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Abstract. Due to the complexity of steel processing environments, surface de-

fects inevitably occur during production. Detecting these defects is critical for 

ensuring product quality and industrial safety. Traditional manual inspection 

methods suffer from inefficiency and subjectivity, while existing algorithms 

struggle with feature extraction in complex scenarios. We propose a novel steel 

surface defect detection model YOLODDIM-DWConv-C3 based on YOLOv9, 

which enhances feature extraction capabilities while significantly reducing com-

putational complexity.To address the scarcity of original data, we employ the 

Denoising Diffusion Implicit Model (DDIM) for data augmentation. The pro-

posedYOLO based defect detection model minimizes computational demands, 

enabling seamless deployment on edge devices for real-time defect monitoring. 

Experimental results on the NEU-DET dataset demonstrate that YOLO-DDC 

outperforms existing methods in both detection accuracy and computational ef-

ficiency. We have published the complete project at https://github.com/zhzhzswo 

rd/YOLO-DDC. 
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1 Introduction 

Steel, as a foundational material, is widely used in construction, automotive, aerospace, 

and other industries. Its surface quality directly impacts product performance, safety, 

and longevity[1]. Surface defects such as cracks not only degrade material strength but 

also pose safety risks. Therefore, efficient and precise defect detection is vital for im-

proving quality control and ensuring industrial safety. Furthermore, the performance of 

downstream industries (e.g., automotive and rail transport) heavily depends on steel 

quality. High-quality steel reduces cost overruns caused by material defects while en-

hancing product reliability and production efficiency. In sectors like automotive and 

rail transport, surface quality requirements have reached micron-level precision. For 

instance, cracks on high-speed train axles may induce stress concentration[2], leading 

to catastrophic failures during operation. Thus, establishing a comprehensive quality 

management system is a core objective in the digital transformation of steel enterprises. 

The complexity of steel production environments and high - quality steel's sensitivity 

to external conditions cause defects like cracks, inclusions, etc. [3]. These flaws harm 

https://github.com/zhzhzswo


product performance and safety. Traditional manual inspection is inefficient, subjec-

tive, and error - prone, especially for minor defects. It raises labor costs, may miss cru-

cial flaws, and close - range inspection endangers workers. 

With advancements in Convolutional Neural Networks (CNNs)[4], deep learning-

based approaches have gained prominence in object detection tasks. CNNs automati-

cally learn image features through convolutional and pooling operations, capturing lo-

cal spatial and contextual dependencies. Among single-stage detectors, YOLO offers a 

simple yet efficient solution, while methods like CenterNet[5], SSD[6], and Reti-

naNet[7] provide additional innovations. Two-stage detectors, such as Fast R-CNN[8] 

and Mask R-CNN[9], further enhance accuracy. However, CNNs often fail to model 

global features and long-range dependencies, leading to homogenization of defects and 

limited sensitivity to subtle variations. 

The Transformer architecture[10] addresses CNN limitations in global feature ex-

traction. Vision Transformer (ViT)[11] has revolutionized computer vision tasks, in-

cluding object detection and segmentation, through its global modeling capabilities. 

DETR[12] introduced end-to-end detection by eliminating handcrafted anchor boxes. 

However, Transformers struggle with local texture and fine-grained structure modeling 

while incurring high computational costs, hindering real-time deployment on edge de-

vices. 

 

Fig. 1. We deploymet YOLO-DDC on Jeston Nano, use camera to obtain images. Finally out-

put results to real-time data visualization. 

To enhance defect detection accuracy and reduce computational overhead, carry out 

real-time detection of steel surface defects, we apply the above methods to carry out 

real-time detection (Fig. 1). We utilizes DDIM[13] for data augmentation. Generated 

samples undergo brightness thresholding and random sampling to form an enriched 

dataset. Besides, we propose the YOLO-DDC models, built upon YOLOv9s[14], which 
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integrates Depthwise Separable Convolution (DWConv)[15] for local feature extrac-

tion and the C3 module [16] to reduce computational complexity.Evaluations on the 

NEU-DET dataset[17] confirm the model’s superiority. Our contributions are as fol-

lows: 

1. YOLO-DDC: We propose an innovative real-time steel surface defect detection 

framework. By leveraging the DWConv and C3 modules, this framework enhances 

the model's detection accuracy while reducing its computational burden, thereby 

achieving an optimized balance between model performance and computational 

cost. 

2. DWConv in Backbone: We replace standard convolutions with DWConv to reduce 

computations while improving local feature extraction, focusing on critical infor-

mation and suppressing noise. 

3. C3 Module: In the YOLO - DDC network, we introduced the C3 module to perform 

shunt processing, which reduces the computational complexity of the model. As a 

result, the model can extract semantic features at different levels, facilitating its de-

ployment on edge computing devices for real - time object detection tasks. 

4. Efficient Deployment: Our design effectively extracts feature information from the 

NEU-DET dataset, significantly reducing computational load during model training 

while retaining robust feature capture capabilities. It achieves excellent performance 

in both mAP@0.5 and GFLOPs metrics and has been deployed on a Jetson Nano for 

real-time object detection. 

2 Related Work 

2.1 CNN-based Object Detection 

Due to the superior local feature extraction capabilities of convolutional neural net-

works (CNNs), CNN-based object detection methods have demonstrated significant 

potential in steel surface defect detection. Kou et al.[18] proposed Faster R-CNN+ with 

multi-task learning, where a multi-branch network simultaneously outputs defect loca-

tions, categories, and severity levels, significantly improving steel detection efficiency. 

Yang et al.[19] enhanced multi-scale detection by integrating ResNet[20] with attention 

mechanisms (channel and spatial attention modules) and feature pyramid networks 

(FPNs), substantially boosting the defect detection performance of the original model. 

The YOLO method has provided a more concise and accurate detection framework. 

Its efficient computational approach and modular adjustability offer valuable improve-

ment opportunities for object detection. Li et al.[21] modified the architecture of 

YOLOv7[22] to enhance its small object detection performance. YOLOv10[23] 

achieves non-maximum suppression (NMS)-free training through a dual-label assign-

ment strategy, optimizing the architecture with lightweight classification heads, spatial-

channel decoupled downsampling, and sorting-guided block design. This preserves ef-

ficient inference while significantly reducing parameters and latency. YOLOv11[24] 

improves detection accuracy by incorporating a Transformer backbone for long-range 



dependency modeling, dynamic head design for adaptive resource allocation, and 

NMS-free training to simplify inference pipelines. 

2.2 Transformer-based Object Detection 

Simple CNN-based detection methods struggle to capture global features in defect im-

ages. The Transformer architecture offers a novel solution for improved global feature 

modeling in object detection. DETR[12] first introduced Transformers into object de-

tection, leveraging an encoder-decoder structure to directly predict object categories 

and locations. This achieves end-to-end defect detection while reducing reliance on 

manually designed anchor boxes. Chen et al.[25] addressed small-object missing de-

tection by integrating global and local features, thereby enhancing local texture repre-

sentation. 

TinyViT[26] employs semi-dynamic weight pruning and knowledge distillation to 

reduce model parameters by $90\%$. RT-DETR[27] designs an Efficient Hybrid En-

coder (EHE) to optimize multi-scale feature processing through decoupled intra-scale 

interactions and cross-scale fusion, improving detection performance. ERF-NAS[28] 

uses zero-shot neural architecture search based on efficient receptive fields to automate 

lightweight model construction, also enhancing detection accuracy. 

3 Methods 

3.1 Overview 

The proposed steel surface defect detection involves deploying the model on edge de-

vices for real-time defect detection. To address the challenges of low model accuracy 

and high computational complexity, we designed the YOLO-DDC model. The network 

architecture of YOLO-DDC consists of three components: the Backbone, Neck, and 

Detection Head, as illustrated in Fig. 2. 

Prior to training, we employed DDIM for data augmentation. By applying forward 

diffusion to gradually add noise to images and reverse diffusion to learn the inversion 

process for restoring original images, we generated synthetic images to enrich the orig-

inal dataset. 

In YOLO-DDC, input images are first processed by the Backbone for feature extrac-

tion. Through downsampling and feature extraction, the Backbone outputs feature maps 

at multiple scales. These features are then fed into the Neck for fusion, which enhances 

the model’s sensitivity to defects of varying sizes and improves its semantic under-

standing of images. Finally, the Detection Head uses pre-defined anchor boxes to trav-

erse multi-scale feature maps, selecting regions with high confidence scores as potential 

defect areas. 
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Fig. 2. Overall structure of the network model. This model introduce C3 into Backbone, using 

DWConv in Backbone to enhance the ability in extracting local spatial feature. the order of 

modules represented by numbers. 

3.2 DDIM Augmentation 

To address data scarcity in industrial steel defect detection, we employed DDIM for 

data augmentation. Steel defects exhibit significant scale variations, ranging from 

small-scale defects to large-scale ones. Traditional augmentation methods like flipping 

and additive noise introduce linear transformations that often fail to meet the precision 

requirements of defect detection. In contrast, DDIM-generated data preserves sharp de-

fect features and enhances dataset quality. 

DDIM operates by gradually adding Gaussian noise via forward diffusion and then 

learning the inversion process during reverse diffusion to denoise images and generate 

new defect samples. By controlling sampling parameters for original defect images, 

DDIM avoids introducing extraneous noise, thereby effectively augmenting the NEU-

DET dataset.  

3.3 Detailed modules of the proposed YOLO-DDC 

We proposes YOLOv9-DDC, an efficient steel defect detection framework, comprising 

Backbone, Neck, and Head components. The Backbone utilizes DWConv with C3 

module and ELAN structure for feature extraction, while the Neck employs multi-scale 

upsampling and cross-stage feature fusion. The Head predicts target categories and 



bounding box coordinates. Through phased feature fusion and computational optimiza-

tion, the framework balances accuracy and speed for industrial edge deployment. 

We replaced the standard convolutions in the original Backbone with depthwise sep-

arable convolutions (DWConv). This design splits traditional convolution into two 

components: Depthwise Convolution (processing each input channel individually) and 

Pointwise Convolution (combining depthwise outputs). DWConv enhances feature ex-

traction while significantly reducing computational complexity and parameter count, 

improving inference speed for edge device deployment in real-time object detection. 

The C3 module splits input features into two streams: one undergoes complex fea-

ture extraction through stacked modules, while the other undergoes simple convolution. 

This architecture avoids redundant computations and reduces computational load. The 

C3 module enables hierarchical semantic feature extraction, leveraging lightweight de-

sign to minimize computational overhead for real-time tasks. 

.The Backbone starts with DWConv, splitting standard convolution to reduce FLOPs 

during initial feature extraction. It then enters the ELAN1 module for efficient layer 

aggregation, enhancing feature propagation and fusion. AConv combines average pool-

ing and convolution for defect feature capture. The C3 module, based on CSP, splits 

and fuses features to avoid redundancy and cut computation. Finally, the RepNCSPE-

LAN4 module conducts cross - stage feature fusion to minimize computational redun-

dancy. 

Image features pass through the C3 module to cut computational redundancy and 

boost feature representation. After cross - stage fusion by RepNCSPELAN4, they enter 

the Neck network. Neck uses upsampling to enlarge high - level feature maps and cross 

- scale fusion via Concat. By integrating local and global defect features from C3 and 

RepNCSPELAN4, Neck creates multi - scale features, offering discriminative info to 

the Detection Head. This enhances detection accuracy and adaptability for different - 

sized objects. 

The final stage is the Detection Head, which receives multi-scale feature maps from 

the Neck. Through internal convolutional operations (e.g., standard convolution, 

grouped convolution Conv (𝑔 = 4), Conv2D), the Head refines features to predict ob-

ject categories, probabilities, and bounding box coordinates. The multi-scale adaptive 

design ensures effective detection of objects of varying sizes, outputting end-to-end 

results that include class labels, confidence scores, and precise locations. 

4 Experiments 

In this section, we evaluate the performance of YOLO-DDC for steel surface defect 

detection. We first introduce the benchmark dataset, implementation details, and eval-

uation metrics. We then compare our method with classical and state-of-the-art ap-

proaches and conduct ablation studies to validate the architectural innovations. 
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4.1 Dataset 

Experiments were conducted using the NEU-DET dataset from Northeastern Uni-

versity. This dataset aims to address data scarcity in steel surface defect detection dur-

ing production and advance deep learning-based automated inspection. It contains six 

typical steel defects, including Crazing, Inclusion, Patches, Pitted Surface, Rolled-

in Scales, and Scratches, as shown in Fig. 3. The original dataset comprises 1,800 

grayscale images (300 per defect, mostly 224 × 224 pixels). After DDIM (Denoising 

Diffusion Implicit Model) augmentation, we selected 1,800 synthetic images, resulting 

in a total of 3,600 grayscale images (600 per defect) to ensure comprehensive model 

training. 

 

Fig. 3. Selected samples of the generated dataset after processing, from left to right, crazing, 

pitted surface, patches, rolled-in scales, inclusion, scratches.Two samples per defect category 

were randomly selected for analysis. 

4.2 Implementation Details 

YOLO-DDC was implemented using PyTorch and trained on an NVIDIA GeForce 

RTX 3070 Ti GPU with 8GB memory. The model was randomly initialized and trained 

from scratch without pre-trained weights. The dataset was processed with an input im-

age size of  224 × 224  pixels, an initial learning rate of 0.01, a batch size of 32, and 

300 training epochs. 

4.3 Evaluation Metrics 

To quantitatively analyze detection accuracy and computational complexity, we used 

mAP@0.5 (Mean Average Precision at IoU=0.5)[29] and GFLOPs (Giga Floating-

point Operations per Second)[30]. The mAP@0.5 is calculated as: 

 ( )( )
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@0.5 d

N
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N =
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where ( )iP R  denotes the precision-recall curve for the i -th class, integrated under the 

condition IoU 0.5… . 

Similarly, the GFLOPs calculation formula is: 
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2 2conv in outFlops C C K H W=       (3) 

Here, mC  denotes the number of input channels, outC  represents the number of output 

channels, K  is the convolution kernel size, and H W  indicates the feature map size. 

These formulas enable quantitative evaluation of model computational efficiency and 

guide lightweight design. 

A higher mAP@0.5 indicates higher prediction accuracy and better detection per-

formance. Conversely, lower GFLOPs signify reduced computational complexity, im-

proving real-time detection feasibility. 

4.4 Comparison with Other Detection Models 

Table 1. Different method experimental results on the NEU-DET dataset. 

Methods 
Craz-

ing 

Inclu-

sion 

Patch

es 

Pitted 

sur-

face 

Rolle

d-in 

scales 

Scratc

hes 

mAP

@0.5 

GFlop

s 

YOLOv5[31] 0.582 0.845 0.902 0.938 0.687 0.867 0.803 24.1 

YOLOv8[32] 0.611 0.849 0.898 0.944 0.722 0.867 0.815 28.7 

YOLOv9 0.627 0.864 0.898 0.946 0.696 0.866 0.816 32.2 

YOLOv10 0.623 0.842 0.892 0.931 0.695 0.865 0.808 28.8 

YOLOv11 0.607 0.849 0.903 0.945 0.679 0.863 0.808 28.4 

RT-DETR 0.562 0.864 0.901 0.907 0.68 0.874 0.795 108 

DE_RetinaN

et[33] 
0.558 0.819 0.947 0.892 0.702 0.777 0.783 — 

Ours 0.611 0.872 0.916 0.927 0.721 0.881 0.823 28.4 
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We compared YOLO-DDC against classical and state-of-the-art detection methods. 

Due to the stochastic nature of YOLO-based models, each experiment was repeated 

multiple times, and results were averaged. To ensure validity, experiments were con-

ducted on the DDIM-augmented NEU-DET dataset, yielding consistent outcomes. 

Table 1 illustrates the superior performance of YOLO-DDC in steel surface defect 

detection, demonstrating its effectiveness over contemporary networks. On the DDIM-

augmented NEU-DET dataset, YOLO-DDC achieved a mAP@0.5 of 82.3%, outper-

forming all state-of-the-art counterparts. Notably, its computational complexity of 28.4 

GFLOPs represents the lowest among models with comparable mAP@0.5 metrics. 

Compared with the transformer-based detection model RT-DETR, YOLO-DDC 

achieved a mAP@0.5 improvement from 79.5% to 82.3%, while reducing GFLOPs 

from 108 to 28.4. This enhancement can be attributed to the complex Transformer ar-

chitecture in RT-DETR, which increases computational complexity. YOLO-DDC's 

streamlined architecture, combined with the addition of DWConv and C3 modules, im-

proves detection accuracy while reducing computational costs. Additionally, compared 

to YOLOv11, our model improved mAP@0.5 from 80.8% to 82.3% while maintaining 

the same GFLOPs of 28.4. This performance gain is attributed to the robust feature 

extraction capabilities of DWConv, which helps the model better capture defect fea-

tures and enhance detection precision. 

4.5 Ablation Studies 

Table 2. Experimental results of different methods. 

Meth

ods 

DD

IM 

DW

Con

v 

C

3 

Crazi

ng 

In-

clu-

sion 

Patc

hes 

Pit-

ted  

sur-

face 

Rolle

d-in 

scale

s 

Scrat

ches 

Map

0.5 

GFlo

ps 

no 

DDI

M 

 √ √ 
0.43

5 

0.80

9 

0.88

7 
0.82 

0.58

4 

0.82

8 

0.72

7 
35.1 

no 

C3 
√ √  

0.63

5 

0.86

3 

0.90

9 

0.95

1 

0.72

3 

0.87

3 

0.82

6 
31.2 

no 

DW

Con

v 

√  √ 
0.62

4 

0.86

4 

0.89

7 

0.95

6 

0.68

5 
0.87 

0.81

6 
36.8 

Ours √ √ √ 
0.61

1 

0.87

2 

0.91

6 

0.92

7 

0.72

1 

0.88

1 

0.82

3 
28.4 

This section investigates the contributions of DDIM data augmentation, DWConv, and 

C3 modules to detection performance, validating YOLO-DDC’s advantages. By com-

paring models with configurations no DDIM, no DWConv, no C3, and the full YOLO-

DDC, we quantitatively evaluate the impact of each component using mAP@0.5 and 

GFLOPs on the NEU-DET dataset. 

As shown in Table 2, after DDIM augmentation, the mAP@0.5 increased from 

72.7% to 82.3%, while GFLOPs decreased from 35.1 to 28.4. This improvement is 



attributed to DDIM’s generation of high-quality synthetic samples via noise inversion, 

significantly enhancing defect feature clarity. 

On the DDIM-augmented dataset, removing the C3 module slightly reduced 

mAP@0.5 to 82.6% but maintained GFLOPs at 31.2, demonstrating that the C3 module 

minimizes computational load with minimal accuracy loss. Conversely, removing 

DWConv increased GFLOPs to 36.8, validating the critical role of depthwise separable 

convolutions in reducing parameter count and computational redundancy. 

The full YOLO-DDC model, combining DDIM augmentation, DWConv, and C3 

modules, achieved the lowest GFLOPs (28.4) while retaining 82.3% mAP@0.5, prov-

ing the complementary effects of its components. Ablation results confirm that DDIM 

improves generalization for small-sample defects, while DWConv and C3 modules op-

timize lightweight design. 

 

Fig. 4. Inspection results on Jetson Nano, from left to right, crazing, pitted surface, patches, 

rolled-in scales, inclusion, scratches. 

5 Conclusion 

This paper proposes YOLO-DDC, a new object detection network. It uses DWConv 

modules in the Backbone to better capture features of complex steel surface defects. 

With C3 modules, the model boosts complex feature extraction and cuts computational 

complexity.  Additionally, DDIM is applied as a data augmentation technique to expand 

the NEU-DET dataset. Experiments on the DDIM-augmented dataset validate YOLO-

DDC’s superior performance in steel surface defect detection. Future work will opti-

mize the network architecture to boost accuracy for similar defect features. We also 

plan to develop more accurate and efficient detection models, enhancing production 

efficiency and operational safety in related industries. 
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