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Abstract. The self-attention mechanism has been widely adopted in sequential 

recommendation due to its powerful capability in modeling long-range depend-

encies. However, as the number of attention layers increases, user embedding 

vectors tend to collapse into a low-dimensional subspace. This collapse of em-

bedding space leads to overly concentrated user distributions, resulting in the di-

mensional collapse phenomenon. The increased similarity among user embed-

ding representations makes it challenging for the model to distinguish between 

different users, ultimately causing recommendation results to become homoge-

nized. To mitigate this issue, we propose a novel sequential recommendation 

model named Polynomial Attention for enhanced Sequential Recommendation 

(PolyRec), which alleviates spatial collapse and improves the distribution of user 

representations. Firstly, the model can better capture high-order structural infor-

mation through the incorporation of high-order polynomial terms. Simultane-

ously, leveraging the orthogonality and optimal approximation properties of Che-

byshev coefficients stabilizes the parameter training process and enhances the 

representation capability of the attention mechanism. Furthermore, we conduct a 

theoretical analysis to demonstrate that during neural networks' aggregation of 

target information, feature representations are prone to being squeezed by noise 

and redundant information, thereby exacerbating dimensional collapse. There-

fore, by introducing Fourier transforms, we truncate the traditional residual con-

nections in the frequency domain. This approach effectively retains more im-

portant information, thereby alleviating the over-squashing phenomena. Experi-

mental evaluations on four datasets demonstrate that PolyRec outperforms other 

baseline methods in recommendation accuracy. 

Keywords: Sequential recommendation, Dimensional collapse, Polynomial. 

1 Introduction 

Recently, sequential recommendation have been widespread use across various online 

platforms to predict users' future interests in products and videos[10]. In real-world 

recommendation systems, user behavior is fluid and evolves over time. The primary 

advantage of sequential recommendation model is their ability to explicitly model item 



 

sequences over time, enabling more accurate capture of dynamic information in user 

sequences. The Transformer model[20] assign attention weights to capture the correla-

tions between items. Therefore, Transformer-based algorithms can accurately capture 

the dynamic information within user sequences and have been widely applied in se-

quential recommendation. Although Transformer models have achieved remarkable 

performance, as the number of layers increases, the embedding vectors in the sequence 

model rapidly converge to a uniform or balanced state. In actual model training, this 

phenomenon is referred to as dimension collapse. This convergence towards uniform 

token representations diminishes the model's expressive capacity because the resulting 

low-rank matrices are unable to capture the complex relationships between tokens. Ad-

ditionally, this dimension collapse may lead to gradient vanishing and potential insta-

bility during the training process[6]. 

 

             (a) Ideal representation                                  (b) Dimensional collapse  

Fig. 1. (a) The embedding distribution spans the entire high-dimensional space. (b) The embed-

ding distribution collapses into a narrow plane. 

In neural network-based models, the dimensional collapse problem may originate from 

excessive compression of information during transmission. In Recurrent Neural Net-

work(RNN) based sequential recommendation algorithms, as the number of time steps 

increases, users' recent behaviors excessively compress the information from earlier 

actions. This makes it difficult for the model to effectively remember and utilize the 

key information from the earlier parts of the sequence, a phenomenon known as long-

term forgetting. In GNN-based algorithms, the number of GNN layers is stacked to 

mine information from distant nodes. However, after continuous message passing and 

aggregation, node features become over-compressed, resulting in the loss of key infor-

mation and a decline in expressive capacity. As the number of Transformer layers in-

creases, while extracting deeper features, noise and irrelevant information are also in-

troduced. This may cause the original information to be gradually diluted or lost, pre-

venting the sufficient preservation of the unique characteristics of nodes. Vaswanic et 

al.[21] conducted a systematic study of the Transformer architecture in response to di-

mensional collapse, both theoretically and experimentally, showing that the residual 

connections and layer normalization components in the architecture help mitigate this 

issue. Residual connections have been proven in the past to improve the propagation of 

deep signals. In our approach, we further optimize training and reduce parameter 
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compression by introducing Fourier transforms into the residual connections, preserv-

ing more important signals in the frequency domain and employing truncated residual 

connections. 

Although Transformer models hold great potential, their expressive power is limited by 

the collapse of the self-attention matrix, which prevents the model from fully realizing 

its performance. When the representations of the entire sequence collapses into a lower-

dimensional space, the learning capacity of the encoder is severely wasted. We observe 

that the low-rank and collapse phenomena in the attention matrix lead to rank collapse 

and gradient vanishing, further hindering the model's performance improvement. 

(a) GNN                                                                     (b) Transformer 

Fig. 2. Over-squashing phenomena in common neural networks. When aggregating target infor-

mation (red nodes), the neural network is squeezed by noise and redundant information (blue 

nodes), resulting in an information bottleneck. 

To enhance the representational capacity of the self-attention matrix, we draw inspira-

tion from Graph Signal Processing (GSP). In the spectral domain theory of graph neural 

networks, graph filters are typically defined by the adjacency matrix or Laplacian ma-

trix. Based on related research, we treat the traditional self-attention mechanism as a 

normalized adjacency matrix and extend it using graph filter theory, which introduces 

greater flexibility and scalability to self-attention. Based on this, we propose a polyno-

mial attention mechanism based on matrix polynomials to replace the traditional single-

matrix-based attention approach, thereby improving the model's capabilities in both en-

coding and representation layers. 

 

Our contributions are as follows: 

1. We reveal that Transformer-based algorithms in recommendation systems suffer 

from the issue of dimensional collapse, which leads to insufficient user representation 

and prevents the model from fully exploiting its potential performance. 

2. To enhance the representational capacity of the attention mechanism, we propose a 

sequential recommendation model based on polynomial matrices. We draw inspiration 

from the Chebyshev polynomials in Graph Signal Processing to strengthen the attention 

mechanism's representational effectiveness. Additionally, we introduce Fourier trans-

form into the residual connections, using truncated residual connections to more effec-

tively stabilize gradient training. 



 

3. We conduct experiments on four widely-used datasets in recommendation systems. 

The results show that our model significantly improves the representational capacity of 

the attention mechanism and effectively alleviates the dimensional collapse problem. 

2 Related Work 

2.1 Sequential Recommendation 

Early methods used Markov chain[8] to model user behavior, followed by deep learning 

approaches like GRU4Re[9] and Caser[19] for feature extraction. With the success of 

attention mechanisms, models like SASRec[12], BERT4Rec[18], and S3Rec[25] ap-

plied attention mechanism in sequential recommendations. Despite their potential, at-

tention-based models still face challenges such as data sparsity and overfitting. To ad-

dress this, contrastive learning has been integrated, with models like CL4SRec[24], 

CoSeRec[13], and DuoRec[15] using data augmentation and contrastive strategies to 

improve performance. BSARec[16] and ADAmct[11] address overfitting through in-

ductive biases. 

2.2 Dimensional collapse 

Unlike convolutional neural networks ,Transformer models exhibit performance satu-

ration as the number of layers increases, leading to a phenomenon called dimensional 

collapse. This occurs when the embedding vectors collapse into a low-dimensional sub-

space, rather than utilizing the entire available embedding space. The singular values 

of the embedding matrix rapidly decrease to minimal values, leaving all but the domi-

nant dimensions ineffective, resulting in a matrix with very low rank. Researchers  have 

analyzed the issue of self-attention maps converging into low-rank matrices, especially 

with attention scores concentrating on meaningless tokens such as [CLS] and [SEP]. 

Similar issues have been observed for visual tasks, with several studies addressing the 

collapse of self-attention in Transformer encoders. 

 Dong et al. [6] proposed that the cause of dimensional collapse lies in the row-ran-

dom nature of the attention matrix, and used path decomposition to shown that adding 

skip connections and multilayer perceptrons helps prevent this collapse. Noci et al.[14] 

further demonstrated that rank collapse is not only a problem during inference, but also 

affects training due to gradient vanishing issues arising from initialization. Wu et al.[23] 

further studied the impact of LayerNorm on rank collapse in Transformers and proved 

that these components help prevent or mitigate rank collapse. 

2.3 Graph transformer 

GNNs can handle non-Euclidean data through message passing and neighbor aggrega-

tion. Injecting topological properties of the graph for Tranformer-based models allows 

the model to have a prior on structural position in high-dimensional space. Therefore, 

researchers have introduced GNNs into sequential recommendation. Early Graph 
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Transformers were mainly used by simply cascading GNNs and Transformers[2]. In 

subsequent research, more fine-grained coding information is introduced to fuse local 

and global information more systematically and flexibly[22][4][5], such as positional 

encoding(PE), relational encoding(RE), structural encoding(SE). 

3 Method  

We begin to introduce the details of PolyRec. First, we use an embedding layer to map 

the items into vectors. Then, we use polynomial attention as the backbone network. 

Next, we enhance the model's representation with truncated residual connections. Fi-

nally, we also employ contrastive learning to provide extra supervision information for 

the model. 

 

Fig. 3.  An overview of PolyRec. 

3.1 Embedding Layer 

User's historical interaction sequences are embed as multidimensional vectors for sub-

sequent modelling. In PolyRec, i ∈ 𝐼 symbolizes item and u ∈ 𝒰 symbolizes user. Item 

IDs are labeled as 𝐼 = {𝑖1, 𝑖2, … , 𝑖|𝐼|}  and the user IDs are labeled as 𝒰 =

{u1, u2, … , u|𝑢|}. Additionally, we add 𝑡 as timestep in order to reflect the temporal na-

ture of user behavior. The user behavior sequence is represented as Su =

[𝑖1
(𝑢)

, 𝑖2
(𝑢)

, … , 𝑖𝑡
(𝑢)

, … , 𝑖𝑁
(𝑢)

] , where Su ∈ 𝑆, u ∈ 𝒰, 𝑖𝑡
(𝑢)

∈ 𝐼, and 𝑁 is the length. For 𝑆𝑢 

can be denoted as: 

   𝐸𝑢 = [𝑒1
(𝑢)

, 𝑒2
(𝑢)

, … , 𝑒𝑁
(𝑢)

]                                                                (1)  



 

We use position encoding 𝑃 to add extra positional information to the model. In addi-

tion, we also apply dropout and layer normalization operations as follows: 

                                 𝐸𝑢 = Dropout( LayerNorm (𝐸𝑢 + 𝑃))                                             (2) 

Although each item has an ID that is different from each other, similar items may have 

the same eigenvalues after the embedding layer. 

3.2 Polynomial Attention Encoder 

The primitive attention mechanism encodes the relationships between sequence ele-

ments by forming an attention weight matrix 𝐴 via 𝑄 and 𝐾 vectors, thus highlighting 

important information in the sequence. However, a single attention weight matrix 𝐴 has 

limited representational power, and we consider the traditional self-attention mecha-

nism as the most basic graph filter to improve the representational power of the primi-

tive attention matrix 𝐴 by introducing spectral graph theory and using a self-attention 

layer based on Chebyshev polynomials. The polynomial self-attention layer consists of 

learnable parameters and polynomial coefficients 𝑇𝑘 containing higher order terms 𝐴𝑘, 

where 𝑘 is the order of the polynomial. The polynomials can better capture higher-order 

structural information through the higher-order terms. Moreover, the orthogonality and 

best approximation properties of the Chebyshev polynomial coefficients help stabilize 

parameter training, effectively mitigating the dimensional collapse phenomenon. 

 

Attention mechanisms. The attention score matrix 𝐴 is obtained by calculating the dot 

product of the 𝑄 and the 𝐾 vector. 

                                   Output =  Attention-Score (𝑄, 𝐾)  𝑉 = 𝐴  𝑉                        (3) 

In PolyRec, we replace the attention matrix 𝐴 with a polynomial attention layer 𝐻 that 

includes 𝐴. 

 

Graph signal filtering. GNNs can handle non-Euclidean data. We can understand 

GNNs from two perspectives: spectral domain GNNs and spatial domain GNNs. Spec-

tral domain GNNs, based on graph signal filtering and spectral graph theory, define 

graph convolution from the perspective of the spectral domain. Spectral domain graph 

convolution introduces graph Fourier transform to convert graph signals from the spa-

tial domain to the frequency domain. The eigenvectors of the Laplacian matrix are used 

as the basis for graph Fourier projections. For undirected graphs, it can be decomposed 

as follows: 

                                                              𝐿 = 𝑈Λ𝑈𝑇                                                       (4) 

Each column of 𝑈 ∈ ℝ𝑁×𝑁 is an eigenvector of  𝐿 , and Λ ∈ ℝ𝑁×𝑁 is a diagonal matrix. 

Given a graph signal 𝑥 ∈ 𝑅𝑁 on graph 𝐺, its graph Fourier transform is: 

                                                         𝑥𝑘̂ = ∑ 𝑈𝑘𝑖
𝑇 𝑥𝑖

𝑁

𝑖=1
                                       (5) 
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It is represented in matrix form as: 

                                                               𝑥̂ = 𝑈𝑇𝑥                                                      (6) 

Correspondingly, the graph inverse Fourier transform is represented as: 

                                                        𝑥 = 𝑈𝑥̂                                                           (7) 

Thus, the convolution operation in the spectral domain can be represented as: 

                                          
𝑥 𝑔 = 𝑈((𝑈𝑇𝑥) ⊙ (𝑈𝑇𝑔))

= 𝑈(𝑈𝑇𝑔 ⊙ 𝑈𝑇𝑥)
                                             (8) 

Where 𝑔 is the convolution kernel, and the Hadamard product is used as ⊙. If we treat 

the entire operation as a learnable convolution kernel 𝑈𝑇𝑔, denoted as 𝑔𝜃(Λ), the final 

convolution formula is: 

                                                      𝑦 = 𝑈𝑔𝜃(Λ)𝑈𝑇𝑥                                              (9) 

Polynomial enhanced attention. We define 𝐴 as a self-attention matrix, where 𝑛 is the 

number of tokens, and 𝑑 is the embedding dimension. 𝑉 is the value matrix. We treat 

the self-attention matrix as a special normalized adjacency matrix and view the self-

attention computation process as a simplified graph filtering process. Therefore, we 

extend the self-attention using matrix polynomials, and the extended version can be 

represented as: 

                                                   𝐻𝑉 = ∑ 𝑤𝑘A𝑘V
𝑛−1

𝑘=0
                                                (10) 

Where 𝑤 are the polynomial coefficients, the self-attention based on matrix polyno-

mials can be expressed as: 

                               𝐻𝑉 ≈ 𝑤0V + 𝑤1𝐴𝑉 + 𝑤2A2V + ⋯ + 𝑤𝑗A𝑗V (11) 

Where 𝑗 is the tolerable error convergence range. In addition, spectral domain GCN 

constructs graph filters using Chebyshev polynomials for approximation. Since Cheby-

shev polynomials have orthogonality and stability, they ensure better numerical stabil-

ity during computations. We generate the Chebyshev coefficients recursively 

𝑇𝑛+1(𝐴) = 2𝐴𝑇𝑛(𝐴) − 𝑇𝑛−1(𝐴), so that we do not introduce excessive computational 

effort during training. The final output of the polynomial attention layer is expressed as 

follows: 

                                𝐻𝑉 ≈ 𝑤0𝑇0(A)V + 𝑤1𝑇1(A)V + ⋯ + 𝑤𝑗𝑇𝑗(A)V (12) 

Truncated residual connection. In PolyRec, we use truncated residual connections to 

optimize the information flow. Unlike standard residual connections, we shift the per-

spective to the frequency domain by introducing a Fourier transform, which performs 

spectral truncation in the frequency domain. With spectral truncation, we force the 

model to focus on learning the most important low-frequency information while elim-

inating the high-frequency noise, thus retaining the more important elements of the se-

quence more efficiently. In previous work, feature reuse is usually achieved by adding 



 

additional connections, such as DenseNet, which directly connects each layer to all 

previous layers. Alternatively, more complex neural networks are added with the intro-

duction of gating or convolutional kernels to extract features. However, the above meth-

ods usually introduce additional computational complexity. Truncating the residual 

connections can reduce the computational burden by effectively compressing the infor-

mation through frequency domain computation. Mathematically, the residual signals 

are processed by Fourier transform, and the global convolution is realized by frequency 

domain product. By learning the correlation of different frequencies in the frequency 

domain, only the most relevant frequency components are retained. This approach en-

sures that the model effectively retains the most important elements of the sequence 

and is better protected against noisy or redundant inputs, thus mitigating the problem 

of degradation of representations due to over-squeezing. 

                                    xi+1 = 𝛼f(xi) + (1 − 𝛼)ℱ−1(ℱC(xi) ⊙ K) (13) 

Where ℱ denotes the Fourier transform, 𝐶 denotes the threshold for frequency domain 

truncation, and 𝛼 denotes the mixing coefficient. 

 

Prediction Layer. After passing through L layers of blocks, we convert the output into 

normalized recommendation probabilities : 

                                                  ŷ = softmax (E • H𝐿)                                             (14) 

Therefore, we use the cross-entropy loss function to optimize the network. 

                                    ℒRec = − ∑ [𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖)log(1 − 𝑦̂𝑖)]|𝐼|
𝑖=1  (15) 

Contrastive learning. We believe that contrastive learning can effectively promote the 

diversity of the embedding space, thereby alleviating the dimensional collapse problem. 

In PolyRec, we introduce contrastive learning strategy by passing the input Eu and Eu
′  

through the encoder twice to obtain two outputs Hu
L  and (Hu

L)′ . By incorporating su-

pervised augmented views, we optimize the item embedding distribution and alleviated 

the over-smoothing problem. 

 

                                            ℒCLReg(𝐡𝑢
′ ,𝐡𝑢,𝑠

′ ) = −log
exp(sim(h𝑢

′ ,h𝑢,𝑠
′ ))

∑ exp(sim(h𝑢
′ ,hneg ))

neg 

 (16) 

Where sim(·) is dot product and (hu
L)′ represent  supervised augmented views. 

                                                           𝐡𝑢
′ = (𝐇𝑢

𝐿 )′[−1], 𝐡𝑢,𝑠
′ = (𝐇𝑢,𝑠

𝐿 )
′
[−1]                        (17) 

The finial loss function of PolyRec is: 

                                                                           ℒ = ℒRec + 𝜆ℒCLReg (18) 

𝜆 is a balance coefficient. 
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4 Experiments 

We will validate the effectiveness of PolyRec by addressing the following four ques-

tions: 

RQ1: How does PolyRec perform compared to other sequential recommendation mod-

els? 

RQ2: How do key components affect the performance of PolyRec? 

RQ3: How does different hyperparameters affect PolyRec? 

RQ4: How to determine the order of the polynomial attention matrix? 

4.1 Experimental Setup 

Dataset. The summary information of the processed dataset is shown in the Table 1. 

The Amazon dataset consists of user reviews and metadata for various products avail-

able on Amazon. The dataset is divided into multiple categories, such as Beauty, Cloth-

ing, and Sports, allowing for domain-specific analysis and testing. Specifically, Mov-

ieLens-1M is an anonymized movie rating dataset that contains over 1 million interac-

tions, making it highly suitable for validating models on large-scale data experiments. 

Table 1.  Datasets. 

Datasets Beauty Clothing Sports ML-1M 

Users 22,363 39,387 35,598 6,041 

Items 12,101 23,033 18,357 3,417 

Avg.Length 8.9 7.1 8.3 165.5 

Actions 198,502 278,677 296,337 999,611 

Sparsity 99.93% 99.97% 99.95% 95.16% 

 

Baselines. We compare our model with representative models. Transformer based se-

quential recommendation includes SASRec[12], Cl4sRec[24], CoseRec[13] and 

DuoRec[15]. SASRec was the first to apply the Transformer model into sequential rec-

ommendation. CL4SRe creates various contrast views of the same user interaction se-

quence to facilitate contrast learning. CoseRec leverages item correlations to enhance 

data augmentation effectiveness within a contrast framework. DuoRec uses unsuper-

vised model-level augmentation along with supervised semantic positive samples to 

facilitate contrast learning. FMLP is a full MLP model that uses a learnable filter en-

hancement module to remove noise from the embedding matrix. FEARec[7] take a fre-

quency domain, using a ramp attention mechanism[17] to improve the original time-

domain self-attention. MRGSRec[1] combines graph and sequential embeddings via a 

fusion layer. GSAU[3] use LightGCN as the graph encoder, SASRec as the sequential 

encoder whike sharing a unified embedding space optimized jointly. 

 



 

Experiment Details. We replicate each baseline model using the optimal hyperparam-

eters from the original paper. The PolyRec model is implemented in PyTorch. The 

hardware environment is an i5-12400F CPU and a RTX 3090 GPU. 

4.2 Overall Performance Comparison (RQ1) 

Table 2. Statistics of the datasets. 

Datasets Metric-Rec SAS BERT4 FMLP CL4S CoSe Duo FEA MRGS GSAU Poly  Improve 

Beauty 

HR5 0.0365 0.0193 0.0398 0.0401 0.0537 0.0546 0.0597 0.0441 0.0525 0.0602  0.84% 

HR10 0.0627 0.0401 0.0632 0.0683 0.0752 0.0845 0.0884 0.0681 0.0868 0.0934  5.66% 

NDCG5 0.0236 0.0187 0.0258 0.0223 0.0361 0.0352 0.0366 0.0301 0.0336 0.0375  2.46% 

NDCG10 0.0281 0.0254 0.0333 0.0317 0.0430 0.0443 0.0459 0.0349 0.0447 0.0483  5.23% 

Clothing 

HR5 0.0168 0.0125 0.0173 0.0168 0.0175 0.0193 0.0214 0.0221 0.0208 0.0231  4.52% 

HR10 0.0272 0.0208 0.0277 0.0266 0.0279 0.0302 0.0323 0.0352 0.0335 0.0355  0.85% 

NDCG5 0.0091 0.0075 0.0098 0.0090 0.0095 0.0113 0.0121 0.0121 0.0122 0.0130  6.55% 

NDCG10 0.0124 0.0102 0.0127 0.0121 0.0131 0.0148 0.0156 0.0162 0.0163 0.0170  4.29% 

Sports 

HR5 0.0218 0.0176 0.0218 0.0227 0.0287 0.0326 0.0353 0.0289 0.0315 0.0375  6.23% 

HR10 0.0336 0.0326 0.0344 0.0374 0.0437 0.0498 0.0547 0.0434 0.0506 0.0564  3.11% 

NDCG5 0.0127 0.0105 0.0144 0.0129 0.0196 0.0208 0.0216 0.0186 0.0198 0.0220  1.85% 

NDCG10 0.0169 0.0153 0.0185 0.0184 0.0242 0.0262 0.0272 0.0227 0.0259 0.0281  3.31% 

ML-1M 

HR5 0.1087 0.0733 0.1109 0.1147 0.1262 0.2038 0.2212 0.1312 0.1662 0.2230  0.81% 

HR10 0.1904 0.1323 0.1932 0.1975 0.2212 0.2946 0.3123 0.2248 0.2482 0.3172  1.57% 

NDCG5 0.0638 0.0432 0.0657 0.0662 0.0761 0.1390 0.1523 0.0829 0.1078 0.1577  3.55% 

NDCG10 0.0910 0.0619 0.0918 0.0928 0.1021 0.1680 0.1861 0.1134 0.1342 0.1882  1.13% 

 

In Table 2, we present the primary experimental results for PolyRec and all baseline 

moels on four datasets for HR and NDCG. To optimize the layout, we omitted the '-

Rec' suffix from all models. As shown in the Table 2, PolyRec achieves a significant 

improvement compared to sequential recommendation baseline methods based on 

Transformer and contrastive learning. On the Sports dataset, PolyRec achieves the 

highest improvement of up to 6.5%. 

4.3 Ablation Study (RQ2) 

We sequentially remove each key component of the model to validate its effectiveness. 

In the Table, CL represents contrastive learning, TRC stands for truncated residual con-

nections, PA denotes polynomial attention.   
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Table 3. Ablation Experiments on Four Datasets. 

Methods Beauty 

HR5   

 

NDCG5 

 Sports 

HR5 

 

NDCG5 

Clothing 

HR5 

 

NDCG5 

ML-1M 

HR5 

 

NDCG5 

PolyRec 0.0602 0.0375  0.0375 0.0220 0.0231 0.0130 0.2230 0.1577 

(a) w/o CL 0.0581  0.0356  0.0351 0.0197 0.0194 0.0106 0.2210 0.1540 

(b) w/o TRC 0.0578 0.0359  0.0335 0.0190 0.0205 0.0116 0.2189 0.1499 

(c) w/o PA 0.0591 0.0366  0.0356 0.0213 0.0209 0.0120 0.2199 0.1492 

 

Truncated Residual Connections. As shown in Table 3, after removing the truncated 

residual connections, the model's performance declined to varying degrees across dif-

ferent datasets. Standard residual connections indiscriminately add full-spectrum infor-

mation to the model output. While returning important information, noise and redun-

dant information can excessively compress the effective information. Truncated resid-

ual connections address this by performing spectral truncation in the frequency domain, 

removing noise and excessive redundant information. 

 

Polynomial Attention. Although truncated residual connections can transmit more im-

portant information from the input to the subsequent layers, thereby better preserving 

input information and maintaining the stability and integrity of signal flow within the 

network, a single attention matrix still suffers from representation degradation. As 

shown in Table 3, layers based on polynomial attention, through high-order terms and 

Chebyshev coefficients, can effectively improve the representational capability of the 

original attention mechanism. 

 

Contrastive Learning. In traditional self-supervised learning, dimensional collapse 

typically refers to the phenomenon where the feature representations learned by the 

model become overly concentrated, resulting in the inability to effectively distinguish 

between most of the information in the feature space, which in turn impacts the model's 

performance. As shown in Table 3, Contrastive Learning effectively alleviates the di-

mensional collapse problem by enhancing the diversity of the embedding space. 

4.4 Hyper-parameter Sensitivity (RQ3) 

Truncation Coefficient C. In our experiments, we selected the truncation coefficient 

C as the threshold for truncating the user frequency spectrum in the frequency domain. 

Selecting an appropriate truncation threshold can more effectively filter out noise and 

preserve important components in the spectrum. As shown in Fig. 4, we test C values 

ranging from [1, 3, 5, 7, 9] and found that when C was selected between 3 and 5, the 

spectrum was effectively truncated, achieving optimal results. 



 

(a) Beauty HR5                                                            (b) Clothing HR5 

(c)Sports HR5                                                                 (d)ml-1m HR5 

Fig. 4.  Truncation Coefficient C. 

Mixing Coefficient 𝛼. In our experiments, we used the hyperparameter 𝛼 to balance 

truncated residual connections and standard residual connections. As shown in Fig. 5, 

we tested 𝛼 values ranging from [0.1, 0.3, 0.5, 0.7, 0.9], and found that optimal results 

were achieved when 𝛼 was selected between 0.5 and 0.7. 

(a) Beauty HR5                                          (b) Clothing HR5 

(c)Sports HR5                                               (d)ml-1m HR5 

Fig. 5.  Mixing coefficient 𝛼. 
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4.5 Convergence Experiment (RQ4) 

To balance model performance and computational complexity, it is necessary to select 

an appropriate order. To confirm the order of the polynomial matrix, this section incor-

porates PageRank theory to perform corresponding analysis and proofs. The attention 

matrix satisfies stochasticity, irreducibility, and aperiodicity. Therefore, we can treat 

the attention matrix as the P matrix in PageRank. According to the Perron-Frobenius 

theorem, higher-order terms must possess a stationary distribution, meaning the poly-

nomial matrix is guaranteed to converge. As shown in the Fig. 6  below, performing 

successive order-by-order differencing on the polynomial terms causes the color to be-

come progressively lighter, indicating that higher-order terms are gradually dominated 

by lower-order terms. 

 

 
Fig. 6. Convergence Visualization. By performing successive differencing on the pol-

ynomial by order, it can be observed that higher-order terms are gradually absorbed by 

lower-order terms. 

5 Conclusions and Prospect 

This paper reviews the dimensional collapse issue in Transformer-based sequential rec-

ommendation models. Specifically, embedding vectors collapse into a low-dimensional 

subspace instead of covering the entire embedding space. This representation collapse 

causes the attention to become a low-rank matrix, making it difficult to represent users' 

preferences effectively. To mitigate this issue, We enhance two critical structures in 

Transformers. First, by introducing Fourier Transform, we truncate traditional residual 

connections in the frequency domain, enabling the transmission of more effective in-

formation in deep networks. Second, inspired by graph signal processing, we incorpo-

rate polynomial filters to extend the original attention layers, thereby strengthening the 

representational capacity of the attention mechanism. These improvements optimize 

the information flow within Transformers, alleviate over-squashing issues, and improve 

the distribution of embedding representations. In future work, we plan to explore the 

potential of Bernstein polynomials to further expand the capabilities of polynomial at-

tention. 
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