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Abstract. Next location prediction is critical for personalized recommendations, 

transportation planning, and emergency responses. However, the sparsity of mo-

bility data and the stochastic nature of individuals’ daily activities make accurate 

forecasting still a significant challenge. Existing next location prediction methods 

often rely on discrete location IDs from limited-scale datasets, limiting interpret-

ability and generalization across regions. To address these issues, we propose T-

LENs, a prompt-based framework that combines continuous tile-assisted spatial 

encoding with the interpretive and reasoning capabilities of Large Language 

Models (LLMs). Our proposed tile-assisted encoding integrates seamlessly with 

existing methods and enhances privacy preservation by avoiding exposure of sen-

sitive raw coordinates, while also mitigating noise from ultra-precise geolocation 

data. Furthermore, T-LENs models human mobility by jointly capturing long-

term trends and short-term dependencies through a variable-length window, en-

abling LLMs to identify complex mobility patterns with high accuracy. Our ex-

periments demonstrate that T-LENs significantly outperforms state-of-the-art 

baselines, achieving superior prediction accuracy with a 50% improvement in 

Acc@1 and 8% in nDCG@10, while requiring no dataset-specific training. To 

comprehensively assess the framework’s adaptability, we further evaluate its per-

formance across diverse LLMs, highlighting their potential and limitations in mo-

bility modeling. 

Keywords: Next location prediction, tile encoding, LLMs. 

1 Introduction 

Human mobility, referring to the movement of people within geographic areas such as 

cities, regions, or countries [1,2], has become increasingly available with the rapid de-

velopment of smart city infrastructure and Location-Based Services (LBS) technologies 

[3]. Accurate next location prediction based on human mobility data serves as a signif-

icant foundation for various critical domains [4,5,6]. 

However, next location prediction remains a significant challenge due to the stochas-

ticity and complex spatial-temporal dependencies [7]. To overcome these challenges, 

deep learning methods have emerged [8,9,10], using neural networks to automatically 

extract patterns from raw mobility data. While these methods offer improved accuracy 



and adaptability, their application is still constrained by several factors. One major lim-

itation lies in their reliance on embedding tables based on discrete location IDs to rep-

resent locations, as illustrated in Fig 1.(a). This representation inherently overlooks the 

physical spatial relationships between locations, making it challenging to capture the 

true geographic and contextual connections. Additionally, these methods require exten-

sive training on large-scale mobility datasets to achieve generalization, yet existing da-

tasets are often limited in scale and diversity [2,11-13]. Furthermore, the results pro-

duced by these methods often lack interpretability, hindering their application in real-

world scenarios. 

 

Fig. 1. Comparison of discrete location ID representation and our tile-assisted prediction frame-

work. (a) Traditional methods represent user trajectories with discrete location IDs. (b) Our pro-

posed T-LENs framework leverages tile-assisted spatial encoding for improved next-location 

prediction using LLMs. 

In contrast, pre-trained on vast text, LLMs eliminate the need for dataset-specific 

training. Its prior knowledge enables them to reason about mobility patterns even with 

sparse or limited training data. Through carefully designed prompt strategies, LLMs 

can generate interpretable predictions with their reasoning processes. In this paper, we 

introduce T-LENs, a prompt-based LLMs prediction framework that integrates tile en-

coding instead of discrete location IDs for next location prediction. As shown in Fig. 

1.(b), in spatial-temporal data formatting stage, the raw human mobility data is pro-

cessed to extract relevant spatial-temporal feature. Then, T-LENs utilizes a tile-based 

representation to preserves spatial relationships between different locations. The en-

coded data are passed to the LLM-based predictor to generate accurate Top-k next lo-

cation predictions. Finally, the LLMs provide a detailed response that includes both 

predictions and reasons, enhancing interpretability and reliability.  Specifically, we or-

ganize mobility data into historical stays and context stays, enabling the model to ac-

count for long-term and short-term dependencies in human movements, respectively. 

In summary, our main contributions are as follows. 
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•  We introduce tile-based encoding schemes that not only preserves geographic rela-

tionships between locations but also offers a simple, flexible design that can be 

seamlessly integrated into existing prediction models, overcoming the limitations of 

discrete location ID representations commonly used in existing methods. 

• We propose T-LENs, a prompt-based framework that integrates both spatial and 

temporal features with LLMs for next location prediction. Temporally, we model 

user trajectories as a temporal sequence of stays. Spatially, we incorporate location 

IDs and tile IDs to better capture geographic relationships. 

• We conduct comprehensive experiments to evaluate the performance of our pro-

posed framework, demonstrating its effectiveness in accurate next location predic-

tion. Additionally, we assess the suitability of different LLMs within our framework, 

providing valuable insights into their strengths, limitations, and adaptability for next 

location prediction. 

2 Related Work 

2.1 Human Mobility Prediction 

Next location prediction relies on constructing mathematical models, which can be 

broadly categorized into pattern-based methods, Markov chain-based methods, and 

deep learning-based methods. Early researchers widely employed specific pattern-

based methods for next location prediction, such as sequence patterns, periodic patterns, 

and probabilistic patterns [14,15]. Markov chain-based models, such as the Hidden 

Markov Model (HMM), treat state sequences as latent variables and observation se-

quences as visible variables to estimate trajectory patterns and predict next locations 

[16]. With the increasing prevalence of deep learning, current learning-based methods 

can be broadly subdivided into sequence-based [10,17] and graph-based approaches 

[18,19]. However, while these models perform exceptionally well on specific datasets, 

their generalization capability remains a significant challenge, which can be attributed 

to the lack of spatial information [20,21]. To address the lack of spatial information in 

traditional approaches, Yao et al. [10] combined geographic embedding, multi-layer 

attention, and Bi-LSTM to effectively integrate geographic information into their 

model. Besides, Liu et al. [3] encodes locations using continuous spatial coordinates 

instead of discrete IDs, allowing it to better capture spatial relationships between loca-

tions. However, these approaches often come with significant complexity, such as the 

need for additional embedding layers, attention mechanisms, or normalization steps, 

which may increase computational overhead. 

2.2 Large Language Models 

LLMs have shown great promise in high-fidelity human mobility simulation and 

forecasting [22-26]. Recently, researchers have also begun leveraging powerful lan-

guage understanding and reasoning capabilities for next location prediction [2,3,27]. 



Wang et al. [2] are among the first to explore the use of LLMs for next location predic-

tion. They employ a prompt-based strategy, structuring user mobility data into a format 

suitable for LLMs to predict. Beneduce et al. [27] evaluated the performance of LLMs 

under zero-shot settings, demonstrating their generalization and reasoning capabilities. 

These findings suggest that LLMs have the potential to serve as zero-shot next-location 

predictors. However, both approaches treat discrete location IDs as the prediction tar-

get, which fails to capture geometric relationships between locations. To address this 

limitation, Liu et al. [3] moved away from prompt-based strategies and instead modi-

fied the architecture of pre-trained LLMs to embed the coordinates of the prediction 

points as features. While this approach improves spatial representation, it introduces 

significant complexity and makes integration with prompt-based methods impractical. 

This highlights the need for simpler yet effective solutions to leverage LLMs for spa-

tially aware next location prediction. 

3  Problem Formulation 

Next location prediction is commonly defined as forecasting the next destination an 

individual will visit based on their historical spatial-temporal trajectories [27]. In this 

paper, we model a trajectory as a combination of historical stays and contextual stays, 

where historical stays capture long-term mobility patterns, and contextual stays provide 

recent activity information. 

Definition 1: Trajectory. A spatial-temporal point is represented as a tuple 𝑝 =
(𝑡, 𝑙), where 𝑡 denotes the timestamp, and 𝑙 represents the geographic location id. A 

trajectory 𝑃 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑛} consists of 𝑛 spatial-temporal points arranged in chron-

ological order, reflecting the locations visited by an individual. Each user can have 

multiple trajectories 𝑃1, 𝑃2, ⋯ , 𝑃𝑘, with all points in 𝑃𝑖   preceding those in  𝑃𝑖+1 in time. 

Definition 2: Historical Stays. The trajectory 𝑃 of a user is composed of historical 

stays ℋ and context stays 𝒞. Historical stays represent the long-term mobility patterns 

of the user and are defined as the spatial-temporal points that occur prior to the context 

stays. Formally, historical stays are expressed as: 

ℋ = { ℎ𝑖 ∣∣ ℎ𝑖 ∈ 𝑃𝑘 , ℎ𝑖 ≺ 𝑐1 } (1)

where: 

─ ℎ𝑖 ∈ 𝑃𝑘: ℎ𝑖 is a spatial-temporal point in trajectory 𝑃𝑘. 

─ 𝑐1 = min(𝒞): 𝑐1 represents the earliest point within the context stays. 

─ ℎ𝑖 ≺ 𝑐1: ℎ𝑖 occurs before 𝑐1 in temporal order. 

Definition 3: Context Stays. Context stays represent the user’s short-term mobility 

patterns, consisting of the spatial-temporal points visited immediately prior to the target 

location 𝑝𝑛+1. These stays provide the recent activity context leading up to the predic-

tion. 

Formally, contextual stays are defined as: 

𝒞 = { 𝑐𝑗 ∣∣ 𝑐𝑗 ∈ 𝑃𝑘  and 𝑐𝑗 ≺ 𝑝𝑛+1 }, (2)

where: 
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─  𝑐𝑗 ∈ 𝑃𝑘: 𝑐𝑗 is a spatial-temporal point in the trajectory 𝑃𝑘. 

─  𝑝𝑛+1: the target location being predicted. 

─  𝑐𝑗 ≺ 𝑝𝑛+1: 𝑐𝑗 occurs before 𝑝𝑛+1 in temporal order. 

Task Objective. Next location prediction involves determining the next spatial-tem-

poral point 𝑝𝑛+1 based on an individual's trajectory 𝑃𝑘. The provided data includes: 

─  The current trajectory of an individual  𝑃𝑘 = {𝑝1, 𝑝2, … , 𝑝𝑛}, which contains at least 

two spatial-temporal points. 

─  The historical trajectories of the individual ℒ = {𝑃1, 𝑃2, … , 𝑃𝑘−1}, representing their 

past movement patterns. 

Formally, the goal of next location prediction is to predict 𝑝𝑛+1 ∈ 𝑃𝑘 , by utilizing 

both long-term patterns from historical trajectories and recent contextual information. 

This task can be formalized as a mapping: 

ℳ: (ℋ, 𝒞) → 𝑝𝑛+1, (3)

where: 

─ ℋ: The historical stays, extracted from the earlier parts of 𝑃𝑘 and previous trajecto-

ries {𝑃1, … , 𝑃𝑘−1}, representing long-term mobility trends. 

─ 𝒞: The context stays, composed of the most recent points in 𝑃𝑘 before  𝑝𝑛, reflecting 

short-term movement patterns. 

4 Methodology 

In this section, we present the proposed methodology for next location prediction, 

which incorporates tile-based spatial encoding and spatial-temporal dependencies. As 

illustrated in Fig. 2, the T-LENs framework comprises three key components: the Tile 

Encoding Module, Spatial-Temporal Dependencies modeling, and Spatial-Temporal 

Instruction Prompt. 

4.1 Tile Encoding Module 

Inspired by video encoding and transmission techniques, where video frames are di-

vided into smaller tiles for efficient processing [28,29,30], we adopt a similar approach 

for spatial data representation. By dividing the geographical area into tiles, we aim to 

segment the space into manageable units that facilitate effective encoding and analysis. 

As illustrated in Fig. 2, we propose two different tiling schemes, i.e., Sequential Tiling 

and 2D Tiling, to represent spatial data in a structured manner, preserving both spatial 

relationships and continuity. The division is based on a grid structure, where 𝑅 repre-

sents the total number of rows and 𝐶 represents the total number of columns in the grid. 

Each tile is uniquely identified either by a sequential ID in a row-major order (as in 

Sequential Tiling) or by its 2D coordinates (𝑥, 𝑦), where 𝑥 is the column index and 𝑦 

is the row index (as in 2D Tiling). The values of 𝑅 and 𝐶 are determined by the geo-

graphic extent of the area being studied and the size of each tile. For example, if the 



height and width of the area are 𝐻 and 𝑊, respectively, and each tile covers an area of 

𝑠ℎ × 𝑠𝑤 , then the number of rows and columns can be calculated as: 

𝑅 = ⌈
𝐻

𝑠ℎ

⌉ , 𝐶 = ⌈
𝑊

𝑠𝑤

⌉ , (4) 

where 𝐻 and 𝑊 are the height and width of the study area, and 𝑠ℎ, 𝑠𝑤  is the size of each 

tile. 

This grid-based tiling ensures that both spatial continuity and adjacency relation-

ships are preserved, which are critical for modeling mobility patterns effectively. By 

choosing an appropriate tile size, we ensure a balance between spatial granularity and 

computational efficiency. Furthermore, this method can be seamlessly integrated into 

existing frameworks, making it a versatile and practical approach for enhancing the 

representation of spatial data. 

 

Fig. 2.  Overview of the T-LENs framework: (a) Tile Encoding Module includes sequential 

tiling and 2D tiling to encode spatial information into continuous representations. (b) Spatial-

Temporal Dependencies module models the interactions between tiles, locations, and timestamps 

to capture both short-term and long-term dependencies. (c) Spatial-Temporal Instruction-Tuning 

leverages task-specific prompts and contextual information to guide the LLM space, integrating 

historical and contextual mobility patterns. 

4.2 Spatial-Temporal Dependencies Modeling 

To effectively capture the spatiotemporal dynamics of human mobility, we model each 

stay as a tuple 𝑆 = (𝑠𝑡, 𝑑𝑜𝑤, 𝑑𝑢𝑟, 𝑝𝑖𝑑, 𝑡𝑖𝑑), where 𝑠𝑡 represents the start time of the 

stay, 𝑑𝑜𝑤 denotes the day of the week, 𝑑𝑢𝑟 indicates the duration of the stay, 𝑝𝑖𝑑 is 

the unique identifier of the place where the stay occurred and 𝑡𝑖𝑑 represents its tile id.  

The inclusion of temporal features such as 𝑠𝑡, 𝑑𝑜𝑤, and 𝑑𝑢𝑟 allows LLMs to capture 

users' time-dependent movement patterns, such as daily routines, weekly trends, and 

the duration of activities at specific locations. The spatial information, encoded through 

𝑝𝑖𝑑 and 𝑡𝑖𝑑, adds critical geographic context to the model. 𝑝𝑖𝑑 uniquely identifies spe-

cific places, enabling the model to recognize frequently visited or significant locations, 

while 𝑡𝑖𝑑 captures the broader spatial region or tile where the stay occurred, preserving 

geographic relationships between locations. 

As illustrated in Fig. 3, the timeline represents the user's mobility history, divided 

into historical stays (𝑀) and context stays (𝑁). The task is to predict the next location 
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(𝑝𝑖𝑑𝑛+1) that a user will visit, based on a sequence of their previous stays, denoted as 

𝕊 = (𝑆𝑛−𝑄+1, ⋯ , 𝑆𝑛). Therefore, Equation 3 can be rewritten as a mapping: 

ℳ: 𝕊 → 𝑝𝑖𝑑𝑛+1. (5) 

 

Fig. 3. Illustration of data organization into historical stays and context stays for next location 

prediction. 

4.3 Spatial-Temporal Instruction Prompt 

To effectively leverage LLMs for next location prediction, the proposed prompt design 

uniquely integrates structured spatial and temporal information. Drawing inspiration 

from established prompting strategies such as Chain-of-Thought (CoT) and Plan-and-

Solve (PS), the proposed prompt incorporates rich contextual information, such as com-

prehensive descriptions of input data, to guide LLMs in understanding and reasoning 

about human mobility patterns [2]. As shown in Fig.4, the prompt is designed with clear 

instructions and detailed descriptions of the data format to ensure LLMs can compre-

hend and reason effectively. 

The first distinguishing feature of this prompt design is the inclusion of tile-based 

spatial encoding in the data description. By introducing the concept of  𝑡𝑖𝑙𝑒_𝑖𝑑, which 

represents the unique ID of a rectangular tile in the geographical area, the prompt pre-

serves spatial relationships while maintaining simplicity. Second, the prompt explicitly 

emphasizes context-aware reasoning by guiding the model to analyze both historical 

and contextual stays. It instructs the LLM to focus on recurring patterns in historical 

data  < ℎ𝑖𝑠𝑡𝑜𝑟𝑦 >, spatial transitions between nearby tiles, and recent activities in the 

contextual data  < 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 >. This explicit mention of spatial tiles and their temporal 

associations ensures the model considers both fine-grained spatial patterns and broader 

temporal trends. Third, it explicitly instructs the model to generate the Top-k most prob-

able next locations, ranked by probability, and justifies each prediction with a concise 

explanation. This explanation step not only enhances interpretability but also aligns 

with the reasoning generation strategy of Plan-and-Solve prompting. The explicit in-

structions to analyze patterns and justify predictions make the outputs more reliable and 

actionable. By integrating instructions, structured data, and contextual information, the 

proposed prompt makes it feasible for complex spatiotemporal tasks. 



 

Fig. 4. The prompt instruction used in our study. The red text emphasizes the corresponding 

prompt design about the tile. 

5 Experiments 

5.1  Experiment Implementation 

All experiments are conducted on a server equipped with two NVIDIA RTX 4090 

GPUs (24GB VRAM each) and an Intel Xeon W-2295 CPU. We implement T-LENs 

using Python 3.9 for LLMs inference. 

The dataset used in this study is sourced from the Microsoft Research Asia Geolife 

project [31], which collected GPS trajectory data from 182 users over a span of more 
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than three years (from April 2007 to August 2012). The dataset includes 17,621 trajec-

tories, covering a total distance of approximately 1.2 million kilometers with a total 

duration of 50,176 hours. 

In this work, we preprocess the raw GPS data to generate stay points and correspond-

ing locations for next location prediction tasks. A stay point is defined as a location 

where a user remains stationary for at least 30 minutes within a 200-meter radius. These 

stay points are then clustered using DBSCAN to assign unique location IDs. Addition-

ally, temporal features (e.g., start time, duration, day of the week) and spatial features 

(e.g., location ID, and tile-based representations) are extracted for modeling. This struc-

tured representation allows the model to capture both spatial and temporal dynamics, 

enabling accurate next location predictions. 

5.2 Experiment Results 

Prediction Performance.  

Some baseline results are cited from previous studies [2] and their origin papers, 

providing a comprehensive understanding of the model performances under varying 

conditions. 

The results presented in Table 1 demonstrate the performance comparison of various 

models on the Geolife dataset using multiple metrics. Our proposed T-LENs framework 

significantly outperforms existing baselines in terms of accuracy and ranking-based 

metrics. 

Accuracy Improvements. The most notable improvement is observed in the 

Acc@1 metric, where sequential tiling (wot: 49.6%, wt: 55.6%) and 2D tiling (wot: 

49.6%, wt: 53.7%) both exhibit significant gains compared to the best learning-based 

baseline (MHSA, 31.4%). This improvement can be attributed to the tile-based encod-

ing, which captures spatial relationships more effectively than traditional location ID-

based approaches. Specifically, by encoding locations based on their spatial relation-

ships, the model can better understand and predict frequently visited or adjacent loca-

tions, especially for top-ranked predictions. 

 Weighted F1 and nDCG@10 Enhancements. The T-LENs framework also excels 

in ranking-based metrics like weighted F1 and nDCG@10, which consider not only the 

correctness of predictions but also their order of relevance. Sequential tiling achieves a 

weighted F1 score of 0.473 and nDCG@10 of 0.659, while 2D tiling achieves 0.458 

and 0.656, respectively. These improvements reflect that the inclusion of tiling schemes 

helps in preserving the geographic proximity and contextual patterns, enabling better 

ranking of plausible next locations. 

 Impact of Target Time Information. Another factor contributing to the perfor-

mance gains is the incorporation of target time (wt) information. For both tiling meth-

ods, adding time-aware features leads to consistent improvements across all metrics. 

This indicates that incorporating temporal patterns, such as time of day or day of the 

week, helps the model better align its predictions with user mobility behaviors. 

 Overall Insight. While both tiling methods show significant improvements over 

baselines, sequential tiling generally performs slightly better in terms of Weighted F1 



and nDCG@10. This might be due to its simpler representation, which could better 

align with the spatial encoding capabilities of the LLMs. However, 2D tiling shows 

comparable performance, offering an alternative that preserves inherent two-dimen-

sional spatial relationships, which can be advantageous for datasets with more irregular 

spatial distributions. Overall, the T-LENs framework demonstrates the improvements 

in accuracy and ranking-based metrics. The results also highlight the adaptability of the 

framework with different tiling schemes, making it a robust solution for next-location 

prediction tasks. 

Table 1. Performance comparison of various models on Geolife datasets using multiple metrics 

(All metrics are better with higher value). Sequential tiling in the red column and 2D tiling in 

the blue column. wt and wot represent with and without target time information, respectively. 

Dataset Metric LSTM[32] 
LSTM-

SA[33] 

Deep-

Move[34] 

Mob-

Tcast[35] 

Geolife 

Acc@1(%) 28.4 29.8 26.1 29.5 

Acc@5(%) 55.8 54.6 54.2 51.3 

Acc@10(%) 59.1 58.2 58.7 56.2 

Weighted F1 0.193 0.213 0.189 0.173 

nDCG@10 0.447 0.450 0.426 0.434 

 

Contin-

ued 

MHSA

[36] 

LLM-

Mob[2] 

LLM-

ZS[27] 

T-LENS (k=10) 

wot wt wot wt 

 

31.4 35.8 44.8 49.6 55.6 49.6 53.7 

56.4 68.7 65.5 71.5 73.7 73.0 72.6 

60.8 72.1 70.7 58.7 75.2 75.5 75.5 

0.218 0.344 0.403 0.428 0.473 0.388 0.458 

0.465 0.607 0.585 0.636 0.659 0.613 0.656 

 

Case Study 

A concise case analysis is presented in Table 2, where the ground truth next location 

is place_id 13. Notably, LLM-Mob places location 13 in the third position of its pre-

diction list, whereas both T-LENs (Sequential) and T-LENs (2D) identify location 13 

as the top candidate. This difference in ranking is particularly significant for metrics 

such as Acc@1 and nDCG@10, both of which reward higher placement of correct pre-

dictions. 

In LLM-Mob prediction, it emphasizes the user’s weekend activities at place IDs 54 

and 55, noting that place ID 13 is also frequently visited. However, the model ranks 13 

only third, implying that while LLM-Mob does recognize 13’s relevance, it deems 54 

and 55 slightly more probable based on recent or temporal patterns alone. In our se-

quential tiling prediction, it attributes the higher rank of 13. By leveraging a sequential 

tiling scheme, T-LENs (Sequential) more precisely captures the user’s preference for 

13 and its surrounding locations (e.g., tile_id 794), leading it to promote 13 to the top 

of the list. T-LENs (2D tiling) highlights spatial proximity, referencing tiles near 
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(16,13) and (13,18) that surround place ID 13. The 2D tiling preserves geographic co-

ordinates, enabling the model to recognize 13’s strong association with these closely 

situated points, further reinforcing 13 as the most likely next location. Consequently, 

T-LENs demonstrates both stronger predictive accuracy and better alignment with the 

user’s actual movement patterns. 

 Impact Analysis of Parameter Settings and Model Variants.  

To analyze the impact of different parameter settings for 𝑀 (number of historical 

stays) and 𝑁 (number of context stays) on the model's performance, we observe the 

trends in Table 3 across various evaluation metrics. The results highlight an interesting 

trade-off between these two parameters. 

Table 2. Performance Evaluation Under Different M and N Setups 

 Varying M with N=5 Varying N with M=40 

 40 30 20 20 5 10 20 30 

Acc@1(%) 55.6 53.3 54.9 45.5 55.6 54.9 54.8 54.4 

Acc@5(%) 73.7 72.5 73.4 70.4 73.7 73.3 71.8 72.6 

Acc@10(%) 75.2 75.5 77.5 75.1 75.2 77.0 77.4 78.8 

F1 0.473 0.467 0.488 0.410 0.473 0.481 0.473 0.469 

nDCG@10 0.659 0.651 0.666 0.611 0.659 0.668 0.664 0.670 

 

When the historical context 𝑀 is large, such as at 𝑀 = 40, the model achieves the 

highest Acc@1 of 55.6%, indicating that incorporating a larger amount of historical 

data is beneficial for predicting the most likely next location. However, as 𝑀 decreases, 

the Acc@1 metric experiences a slight decline, which may be due to the loss of critical 

long-term mobility patterns that are essential for making accurate predictions based on 

past behavior. On the other hand, as the context size 𝑁 increases, we observe improve-

ments in metrics like Acc@10 and Weighted F1, with Acc@10 reaching its peak at 

78.8% and Weighted F1 improving to 0.481. This suggests that a broader context of 

recent stays enhances the model's ability to rank the next most probable locations ef-

fectively. While this improvement comes at the expense of a slight reduction in Acc@1, 

it enhances the model’s ability to consider a broader set of potential future locations, 

resulting in a higher cumulative prediction performance. 

The nDCG@10 metric remains relatively stable across different values of 𝑀 and 𝑁, 

showing that the quality of the rankings is consistently high, regardless of the length of 

historical or contextual stays. This stability suggests that the model is effective in pri-

oritizing the most relevant locations for the next visit, even with varying historical and 

contextual input. 

Besides, the results from different LLMs, including GPT-4o [37], Moonshot [38], 

Qianfan [39], and Doubao [40], are shown in Fig. 5. These models demonstrate varying 

levels of performance across key metrics, reflecting differences in their ability to cap-

ture spatial-temporal dependencies and make accurate next-location predictions. GPT-

4o achieves the highest scores across most metrics. Its high nDCG@10 indicates that it 

ranks relevant predictions closer to the top more consistently than other models. Moon-

shot excels in Acc@5 (0.728) and maintains competitive scores in Acc@10 (0.741).  



Table 3. Case study using user 1 test example. Sequential means using sequential tiling scheme, 

while 2D represents the 2D tiling scheme. 

Case Study: Test Sample of User 1 

Ground 

Truth 
13  

Target 

Time 
(15:13, Friday)  

LLM-Mob 

Prediction [54, 55, 13, 60, 9, 48, 49, 50, 61, 35]  

Reason Place IDs 54 and 55 were visited on Friday, indicating a 

preference for these locations. Additionally, the user has 

a strong pattern of visiting place ID 13, especially on 

Fridays around the same time (11:39 AM and 09:24 

AM). The context shows recent visits to place ID 13, re-

inforcing its likelihood. The time of the target stay (1:19 

PM) suggests a continuation of Saturday activities, mak-

ing these places the most probable choices. 

LLM-ZS 

Prediction [54, 55, 53, 13, 9, 48, 49, 50, 59, 60]  

Reason The prediction is based on the user’s historical stays, 

which show a strong preference for certain places on Fri-

days, particularly around midday. The context stays also 

indicate recent activity patterns that align with these 

preferences. The temporal details of the target stay (Fri-

day afternoon) suggest that the user is likely to visit 

places they have frequented before on this day. 

T-LENs 

(Seq) 

Prediction [13, 794, 492, 828, 61, 35, 9, 47, 48, 49] 

Reason The user has a strong pattern of visiting place_id 13, par-

ticularly on weekends and Mondays, indicating it is a 

frequent destination. The recent context shows contin-

ued activity at place_id 13, reinforcing its likelihood as 

the next location. Additionally, place_id 794 has been 

visited multiple times, especially on weekends, suggest-

ing it is a significant location for the user. Nearby places 

such as 492 and 828 have also been visited recently, in-

dicating potential transitions. The user has shown a ten-

dency to return to familiar places, especially those asso-

ciated with tile_id 794, which is a central tile in their his-

tory. The prediction considers both the historical fre-

quency and recent context, leading to a strong likelihood 

of returning to these places. 

T-LENs 

(2D) 

Prediction [13, 23, 12, 60, 61, 35, 54, 55, 48, 49] 

Reason The user has a strong pattern of visiting place_id 13, par-

ticularly on Tuesdays and Wednesdays, with multiple 
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long stays. The recent context also shows continued ac-

tivity at place_id 13, indicating a high likelihood of re-

turning there. Additionally, the user frequently visits 

nearby places such as 12 and 23, which are spatially 

close to 13. The user has also shown activity in nearby 

tiles, particularly around (16, 13) and (13, 18), which 

suggests that places in close proximity to these coordi-

nates may also be relevant. Other places like 60 and 61 

have been visited recently, but less frequently, making 

them less likely compared to the top candidates. 

However, its Acc@1 (0.490) and Weighted F1 (0.390) are lower than GPT-4o. 

Moonshot and Doubao are better at broader predictions (e.g., Acc@5, Acc@10), while 

GPT-4o excels in precise top-1 predictions. Qianfan exhibits the weakest performance 

across all metrics. The model seems to struggle with both capturing historical depend-

encies and effectively utilizing contextual information, leading to poor ranking and pre-

cision. 

 

Fig. 5. Comparison of performance metrics across different LLMs for next location 

prediction. 



6 Conclusion 

In this paper, we introduced T-LENs, a framework that integrates tile-based spatial 

encoding with LLMs to advance next-location prediction. By leveraging either sequen-

tial or 2D tiling schemes, T-LENs efficiently captured the nuanced spatial relationships 

among locations and aligns them with temporal dynamics. Experimental results on 

Geolife dataset demonstrated that T-LENs outperforms established baselines, particu-

larly in terms of ranking-based metrics such as nDCG@10 and Acc@1, thereby under-

lining the effectiveness of tile-based spatial encoding in enhancing predictive accuracy. 

Moreover, T-LENs provided interpretable insights into its predictions, as illustrated by 

the case study where it successfully identified the correct next location and offered clear 

justifications. These findings highlighted the potential of combining LLMs with tile-

based spatial representations to address the complexities of human mobility data. 

Disclosure of Interests. The authors have no competing interests to declare that are relevant to 

the content of this article. 
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