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Abstract. Smoke detection plays a crucial role in ensuring public safety across 

various domains, including industrial settings, daily life, and disaster manage-

ment. The effectiveness of smoke detection models heavily relies on the availa-

bility of comprehensive datasets and the optimization of loss functions. However, 

existing smoke detection research primarily focuses on fire-related scenarios, 

overlooking the significant differences in characteristics between smoke gener-

ated by different causes. To address this issue, we have developed a Multi-Cate-

gory smoke detection dataset (MC-smoke dataset), which is organized based on 

the smoke's origin and main components. This dataset includes three categories 

of smoke and contains a total of 1,115 images. Furthermore, to alleviate the loss 

ambiguity issue present in existing object detection losses, we propose a novel 

Similarity-Constrained (SC) loss function. This function uses a similarity con-

straint coefficient in the bounding box to influence center regression and vertex 

regression losses, enabling more accurate smoke detection. Lastly, extensive ex-

periments were conducted on both the MC-smoke dataset and the classic object 

detection dataset PASCAL VOC 2007, validating the substantial effectiveness 

enhancement achieved by the SC loss function. Additionally, comprehensive 

baseline and comparative experiments were conducted to affirm the suitability of 

the MC-smoke dataset for research about smoke detection training, testing, and 

validation. 

Keywords: Smoke detection, Loss ambiguity, Bounding box loss, Multi-cate-

gory smoke. 

1 Introduction 

Smoke is visible and perceptible, making it a crucial early warning indicator in emer-

gency situations such as fires, traffic accidents, and hazardous chemical leaks [9,6]. 

Timely detection of smoke is critical to preventing dangers from escalating and causing 

greater losses. Sensor-based smoke alarm systems have been widely deployed in vari-

ous settings. While smoke sensors that sample smoke particles exhibit high sensitivity 

in relatively confined spaces, they become increasingly problematic in open environ-

ments due to environmental fluctuations and a sharp decrease in detection capability as 



space expands [3]. With the rapid development of computer technology, smoke detec-

tion techniques based on computer vision have received significant attention for their 

wide detection range and fast response speed. They effectively address the drawbacks 

of traditional smoke sensors and have gradually become a major focus of research. 

 Before deep learning, image-based smoke detection focused on manual feature ex-

traction. Methods like dark channel prior [21] and bag-of-words model [28] improved 

segmentation and classification but lacked high detection precision. Deep learning has 

since advanced smoke detection by leveraging robust feature learning. For example, 

Gu et al. [10] proposed a deep dual-channel neural network to tackle the problem of 

changing the texture, color, and shape of smoke. Cao et al. [2] proposed an enhanced 

feature foreground network for pixel-level modeling of smoke features, to predict the 

bounding boxes of smoke plumes in videos. Hu et al. [14] introduced a joint weighting 

strategy for color and texture feature extraction, while Zhan et al. [33] fused visual and 

semantic features with a recursive feature pyramid. Li et al. [17] proposed a high-pre-

cision edge focused forest fire smoke detection network. Wang et al. [29] proposed a 

lightweight smoke detection network that incorporates refined edge cues, and a mutual 

context embedding module to improve smoke feature extraction and detection accu-

racy. Muhammad et al. [22] proposed a lightweight edge-intelligent assisted smoke de-

tection method for detecting smoke in foggy environments. 

 

Fig. 1. Loss ambiguity based on positional regression bounding box loss. The bold rectangle 

represents the ground truth bounding box, with p and qi, i ∈ {1,2,3,4} denoting the two vertices 

of the predicted bounding box. ci, i ∈ {2,4}are the centers of the predicted bounding boxes 

formed by p and qi respectively, and C is the center of the ground truth bounding box. After 

introducing the center point distance loss [30], there is still a loss ambiguity problem, that is, c2 

and c4 are respectively the same distance from C. 

Deep learning-based smoke detection models typically determine a bounding box on 

a two-dimensional image plane that encloses all smoke pixels. However, to achieve a 

more precise bounding box, it is crucial to design an appropriate loss function for guid-

ing model training. Unfortunately, both regression losses-based on the positions of 

bounding box vertices and losses based on the Intersection over Union (IoU) metric 
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suffer from a "loss ambiguity" issue. In other words, different predicted bounding boxes 

with varying positions and sizes may yield the same loss value. For example, as illus-

trated in Fig.1, the predicted rectangle defined by point p and the set {q1, q2, q3, q4} 

may vary in position and size, yet its regression loss relative to the ground truth (de-

picted as the bold green rectangle) remains unchanged. In other words, the distances 

from the points to the bottom-right vertex of the ground truth are identical. Conse-

quently, this loss ambiguity may mislead the training process and ultimately degrade 

detection performance. 

 In addition, high-quality datasets are essential components for training smoke detec-

tion models. Datasets in the field of smoke detection can be divided into real 

[1,8,18,27,32] and synthetic [13,15] smoke scenes based on their data sources. Most 

studies [14,17,26,29,33,35] and datasets [1,8,13,15,18,27,32] focus solely on smoke-

induced by fires. However, dangerous situations such as collisions and laboratory gas 

leaks, in addition to combustion, can also produce smoke. Smoke generated by different 

causes exhibits significant differences in characteristics. Therefore, if a model is capa-

ble of accurately classifying smoke types in addition to simply detecting smoke, it 

would greatly facilitate the identification of the underlying causes of anomalous events 

and provide a scientific basis for the prompt initiation of targeted emergency response 

plans. For example, in the event of a chlorine gas leak, the characteristics of the detected 

smoke would differ markedly from those observed in fire incidents, offering valuable 

insights for qualitative analysis and the optimization of emergency responses. 

 In summary, the ambiguity in loss functions for bounding box position regression 

and the fact that existing datasets focus only on combustion scenes are two urgent prob-

lems in the field of smoke detection. To address these issues, we make two main con-

tributions as follow: 

⚫ We construct a Multi-Category smoke detection dataset, called MC-smoke. Fur-

thermore, we conduct comprehensive baseline and comparative experiments using 

the MC-smoke dataset to verify its potential as a new benchmark for research in 

multi-category smoke detection. 

⚫ We introduce a Similarity-Constrained (SC) loss function aimed at mitigating the 

issue of loss ambiguity by leveraging the similarity and center distance of bound-

ing boxes to improve detection precision. 

2 Related Work 

2.1 Image-based Smoke Detection Dataset 

A high-quality dataset plays a crucial role in deep learning-based smoke detection re-

search, as it directly impacts the model's performance and generalization ability. Re-

grettably, the number of available datasets for smoke detection is limited, and they fre-

quently focus on burning scenarios like wildfires and structural fires. For example, the 

Wildfire Observers and Smoke Recognition dataset (WOandSR) [27] and the FireCam 

dataset [8] exclusively collect smoke produced during combustion, as depicted in 

Fig.2(d) and Fig.2(c), respectively. Furthermore, the images of these two datasets are  



 

Fig. 2. Image Examples from Different Smoke Detection Datasets. The images from various 

smoke detection datasets, all of which focus on fire-generated smoke. Furthermore, the single 

perspective limitation restricts the applicability of these datasets. 

captured using telephoto equipment, resulting in reduced resolution of smoke in the 

images. While video smoke detection (VSD) [32] and USTC-SmokeRS [1] encompass 

images of diverse smoke categories, the former exhibits low resolution and lacks back-

ground information, as illustrated in Fig.2(a), whereas the latter is captured by satellite 

cameras and only applicable to certain scenarios, as depicted in Fig.2 (b). Consequently, 

the urgency to construct multi-category datasets for comprehensive smoke detection 

research has escalated. This enables researchers to assess and refine their models across 

a broad spectrum of smoke scenarios, thereby enhancing their efficacy in real-world 

settings. 

2.2 Bounding Box Regression Loss Function 

Regression losses based on bounding box vertex positions and IoU-based loss functions 

are two common approaches in object detection. The former treats the four vertices of 

a bounding box as regression targets, computing coordinate differences between pre-

dicted and ground truth boxes using L1, L2, or smooth L1 losses [7,23]. However, this 

approach typically treats each vertex independently, thereby neglecting their inherent 

interrelationships and leading to loss ambiguity issues. Wen et al. [30] have introduced 

center point errors to enhance the discriminative power of deep features; although this 

modification partially alleviates the problem, loss ambiguity persists, as shown in Fig.1. 

[25,31,36] measure the matching degree by computing the intersection-over-union be-

tween predicted and ground truth boxes, thereby mitigating issues caused by scale and 

shape variations and providing more intuitive guidance for adjusting bounding box po-

sitions and sizes. Nevertheless, in special cases such as coinciding center points, these 

loss functions also encounter loss ambiguity. Moreover, even when other loss functions 

yield ambiguous results, our proposed SC loss effectively distinguishes between differ-

ent bounding boxes. 

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

Data A

Data B



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

Fig. 3. Overview of the MC-Smoke dataset. "BCS": Burning Combustion Smoke, "DPS": Dust 

Particulate Smoke, "GPS": Gas Pollutant Smoke. 

3 Proposed Dataset and Loss Function 

3.1 Multi-category Smoke Dataset 

Statement: The term "smoke" is commonly used to refer to particulate matter in the 

air. However, at the microscopic level, the particulate composition of smoke varies sig-

nificantly depending on its source. These differences in the primary components lead 

to substantial variations in smoke attributes, including color, shape, and concentration. 

Therefore, this paper introduces a novel multi-category smoke detection dataset, as 

shown in Fig.3, aimed at encouraging researchers to explore the diversity of smoke in 

order to address different scenarios effectively. 

Collection: The occurrence of anomalies is inherently random, which poses significant 

challenges in smoke data collection. To address this, we decided to gather smoke im-

ages from various sources, including the internet, search engines, and news articles, 

ensuring diversity in terms of categories, lighting conditions, and real-world scenarios. 

Although we collected as much data as possible, objective constraints such as time and 

the scarcity of original materials resulted in far fewer images of smoke not produced 

by combustion compared to those generated by combustion. Consequently, our dataset 

exhibits a long-tailed distribution. 

Preprocessing: As with other classic datasets[1,4], the image resolution was uniformly 

modified to 640 × 480, and manual annotation methods were used to label the images. 

To ensure the quality of the collected images, we screened out duplicates and non-

smoke images from the dataset, leaving a total of 1,115 pictures for annotation. 

Properties: ①Viewpoints: The dataset includes smoke images captured from various 

viewpoints, providing a richer set of features for model training. ② Classification: The 

1,115 smoke images are classified into three categories: "BCS" represents smoke pro-

duced by combustion (921 images), "DPS" refers to smoke from dust and particulate 

matter (90 images), and "GPS" denotes smoke from gaseous pollutants (104 images). 
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③ Label: The annotations were saved in an XML file following PASCAL VOC 2007 

[4] format specification. 

3.2 Similarity-Constrained Loss 

Research in [36] suggests that an effective bounding box loss function should incorpo-

rate the center position and area of the bounding box. Besides, we contend that the 

shape of the bounding box can also serve as a crucial constraint. To address this issue, 

we propose to improve the smooth L1 loss by using the similarity of bounding boxes 

and name the improved loss function as Similarity-Constrained (SC) loss. The SC loss 

consists of the similarity constraint coefficient, bounding box vertex position regres-

sion, and bounding box center position regression, as shown in (1), where ℒ𝒱 represents 

the distance between the vertices of the predicted bounding box and those of the ground 

truth, and ℒ𝒞 represents the offset distance between the center point of the predicted 

bounding box and those of the ground truth to supplement the lack of information about 

smooth l1 loss. Finally, 𝜁 represents the similarity constraint coefficient, that is, the 

position regression of the former two is constrained by the similarity between the pre-

dicted bounding box and the ground truth bounding box, so as to optimize the loss 

ambiguity problem.  

 ℒ = (ℒ𝒱 + ℒ𝒞) × 𝜁 (1) 

Position Regression: When computing the bounding box regression loss, we usually 

use the coordinates of the Left-Top (LT) vertex and the Right-Bottom (RB) vertex to 

represent any bounding box. Therefore, as shown in (2), the ℒ𝒱 can be obtained by 

calculating the difference between the components of 𝐵𝑔𝑡 and 𝐵.  

 ℒ𝒱(𝐵𝑔𝑡 , 𝐵) = ∑ {
0.5(𝑎 − 𝑎′), 𝑖𝑓 |𝑎 − 𝑎′| < 1

|𝑎 − 𝑎′| − 0.5, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
4
𝑖=1  (2) 

where 𝑎  and 𝑎′  denote each corresponding component of 𝐵𝑔𝑡  and 𝐵 . This formula 

avoids the problem of non-smoothness at the zero point and is more robust to outliers 

[7]. However, ℒ𝒱 only includes the distance of the corresponding vertex components, 

ignoring the potential correlation information between vertex, and correlation infor-

mation is also an important feature in deep learning, which helps to improve the per-

formance of the model. Therefore, we introduced the measurement of the distance be-

tween the center of the bounding box. 

The center of the bounding box can be calculated from the vertexes, which can re-

flect the position information of the bounding box globally, and can also contain the 

correlation information between the vertexes. Therefore, we introduce the center dis-

tance loss ℒ𝒞 to enhance the associated information in SC loss. The loss function is the 

Euclidean distance between the ground truth box center and the predicted box center, 

as shown in (3). 

 ℒ𝒞(𝐵gt, 𝐵) = √(𝑥𝑐 − 𝑥𝑐
′ )2 + (𝑦𝑐 − 𝑦𝑐

′)2 (3) 
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Similarity Constraint Coefficient: In order to optimize the problem of bounding box 

loss ambiguity, we introduced the similarity constraint coefficient 𝜁 on the basis of po-

sition regression. Its core is to use the similarity between the predicted box and the 

ground truth box to constrain position regression. 

The acquisition of the similarity constraint coefficient can be divided into three steps. 

Firstly, it is necessary to calculate the diagonal vectors of the predicted box (𝒑) and the 

ground truth box (𝑔) respectively, as shown in (4)-(5). The diagonal vector not only 

contains the relationship information between vertices but also contains the character-

istics of the bounding box. The two vector cosines are then calculated, as shown in (6). 

Notably, the included angle between the predicted box and the ground truth box diag-

onal vector ranges from 0
。

 to 90
。

. 

 𝒑 = 𝑃lt − 𝑃rb  (4) 

 𝑔 = 𝑃lt
gt

− 𝑃rb
gt

 (5) 

 cos(𝑝, 𝑔) =
𝑥𝑝𝑥𝑔+𝑦𝑝𝑦𝑔

√𝑥𝑝
2+𝑦𝑝

2⋅√𝑥𝑔
2+𝑦𝑔

2
 (6) 

Finally, convert the cosine value into the similarity constraint coefficient 𝜁, as shown 

in (7). The hyperparameter λ is set to 2, so the value range of the correlation coefficient 

is limited to 1 to 2. That is, the smaller similarity constraint coefficient indicates a closer 

match in shape and size between the predicted bounding box and the ground truth box. 

When two bounding boxes are completely similar, the model only needs to focus on 

the position regression of the vertices and center points of the bounding boxes.  

 ζ = λ − cos(𝑝, 𝑔) (7) 

4 Experimental Results and Analysis 

We conducted experiments following [36]. First, we performed baseline and compara-

tive experiments on the MC-smoke dataset to evaluate its relevance to smoke detection 

and the impact of SC loss on model performance. Next, ablation experiments were con-

ducted to assess the contributions of the three modules in the SC loss function. Finally, 

we evaluated the SC loss on the PASCAL VOC 2007 dataset using both classic and 

lightweight object detection models, alongside common losses, to further assess its ef-

fectiveness. 

4.1 Implementation details And Evaluation Protocol 

Dataset. Due to the imbalance in the MC-smoke dataset, we sampled 80% of the in-

stances from each category to form the training set and reserved the remaining 20% for 

the test set. This approach ensures that the class distribution is maintained across both 

subsets, thereby reducing potential biases during model training and evaluation. In  



Table 1. Baseline Experiment On MC-Smoke Dataset 

Method Params(M) mAP50 mAP75 mAP 

SSD [19] 26.3 77.26 53.69 46.85 

Yolo v3 [5] 9.6 84.77 35.17 37.07 

Mask RCNN [11] 44.5 91.54 48.50 49.76 

Dynamic-Faster RCNN [34] 42.3 89.23 50.63 48.73 

PAA [16] 37.5 89.96 59.93 51.90 

Faster RCNN-Resnet50 [24] 44.1 89.44 51.15 47.37 

Faster RCNN-SwinT [20] 48.3 95.18 64.05 56.96 

addition to the proposed MC-smoke dataset, we also used the PASCAL VOC 2007 

dataset [4] to evaluate the proposed SC loss. The PASCAL VOC 2007 dataset is widely 

used for object detection and includes 20 classes with a total of 9,963 images, compris-

ing 5,011 training images and 4,952 test images. 

Hyperparameters: To ensure a fair comparison between different methods, we used 

common hyperparameters in all experiments. Specifically, each experiment iterated for 

200 epochs and used a batch size of 8 for each training. We selected AdamW as the 

optimizer and set the initial learning rate to 1e-4, and decay to 5e-4. 

Evaluation Protocol: In object detection, accuracy is evaluated using the Intersection 

over Union (IoU) metric, which measures the overlap between predicted (𝐴pre) and 

ground truth (𝐴gt) boxes by dividing their intersection area by their union, as shown in 

(8).  

 IoU =
𝐴gt∩𝐴pre

𝐴gt∪𝐴pre
 (8) 

A prediction is considered correct if IoU exceeds a set threshold, such as 0.5 for mAP50. 

To evaluate overall performance, mean average precision (mAP) across IoU thresholds 

from 0.5 to 0.95, with higher mAP scores indicating better results. In experiments, 

mAP50, mAP75, and mAP are used as performance measures. 

4.2 Experiments on MC-smoke 

Experiments on MC-smoke: We evaluated six object detection algorithms with L1 

loss on the MC-Smoke dataset: the single-stage models SSD [19] and Yolo V3 [3], and 

the models Faster RCNN [5], MaskRCNN [11], Dynamic-Faster RCNN [34], and PAA 

[16], which enhances performance by optimizing anchor assignment rules. Notably, 

SSD uses VGG as its backbone, YoloV3 uses DarkNet, and the others use ResNet50 

[12]. To assess the impact of different backbone networks, we replaced the Faster 

RCNN's backbone with Swin Transformer [20]. The final results are presented in Table 

1. Among the four models based on ResNet50, performance differences were minimal. 

The Swin Transformer-based Faster RCNN achieved the best performance, with 

mAP50, mAP75, and mAP scores of 95.18, 64.05, and 56.96, respectively, significantly  
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Table 2. Comparison of Faster RCNN-SwinT using different loss functions on MC-smoke Da-

taset. (*Baseline value for relative improvement.) 

Losses mAP50 mAP75 mAP 

IoU Loss [31] 94.86 49.35 51.49 

CIoU Loss [36] 94.94 57.49 53.32 

L1 Loss [11] 95.18 64.05 56.936* 

Smooth L1 Loss [24] 95.62 65.08* 55.33 

SC Loss (Ours) 96.39* 74.09 61.72 

Relative improv (%) 0.81% 13.84% 8.35% 

higher than the other models. We attribute this to Swin Transformer's powerful feature 

extraction capabilities, which model both global and local features, thereby enhancing 

overall performance. 

Similarity-Constrained Loss on MC-smoke: In this section, we integrate four popular 

object detection loss functions, which include L1, Smooth L1 [24], IoU [31], and CIoU 

[36] losses, into the Swin-Transformer-based Faster RCNN and compare with the pro-

posed similarity-constraint (SC) loss to further verify the effectiveness of the SC loss. 

As shown in Table 2, the model trained with the proposed SC loss achieved the 

highest scores in all three evaluation metrics. Specifically, the mAP50, mAP75, and 

mAP of the model based on the SC loss function were 96.39, 74.09, and 61.72, respec-

tively. When the IoU threshold was set to 0.5, the model based on the SC loss function 

outperformed the other models by only 0.77, indicating that other loss functions can 

achieve satisfactory results when the accuracy requirement is low. However, when the 

IoU threshold was set to 0.75, the model based on the similarity loss function showed 

a significant improvement, with a 9.01 higher score than the second-best model.  

Table 3. Ablation Experiment on MC-smoke Dataset. 

No. ℒ𝒱 ℒ𝒞  𝜁 mAP50 mAP75 mAP 

1 √ × × 95.62 65.08 55.33 

2 √ × √ 93.66 60.86 53.62 

3 √ √ × 96.15 70.06 57.57 

4 × √ × 91.62 49.98 48.90 

5 × √ √ 94.57 71.44 57.77 

6 √ √ √ 96.39 74.09 61.72 

Ablation Experiment on MC-smoke: To assess the influence of the three components 

in the SC loss function-center regression loss ℒ𝒞, vertex regression loss ℒ𝒱, and simi-

larity constraint coefficient 𝜁-on the overall performance of the loss function, we con-

ducted two ablation experiments. In the initial experiment, the model was trained solely 

using the vertex regression loss function. Subsequently, we combined the center regres-

sion loss and similarity constraint coefficient with the vertex regression loss for further 

training, and compared the experimental outcomes, detailed in Table 3 (No.1-No.3). 

Combining all three modules resulted in the model achieving its optimal performance. 

Additionally, combining the center regression loss with the vertex regression loss led  



 

Fig. 4. Variation of Training Loss with Iterations. Two distinct models [24,37] were employed 

for training with five different loss functions. 

to a marginal improvement in model performance, with the mAP75 evaluation index 

increasing by 4.98. Conversely, combining the vertex regression loss with the similarity 

constraint coefficient alone resulted in a slight decrease in the scores of all three eval-

uation indicators, with reductions of 1.96, 4.22, and 1.71 compared to the baseline ex-

periment, respectively. 

To further assess the impact of the similarity constraint coefficient, we conducted a 

second ablation experiment, with the results presented in Table 3 (No.4-No.5). In this 

experiment, we maintained the center regression loss unchanged and introduced the 

similarity constraint coefficient and vertex regression loss for further experimentation. 

The results indicated that while the model's performance trained solely on the center 

regression loss was subpar, combining it with the similarity constraint coefficient led 

to significant improvement. The scores of the three evaluation indicators increased by 

2.95, 21.46, and 8.87, respectively. Nonetheless, the performance did not surpass that 

of the model when all three modules were combined simultaneously. 

Table 4. Loss Function Comparison on PASCAL VOC 2007. 

Losses. 
DPNet (2.5M) Faster RCNN (44M) 

mAP50 mAP75 mAP mAP50 mAP75 mAP 

IoU Loss [31] 83.06 47.62 48.73 74.13 46.22 44.28 

CIoU Loss [36] 85.11 51.74 51.16 74.43 46.76 44.60 

L1 Loss [11] 81.56 49.94 47.95 74.15 45.96 43.60 

Smooth L1 Loss [24] 85.84 51.10 50.21 74.21 45.75 43.61 

SC Loss (Ours) 87.24 53.33 52.02 74.94 46.80 43.33 

Relative improv (%) 1.63% 3.07% 1.68% 0.6% 0.08% 1.08% 
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4.3 Experiment on PASCAL VOC 2007 

As shown in Table 4, we evaluate the effectiveness of the proposed SC Loss by inte-

grating it into both a lightweight model (DPNet [37]) and a classical detection model 

(Faster RCNN [24]) on the PASCAL VOC 2007 dataset. The results demonstrate that 

SC Loss consistently outperforms conventional loss functions when used with DPNet, 

achieving notable improvements across all metrics. Specifically, SC Loss improves the 

mAP50  by 1.63%, the mAP75  by 3.07%, and the overall mAP by 1.68% compared to 

the second-best loss function, showcasing its ability to better constrain model training 

and mitigate the effects of regression ambiguity. In contrast, when applied to the Faster 

RCNN model, SC Loss, although it did not achieve the same magnitude of improve-

ment, still outperformed the other four loss functions in terms of performance. The error 

convergence curves in Fig.4 demonstrate that the proposed SC Loss achieves the most 

stable and consistent error reduction across both DPNet and Faster RCNN.  

The results on the PASCAL VOC 2007 dataset and MC-Smoke dataset demonstrate 

that the proposed similarity-constrained loss function outperforms traditional loss func-

tions by optimizing the loss ambiguity problem, achieving lower final error values and 

greater stability, and validating its effectiveness in improving object detection perfor-

mance. 

5 Conclusion 

In this paper, we introduce the SC loss, which refines bounding box regression by in-

corporating both similarity and center distance, thereby addressing loss ambiguity and 

enhancing model performance. Additionally, we present a multi-category smoke da-

taset by smoke characteristics, enabling researchers to explore the complexities of 

multi-category smoke detection. In the future, we aim to further improve the perfor-

mance of the lightweight model, facilitating its deployment on monitoring terminals for 

faster and more accurate smoke detection. 
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