasting 

tasks. As shown in Table 4, experimental results demonstrate that MWDN achieves 

state-of-the-art (SOTA) performance across a variety of long-term forecasting tasks. 

Ablation studies validate the effectiveness of the WMDM and MFEM modules in en-

hancing forecasting accuracy. 

Table 4. Ablation study on seasonal-trend decomposition methods for multi-resolution feature 

extraction module (MSE/MAE). Bold indicates best results. 

 

Dataset 

 

Horizon 

 

No Decomp Moving Avg Ours 

MSE MAE MSE MAE MSE MAE 

ETTm1 
336 0.402 0.361 0.381 0.347 0.370 0.335 

720 0.415 0.373 0.388 0.354 0.376 0.345 

ETTh1 
336 0.452 0.468 0.437 0.457 0.426 0.452 

720 0.471 0.482 0.456 0.473 0.449 0.466 

ETTh2 
336 0.417 0.462 0.403 0.451 0.390 0.444 

720 0.428 0.473 0.415 0.464 0.403 0.453 

 

5 Conclusion 

In this study, we introduce the MWDN, a long time series forecasting framework based 

on multi-scale wavelet decomposition model. Our model uses the WMDM(wavelet 

multi-scale decomposition module) to achieve multi-scale decomposition of time se-

ries, thereby capturing the time and frequency domain information at different resolu-

tions. Through the MFEM (multi-resolution feature extraction module), we adopt a new 

seasonal trend decomposition method and a dual-branch parallel architecture to model 

the components of different frequencies respectively, and we use the frequency domain 

enhanced attention mechanism to enhance the ability of our MFEM module to capture 

the spatiotemporal correlation at different frequencies. We use the MFM (multi-scale 

fusion module) to aggregate spatiotemporal features at different resolutions to improve 

the performance of the model for multivariate time series forecasting. Our experimental 

results show that MWDN can effectively achieve SOTA performance in various long-

term forecasting tasks, and we perform ablation experiments to show the effective im-

provement of WMDM and MFEM for forecasting tasks. 
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