

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Structural Entropy Dynamics in CNN Training: A Three-

Phase Guided Framework with Applications in Training

Optimization

Fengming Dong, Jianghua Lv, Yining Chen and Hexuan Li

 Beihang University, Beijing 100191, China

dfmsbc@buaa.edu.cn

Abstract. Recent advances in convolutional neural networks (CNNs) have

achieved remarkable success across computer vision domains, yet the inherent

complexity and opaque nature of their training processes continue to impede fur-

ther efficiency improvements. As a quantitative indicator of graph structural

complexity, structural entropy offers a novel perspective for analyzing the train-

ing dynamics of neural networks. This work proposes a graph structure abstrac-

tion-based representation method for CNNs, establishing a quantitative frame-

work for training complexity assessment through the transformation of computa-

tional graphs into weighted directed graphs followed by structural entropy calcu-

lation. Through systematic monitoring of classical CNN architectures, we iden-

tify a three-phase evolution pattern of complexity dynamics: Adjustment Phase,

Convergence Phase, and Specialization Phase, thereby formulating a structural

entropy-guided characterization framework for CNN training processes. Further-

more, by establishing the correlation between dynamic structural entropy features

and model performance, we develop optimization strategies including entropy-

aware early stopping criteria and adaptive learning rate scheduling. Experimental

results demonstrate that the proposed methodology achieves 27% training accel-

eration without sacrificing model accuracy, providing a principled approach to

enhance CNN training efficiency through complexity-aware optimization.

Keywords: Structural Entropy, Convolutional Neural Networks, Training Pro-

cess Analysis, Training Strategy Optimization

1 Introduction

The efficacy of neural network training fundamentally determines the extent to which

a model's architectural potential can be realized. Conventional training methodologies

for convolutional neural networks (CNNs), however, predominantly rely on extrinsic

observational metrics such as loss functions and accuracy rates [1, 2]. While these in-

dicators provide surface-level performance assessments, they fail to elucidate the in-

trinsic characteristics of information processing within neural networks or quantify the

profound impact of structural complexity on model capabilities. This critical limitation

stems from the traditional paradigm's neglect of internal information dynamics during

network evolution.

The Information Bottleneck Theory offers a transformative theoretical framework

by examining neural networks through an information-theoretic lens [3, 4]. Its central

premise posits that deep learning essentially performs hierarchical information com-

pression through multilayer nonlinear transformations, maximizing task-relevant infor-

mation retention while minimizing input redundancy. According to this theory, the con-

tinuous parameter updates during training optimize the network's information compres-

sion capability, inevitably imprinting observable patterns in weight distribution dynam-

ics. Specifically, initial network weights typically follow Gaussian distributions char-

acterized by high entropy and randomness, reflecting an informationally redundant

state prior to effective feature representation establishment. As training progresses,

backpropagation-driven gradient updates progressively restructure weight distributions

into task-specific configurations [5].

Fig. 1. After abstracting the convolutional neural network model into a graph structure, its struc-

tural entropy during the training process is computed.

Structural entropy [6], as an information-theoretic measure of network architecture

complexity, provides a novel metric for quantifying information complexity evolution

during CNN training. This study consequently aims to establish a complexity quantifi-

cation framework for CNN training processes, transcending the limitations of conven-

tional external metrics. By adopting structural entropy as an endogenous measure of

training dynamics, we systematically analyze the mapping relationships between topo-

logical evolution and model performance, ultimately constructing a "monitoring-anal-

ysis-control" optimization paradigm. Our principal contributions include:

(1) Graph structure abstraction-based CNN representation: We develop a weighted

directed graph transformation method for CNN computational graphs, achieving

99.41% structural correlation preservation with original models. This graphical repre-

sentation enables subsequent structural entropy computation, establishing a quantitative

complexity assessment framework for CNN training processes.

(2) Three-phase evolution pattern identification: Through structural entropy moni-

toring of classical CNN architectures, we discover a distinct complexity progression

comprising Adjustment Phase (initial parameter exploration), Convergence Phase

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

Data A

Data B

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

(stable feature formation), and Specialization Phase (task-specific refinement). This

finding provides novel theoretical criteria for training process supervision.

(3) Structural entropy-driven adaptive optimization: By establishing correlations be-

tween entropy dynamics and model performance, we design optimization strategies in-

cluding entropy-aware early stopping criteria and adaptive learning rate adjustment.

Experimental validation demonstrates that our methodology reduces training duration

by 27% while maintaining model fidelity, offering a complexity-aware paradigm for

efficient CNN training.

2 Background Study

2.1 Weight Distribution Dynamics in CNN Training

From the perspective of neural network weight evolution, the parameter updates in sto-

chastic gradient descent (SGD) can be modeled through the stochastic differential equa-

tion (SDE) [7, 8]:

 𝑑𝒘 = −𝜂𝛻𝐿(𝒘)𝑑𝑡 + √2𝜂𝜎2𝑑𝑾𝑡 (1)

where 𝜂 denotes the learning rate, 𝛻𝐿(𝒘) represents the loss function gradient, and the

term √2𝜂𝜎2𝑑𝑾𝑡 quantifies the noise induced by minibatch sampling. The magnitude

of 𝜎 inversely correlates with batch size, where smaller batches yield larger 𝜎 values.

By coupling this with the Fokker-Planck equation (FPE), which governs the temporal

evolution of probability density functions in stochastic systems:

𝜕𝑝(𝒘,𝑡)

𝜕𝑡
= −𝛻 ⋅ [𝝁(𝒘, 𝑡)𝑝(𝒘, 𝑡)] +

1

2
𝛻2[𝐷(𝒘, 𝑡)𝑝(𝒘, 𝑡)] (2)

here, 𝝁(𝒘, 𝑡) corresponds to the drift term (deterministic dynamics), while
𝐷(𝒘, 𝑡) characterizes the diffusion coefficient (stochastic noise intensity). The op-
erators 𝛻 and 𝛻2 denote divergence and Laplacian operations, respectively. Sub-
stituting Eq.2 into the FPE yields:

𝜕𝑝(𝒘,𝑡)

𝜕𝑡
= 𝜂𝛻 ⋅ [𝛻𝐿(𝒘)𝑝(𝒘, 𝑡)] + 𝜂2𝜎2𝛻2𝑝(𝒘, 𝑡) (3)

the first term 𝜂𝛻 ⋅ [𝛻𝐿(𝒘)𝑝(𝒘, 𝑡)] captures gradient-driven drift, where weights mi-

grate along loss function descent directions. The second term 𝜂2𝜎2𝛻2𝑝(𝒘, 𝑡) repre-

sents noise-induced diffusion. During early training stages, weight initialization posi-

tions lie distant from loss minima, resulting in large-magnitude gradients 𝛻𝐿(𝒘) [9].

This causes drift-dominated dynamics, concentrating weight distributions toward re-

gions of lower loss. As training progresses toward convergence, gradient magnitudes

diminish significantly, reducing the drift term to 𝒪(𝜂 ∥ ∇𝐿 ∥ 𝑝), where ∥ ∇𝐿 ∥→ 0.

Concurrently, the diffusion term persists at 𝒪(𝜂2𝜎2 ∥ ∇2𝑝 ∥), establishing a competi-

tive equilibrium between drift and diffusion that drives the system toward steady-state

distributions.

2.2 Structural Entropy

The theoretical foundations of structural entropy trace back to Shannon's seminal 1948

information theory [10], where entropy quantifies uncertainty in discrete random vari-

ables:

 𝐻(𝑋) = −∑  𝑛
𝑖=1 𝑝(𝑥𝑖) 𝑙𝑜𝑔 𝑝(𝑥𝑖) (4)

with 𝑝(𝑥𝑖) denoting the probability of event 𝑥𝑖.
Recent advancements by Li introduced structural entropy as a novel metric for eval-

uating network architecture and dynamical complexity through encoding trees [6]. The

core concept involves capturing the separation between regular patterns and stochastic

noise via high-dimensional encoding, formally defined as the minimal bit requirement

to encode node accessibility during graph random walks. Structural entropy fundamen-

tally characterizes two aspects: K-dimensional structural information (measuring spa-

tial orderliness) and dynamic complexity (quantifying uncertainty in network interac-

tions and evolution).

For general network complexity assessment, one-dimensional structural entropy

evaluates node degree distributions:

 ℋ1(𝐺) = −∑  𝑛
𝑖=1

𝑑𝑖

2𝑚
𝑙𝑜𝑔2

𝑑𝑖

2𝑚
 (5)

where 𝑑𝑖 represents node degree and 𝑚 the total edge count. For weighted graphs, de-

grees can be substituted with node weights for analogous computations.

 When analyzing network partitions (e.g., community structures), two-dimensional

structural entropy minimizes intra-module uncertainty:

 ℋ2(𝐺) = 𝑚𝑖𝑛
𝒫
  (∑  𝐿

𝑗=1

𝑉𝑗

2𝑚
𝐻(𝑝𝑗) − ∑  𝐿

𝑗=1

𝑔𝑗

2𝑚
𝑙𝑜𝑔2

𝑉𝑗

2𝑚
) (6)

where 𝑉𝑗 denotes module volume and 𝑔𝑗 intra-module edge count. This formulation ef-

fectively captures community structures, facilitating community detection algorithms.

Higher-dimensional structural entropy extends this framework to hierarchical net-

works through partition trees:

 ℋ𝐾(𝐺) = 𝑚𝑖𝑛
𝒯
 ∑  𝑎∈𝒯 (−

𝑔𝑎

2𝑚
𝑙𝑜𝑔2

𝑉𝑎

𝑉𝑎−
) (7)

where 𝒯 representing a height-K partition tree. K-dimensional entropy proves particu-

larly effective for analyzing multi-level architectures in biological and molecular net-

works [11].

 Through its multidimensional encoding and minimization principles, structural en-

tropy establishes a unified framework for structural analysis and dynamical modeling

of complex networks. The one-dimensional variant quantifies global structural com-

plexity, the two-dimensional version identifies mesoscopic community organizations,

and higher-dimensional extensions decode hierarchical topologies—applications

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

spanning biological networks, dynamical systems, and network security analyses [10,

11, 12, 13, 14, 15].

3 Approach

Structural entropy, as a metric for quantifying graph structural complexity, necessitates

the abstraction of convolutional neural networks (CNNs) into directed weighted graphs.

The hierarchical architecture of neural networks inherently aligns with directional edge

flows, where weight parameters directly map to edge weights. Sparse adjacency matri-

ces effectively represent localized connectivity patterns. This study therefore estab-

lishes a methodology to transform CNNs into directed weighted graphs for structural

entropy quantification.

3.1 Graph Abstraction of CNNs

Initial weight normalization maps network weights 𝑤𝑖𝑗 ∈ [𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥] to a non-nega-

tive interval [𝜖, 1 + 𝜖]：

 𝑤𝑖𝑗
′ =

𝑤𝑖𝑗−𝑤𝑚𝑖𝑛

𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛
+ 𝜖 (8)

where 𝜖 = 10−6 prevents zero-weight edges.

To mitigate semantic distortion from normalization, we implement entropy

weighting for secondary weight calibration. Given the normalized weight matrix 𝑊′ =
[𝑤𝑖𝑗

′], information entropy is computed as:

 𝐻𝑗 = −
1

𝑙𝑛𝑚
∑  𝑚
𝑖=1 𝑝𝑖𝑗 𝑙𝑛 𝑝𝑖𝑗 (9)

with 𝑝𝑖𝑗 =
𝑤𝑖𝑗
′

∑  𝑚
𝑘=1𝑤𝑘𝑗

′ , where 𝐻𝑗 denotes entropy for the 𝑗-th neuron. Lower entropy indi-

cates higher weight dispersion and information content. Weight correction coefficients

are derived as:

 𝛼𝑗 =
1−𝐻𝑗

∑  𝑛
𝑘=1 (1−𝐻𝑘)

 (10)

where larger 𝛼𝑗 signifies greater neuron influence. Final calibrated weights become:

 𝑤̃𝑖𝑗 = 𝛼𝑗 ⋅ 𝑤𝑖𝑗
′ (11)

This process transforms neurons into nodes, inter-neuron connections into directed

edges, and calibrated weights into edge weights, completing the graph abstraction.

3.2 Structural Entropy Quantification

For directed graphs, one-dimensional structural entropy incorporates in-degree 𝑑𝑣
𝑖𝑛 and

out-degree 𝑑𝑣
𝑜𝑢𝑡 [6]:

 ℋ1(𝐺) ≔ −∑  𝑣∈𝑉
𝑑𝑣
𝑖𝑛

𝑚
𝑙𝑜𝑔2

𝑑𝑣
𝑖𝑛

𝑚
 (12)

we can select the in-degree of all nodes in the same time or select the out-degree of all

nodes in the same time for calculation.

For weighted directed graphs, layer-wise weight normalization ensures hierarchical

consistency. The weights of the first layer have been treated by entropy weight method

in advance.

For layer 𝑙 > 1:

 𝑤̂𝑖𝑗
(𝑙) =

𝑤𝑖𝑗
(𝑙)

∑  𝑗∈𝑁𝑙+1
𝑤
𝑖𝑗
(𝑙) , ∀𝑖 ∈ 𝑁𝑙 , 𝑗 ∈ 𝑁𝑙+1 (13)

where 𝑤𝑖𝑗
(𝑙)

denotes weights from layer 𝑙 to 𝑙 + 1. Cross-layer weights are iteratively

adjusted:

 𝑤̂𝑖𝑘
(𝑙) = 𝑤̂𝑖𝑗

(𝑙−1) ⋅ 𝑤̂𝑗𝑘
(𝑙), ∀𝑖 ∈ 𝑁𝑙−1, 𝑗 ∈ 𝑁𝑙 , 𝑘 ∈ 𝑁𝑙+1 (14)

this yields a weighted directed graph encoding inter-layer interactions. Structural en-

tropy is then computed as:

 ℋ1(𝐺) = −∑  𝑛
𝑖=1

𝑤̂𝑖
(𝑙)

𝑣𝑜𝑙(𝐺)
𝑙𝑜𝑔2

𝑤̂𝑖
(𝑙)

𝑣𝑜𝑙(𝐺)
 (15)

where 𝑤̂𝑖
(𝑙)
= ∑  𝑗 𝑤̂𝑖𝑗

(𝑙)
.

To enhance interpretability, we define the final structural entropy metric as 𝐸(𝐺) =

2ℋ
1(𝐺).

3.3 Phase Identification via Structural Entropy Dynamics

The training process of convolutional neural networks (CNNs) is partitioned into three

distinct phases based on structural entropy evolution:

Adjustment Phase: Rapid structural entropy fluctuations with unstable parameter

updates.

Convergence Phase: Steady structural entropy reduction driven by systematic opti-

mization.

Specialization Phase: Disordered structural entropy resurgence due to task-specific

overfitting.

To establish a quantitative identification framework, we formulate phase transition

criteria as follows.

Adjustment Phase Termination. Let 𝐶(𝑡) ∈ {0,1} denote the convergence detec-

tion function, where 𝐶(𝑡) = 1 indicates convergence criteria satisfaction. The adjust-

ment phase exit condition is defined:

 𝐸exit(𝑡) = {
1 if 𝑡 ≥ 10⏟

Mandatory termination

∨ (𝐶(𝑡) = 1 ∧ 𝑡 < 10)⏟
Early convergence

0 otherwise

 (16)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

where 𝑡 ∈ ℕ+ represents epoch count. Training forcibly exits the adjustment phase

at epoch 10, while early termination occurs if convergence is detected beforehand.

Convergence Phase Termination. The convergence phase exhibits monotonic

structural entropy reduction. We combine Exponentially Weighted Moving Average

(EWMA) [16, 17] and Local Trend Analysis (LTA) for robust identification:

For time-series data 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}:

 {
𝑥̂1 = 𝑥1
𝑥̂𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑥̂𝑡−1𝑡 ≥ 2

 (17)

where 𝛼 ∈ (0,1) controls recent observation weighting.

To mitigate EWMA's inherent response lag and spurious declining trends during

stabilization [18], we implement sliding-window regression:

For time-series 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} with window size 𝑤:

 𝑊𝑡 = {𝑠𝑡−𝑤+1, 𝑠𝑡−𝑤+2, … , 𝑠𝑡} (18)

First-order linear regression on 𝑊𝑡:

 𝑚𝑖𝑛
𝑎,𝑏

 ∑  𝑤
𝑖=1 (𝑦𝑖 − (𝑎 ⋅ 𝑥𝑖 + 𝑏))

2 (19)

where 𝑥𝑖 = 𝑖 (time index), 𝑦𝑖 = 𝑠𝑡−𝑤+𝑖. The slope 𝑎 quantifies local trend intensity or

direction.

When the model exits the convergence phase, it enters the specialization phase.

4 Experiment

4.1 Validation of CNN Graph Abstraction

To validate the graph abstraction method proposed in Section 3.1, we trained a Res-

Net18 model [19, 20] on the CIFAR10 [23] dataset, achieving 94.8% classification ac-

curacy. The original weights were transformed using normalization and entropy

weighting (Section 3.1), generating a modified ResNet18 model. Functional equiva-

lence was tested on a 10,000-image subset.

As shown in Fig. 2, output layer correlations between the original and modified

models ranged from 0.9716 (minimum) to 0.9972 (maximum), with a mean of 0.9958.

Fig. 3 presents representative cases of maximum and minimum correlation scenarios.

Both models exhibit nearly identical confidence distributions in their output layers,

even in the minimal correlation case. Although slight discrepancies exist between the

confidence distributions of the original and modified models in the low-correlation

sample, both architectures consistently produce high confidence scores for category 2

and category 6, ultimately yielding identical classification decisions ("category 2") de-

spite distributional variations. This observation indicates that the modified model

achieves equivalent sensitivity to challenging samples as the original architecture.

These experimental findings demonstrate that our graph structural abstraction method

for convolutional neural networks effectively preserves both the geometric characteris-

tics of intermediate feature spaces and the inherent semantic propagation patterns of the

original network. The successful conversion of CNNs into directed weighted graphs

through this methodology ensures that the calculated structural entropy authentically

reflects the essential properties of the original neural architecture.

Fig. 2. Correlation between the output results of the original model and the new model on the

test set.

Fig. 3. Subplots a and b show the comparison of the highest and lowest correlation outputs, re-

spectively.

4.2 Structural Entropy Dynamics in CNN Training

Training MobileNetV2 [22] and VGG16 [21] on CIFAR10 [23] (200 epochs, baseline

parameters) revealed three-phase structural entropy evolution (Fig. 4):

Adjustment Phase: Short-term entropy fluctuations during initial parameter explora-

tion.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Convergence Phase: Steady entropy reduction driven by systematic optimization.

Specialization Phase: Oscillatory entropy resurgence due to task-specific structural

reorganization.

VGG16 exhibited larger entropy variations due to its densely connected architecture

and high-dimensional parameter space, whereas MobileNetV2’s compact design con-

strained structural evolution. These observations empirically validate the tri-phase the-

ory.

Fig. 4. The left and right figures show the trend of structural entropy change and stage division

of VGG16 model and MobileNetV2 model respectively.

4.3 Training Process Characterization

The convergence detection algorithm (Section 3.3) was tested on MobileNetV2 and

VGG16. Fig. 5 demonstrates robust identification of decreasing entropy trends, even

under non-monotonic reduction. The algorithm reliably detects stabilization or resur-

gence, triggering timely phase transitions from convergence to specialization.

Fig. 5. The left figure and the right figure respectively show the convergence phase judgment

results of VGG16 model and MobileNetV2 model under the convergence period monitoring al-

gorithm.

4.4 Structural Entropy-Guided Initial Hyperparameter Configuration

We conducted experiments using the MobileNetV2 model on the CIFAR10 dataset

with an initial learning rate of 0.005 and a batch size of 128. By controlling variables,

we investigated the evolution of structural entropy under different initial hyperparam-

eter configurations to establish guidelines for hyperparameter tuning.

As shown in Fig. 6 (a), when the batch size was set to 512, the structural entropy

decreased significantly faster than under standard batch sizes, leading the network to

enter a low-entropy state prematurely. An excessively large batch size forces the net-

work to prioritize fitting high-frequency features while neglecting low-frequency se-

mantics, thereby reducing its ability to learn non-salient features and resulting in subop-

timal model performance. Consequently, if structural entropy declines too rapidly and

the network enters a low-entropy state early, the initial batch size should be appropri-

ately reduced.

Fig. 6. The change trend of structural entropy and accuracy (Loss) of MobileNetV2 when the

Batch size is too large (a) or too small (b), and the learning rate is too high (c) or too low (d).

In Fig. 6 (b), with a batch size of 32, the convergence phase of structural entropy

persisted throughout the entire training process. Under small batch sizes, the continuous

decline of structural entropy indicates gradual improvement in the model’s representa-

tional capacity. Even when validation accuracy stabilizes, extending the training dura-

tion may further optimize the model. This contrasts sharply with the rapid entropy re-

duction observed under large batch sizes. Therefore, starting with a larger batch size

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

and adjusting downward upon detecting abnormal structural entropy trends is a rational

strategy.

Fig. 6 (c) illustrates that when the learning rate was set to 0.05 (10× the standard

value), the loss curve appeared normal, but structural entropy oscillated within a narrow

range without effective reduction. An excessively high initial learning rate causes

weight update steps to exceed the smoothness scale of the loss landscape, leading to

parameter oscillations. While the average gradient direction still points toward loss re-

duction, structural entropy—directly reflecting instantaneous layer-wise state

changes—sensitively captures such anomalies, enabling early detection and termina-

tion to adjust the learning rate.

Fig. 6 (d), with an initial learning rate of 0.001 (1/5 of the standard value), structural

entropy rose rapidly from a low baseline and stabilized, while model accuracy con-

verged to a suboptimal level. An overly small learning rate severely restricts parameter

updates, manifesting as an early transition into the specialization phase characterized

by structural entropy rebound and noise feature learning. Once structural entropy sta-

bilizes at a threshold, neuron response patterns reach maximum disorder under current

constraints, resulting in poor model performance. Thus, monitoring abnormal entropy

increases during early training necessitates early stopping and increasing the initial

learning rate.

4.5 Structural Entropy-Monitored Adaptive Learning Rate Scheduling

When the learning rate is too high, structural entropy becomes trapped in low-amplitude

oscillations. We hypothesize that once structural entropy enters a slow-decline or sta-

bilization phase during convergence, reducing the learning rate can prevent premature

specialization. On MobileNetV2, we compared three strategies: (1) exponential decay,

(2) structural entropy-guided adjustment (lowering the rate upon entropy stabilization

or rebound), and (3) a hybrid approach combining early exponential decay with en-

tropy-guided adjustments.

Fig. 7. Figure a, Figure b and Figure c respectively show the change trend of structural entropy,

learning rate and accuracy under the three learning rate regulation strategies used in the training

process of MobileNetV2 model.

As shown in Fig. 7. Figure (a) and (b), the exponential decay strategy caused rapid

early learning rate reduction, leading to slow structural entropy decline and inefficient

feature learning. In contrast, the other two strategies exhibited pronounced entropy re-

duction, highlighting structural entropy’s sensitivity to local parameter dynamics. Fig.

7. Figure (c) compares accuracy across strategies: exponential decay and hybrid strate-

gies achieved faster early accuracy gains, while entropy-guided scheduling surpassed

others in later phases. The hybrid strategy combined both advantages, yielding the high-

est final accuracy.

4.6 Structural Entropy-Driven Optimizer Switching Strategy

We propose an adaptive optimizer switching strategy based on structural entropy evo-

lution [24, 25]. During the adjustment and convergence phases, Adam or AdamW op-

timizers accelerate parameter exploration. Upon entering the specialization phase

(marked by entropy oscillations and flat loss regions), switching to SGD helps escape

local optima.

Fig. 8. Figure a and Figure b respectively show the changes in structural entropy and accuracy

before and after adopting the adaptive switching optimizer strategy.

In experiments on MobileNetV2 trained on CIFAR10 for 150 epochs (fixed random

seed), the control group used AdamW throughout, while the experimental group

switched to SGD upon detecting specialization. As shown in Fig. 8. Figure (a) and (b),

after switching, the experimental group stabilized parameter exploration in new low-

loss regions, with structural entropy rising steadily before stabilizing. Stagnant accu-

racy resumed improvement, achieving a historical best of 90.8% at epoch 100 (vs.

90.03% for the control group). The control group required 149 epochs to reach 90.77%

accuracy, whereas the experimental group achieved equivalent performance by epoch

90—a 40% reduction in training time.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

5 Conclusion

This study investigates the training dynamics of CNNs through the lens of information

complexity by modeling CNN architectures as directed weighted graphs. We employ

structural entropy as a quantitative measure to characterize the phased evolution during

CNN training. Three distinct stages of structural entropy variation are identified

through empirical analysis, leading to the development of a stage discrimination algo-

rithm. Based on real-time monitoring of structural entropy patterns, two adaptive opti-

mization strategies are proposed: 1) an early stopping mechanism for initial hyperpa-

rameter adjustment during the preliminary training phase, and 2) dynamic learning rate

adaptation combined with optimizer switching during sustained training. Experimental

results demonstrate that these entropy-guided strategies effectively enhance model con-

vergence efficiency. Future research directions include extending structural entropy

analysis to other deep neural architectures and investigating its potential implications

for neural network interpretability.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to

the content of this article.

References

1. Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genet Pro-

gram Evolvable Mach 19, 305–307 (2018). https://doi.org/10.1007/s10710-017-9314-z

2. Krizhevsky, A., Sutskever, I., & Hinton, G. E. ImageNet classification with deep convolu-

tional neural networks. Communications of the ACM 60, 84–90 (2012).

3. Tishby, N., & Zaslavsky, N. Deep learning and the information bottleneck principle. In 2015

IEEE Information Theory Workshop (ITW) 1–5 (IEEE, 2015).

4. Saxe, A. M. et al. On the information bottleneck theory of deep learning. Journal of Statis-

tical Mechanics: Theory and Experiment 2019, 124020 (2019).

5. Bianchini, M., & Scarselli, F. On the complexity of neural network classifiers: A comparison

between shallow and deep architectures. IEEE Transactions on Neural Networks and Learn-

ing Systems 25, 1553–1565 (2014).

6. Li, A., & Pan, Y. Structural information and dynamical complexity of networks. IEEE

Transactions on Information Theory 62, 3290–3339 (2016).

7. Welling, M., & Teh, Y. W. Bayesian learning via stochastic gradient Langevin dynamics.

In Proceedings of the 28th International Conference on Machine Learning (ICML) 681–688

(2011).

8. Li, Q., Tai, C., & Weinan, E. Stochastic modified equations and adaptive stochastic gradient

algorithms. In Proceedings of the 32nd International Conference on Machine Learning

(ICML) 1–9 (2015).

9. Mandt, S., Hoffman, M. D., & Blei, D. M. Stochastic gradient descent as approximate

Bayesian inference. Journal of Machine Learning Research 18, 1–35 (2017).

10. Shannon, C. E. A mathematical theory of communication. The Bell System Technical Jour-

nal 27, 623–656 (1948).

11. Li, A. et al. Decoding topologically associating domains with ultra-low resolution Hi-C data

by graph structural entropy. Nature Communications 9, 3265 (2018).

https://doi.org/10.1007/s10710-017-9314-z

12. Wu, J., Chen, X., Xu, K., & Li, S. Structural entropy guided graph hierarchical pooling. In

Proceedings of the 39th International Conference on Machine Learning (ICML) 1–15

(2022).

13. Liu, Y. et al. REM: From structural entropy to community structure deception. In Advances

in Neural Information Processing Systems 32 (NeurIPS) 1–10 (2019).

14. Wu, J. et al. A simple yet effective method for graph classification. In Proceedings of the

31st International Joint Conference on Artificial Intelligence (IJCAI) 1–7 (2022).

15. Zeng, X., Peng, H.-L., & Li, A. Effective and stable role-based multi-agent collaboration by

structural information principles. In Proceedings of the 37th AAAI Conference on Artificial

Intelligence (AAAI) 1–9 (2023).

16. Hunter, J. S. The exponentially weighted moving average. Journal of Quality Technology

18, 203–210 (1986).

17. Lucas, J. M., & Saccucci, M. S. Exponentially weighted moving average control schemes:

Properties and enhancements. Quality Engineering 36, 31–32 (1990).

18. Xie, Y. et al. Local trend analysis method of hydrological time series based on piecewise

linear representation and hypothesis test. Journal of Cleaner Production 380, 134891 (2022).

19. He, K. et al. Deep residual learning for image recognition. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) 770–778 (IEEE, 2016).

20. He, K. et al. Identity mappings in deep residual networks. In Computer Vision – ECCV 2016

630–645 (Springer, 2016).

21. Simonyan, K., & Zisserman, A. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556 (2014).

22. Sandler, M. et al. MobileNetV2: Inverted residuals and linear bottlenecks. In 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 4510–4520

(IEEE, 2018).

23. Krizhevsky, A. Learning multiple layers of features from tiny images. Technical Report

(University of Toronto, 2009).

24. Reddi, S. J., Kale, S., & Kumar, S. On the convergence of Adam and beyond. arXiv preprint

arXiv:1904.09237 (2018).

25. Keskar, N. S., & Socher, R. Improving generalization performance by switching from Adam

to SGD. arXiv preprint arXiv:1712.07628 (2017).

