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Abstract. Target Speaker Extraction (TSE) based on visual cues has been widely 

adopted and further extended to Audio-Visual Multi-Speaker Speech Separation 

(AV-MSS) through either simultaneous multi-speaker processing or recursive 

approaches. However, in real-world scenarios, obtaining complete visual infor-

mation for all speakers is often impractical due to data collection constraints. Ex-

isting methods mostly use basic self-attention mechanisms to model correlations 

between separated speech streams to mitigate missing visual cues. Nevertheless, 

these approaches overlook the critical distinction between speech signals with 

auxiliary visual information and those without, resulting in performance degra-

dation when modalities are incomplete. To address this, we propose a novel Cross 

Differential Attention (CDA) mechanism that performs cross-modal differentia-

tion, effectively highlighting the salient disparities be-tween modalities. This de-

sign enables the model to adaptively emphasize in-formative, modality-specific 

features, thereby significantly improving robust-ness and effectiveness in both 

complete and missing-visual scenarios. Extensive experiments validate our 

method’s superiority, demonstrating state-of-the-art performance on both two-

speaker and three-speaker mixture tasks. 

Keywords: Speech Separation, Audio-Visual, Cross Differential Attention, 

Multi-Speaker Scenarios. 

1 Introduction 

The cocktail party problem[1-3], characterized by overlapping speech from multiple 

speakers in noisy environments, remains a key challenge in speech separation research. 

In monaural scenarios, multi-modal techniques particularly those integrating visual 

cues[4, 5], had been introduced to enhance separation performance. One notable ap-

proach is Audio-Visual Target Speaker Extraction (AV-TSE)[6], which uses visual in-

formation to extract the speech of a single target speaker. Building upon AV-TSE, AV-

MSS[7] extends the capability to scenarios involving multiple speakers. By leveraging 

multiple visual cues, AV-MSS achieves ordered separations, aligning each separated 

speech signal with its corresponding visual input. Additionally, AV-MSS incorporates 



 

 

further processing on initially separated signals, effectively enhancing the quality of 

separation and mitigating the impact of noise and interference in complex multi-speaker 

environments. 

 

Fig. 1. Diagram of our overall AV-MSS framework under the missing visual cue condition. 

This figure depicts the 3-mix scenario with two available visual cues. 

The integration of multi-modal inputs and post-processing has firmly established 

AV-MSS as a powerful solution for addressing the complexities of real-world speech 

separation scenarios. However, practical applications continue to face significant chal-

lenges, particularly when visual information is incomplete or entirely unavailable due 

to data acquisition constraints. Factors such as a speaker moving off-screen or the cam-

era being turned off in real-world scenarios can result in missing video information[8–

11], further complicating the task. 

To mitigate this issue, some AV-MSS methods employ self-attention mechanisms 

across separated speech signals from different speakers [7, 12], focusing on the corre-

lations between them. While these approaches have shown some effectiveness, their 

reliance on correlations alone has a limited impact. Recent research [13] highlights that 

the differences between speech signals also carry valuable information, which is often 

overlooked. This is particularly true in scenarios characterized by an imbalance be-

tween audio and visual signals, where leveraging these differences is more appropriate. 

Current Differential Transformer [14] used Differential Attention (DA) which intro-

duces differential operations into the attention mechanism to enhance modeling diver-

sity. However, they only perform self-differentiation on a single input and assume uni-

formly distributed noise—so-called "common-mode signals"—during the attention dif-

ferential process. This assumption does not hold for AV-MSS tasks, where multiple 

initially separated speech signals are processed in parallel, rendering the single-input 

paradigm inapplicable. 

To alleviate these deficiencies, we propose the Cross Differential Attention (CDA) 

mechanism, which performs cross-modal differentiation by effectively highlighting the 

salient disparities between modalities. This allows the model to enhance its perfor-

mance and robustness under both complete and missing-visual scenarios. Based on this 

mechanism, we further develop the Cross Differential Attention-based Audio-Visual 

Speech Separation network (CDSS) to address the challenges of multi-speaker 

mi ture audio
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separation with incomplete visual information. CDSS introduces three novel modules 

designed to fully leverage the differences between speech signals: the Audio-Visual 

Cross-Interaction Module (AVC), the Audio-Visual Cross Differential Attention Mod-

ule (AV-CDA), and the Audio-Visual Recovery Module (AVR). 

The AVC module, inspired by previous networks [15], handles the initial audio sep-

aration process. The AV-CDA module, incorporating the proposed Cross Differential 

Attention (CDA) mechanism, serves as the core of the model, explicitly capturing the 

differences between speech signals with or without visual cue to enhance separation 

performance. Although our CDA mechanism employs subtraction for differences, sim-

ilar to prior work [13,14,16], it is important to emphasize that our approach is the first 

to handle multiple inputs for attention, with a computation pipeline that differs in detail 

from those of previous studies. Additionally, we have carefully designed two sets of 

linear modules for different purposes, which is validated through our outlier test. These 

distinctions are key contributions of our model. 

Furthermore, in preliminary experiments involving training on datasets with missing 

visual information, we observed an unintended behavior of the AV-CDA module: while 

it effectively enhanced the audio corresponding to regions without visual cues, it occa-

sionally degraded the separation quality in regions where visual information was avail-

able. This suggests that the model may implicitly average representations across mo-

dalities—leveraging information from video-aligned speech to compensate for missing 

parts—thereby compromising the fidelity of well-aligned segments. However, this loss 

can be partially mitigated by incorporating additional visual signals, upon which the 

separation performance in visually missing regions can be further enhanced. To this 

end, we propose the Audio-Visual Recovery (AVR) module, which comprises two 

components: the Video Recovery module for reconstructing video-aligned speech, and 

the Audio Recovery module for enhancing audio-only segments. Together, these com-

ponents promote a more balanced and robust performance, particularly in scenarios 

with incomplete multimodal data. 

Following the data selection and preprocessing protocols established in previous 

work [17], we trained the CDSS model on the VoxCeleb2 [18] dataset. For evaluation, 

we adopted the same protocol and tested the model on VoxCeleb2, as well as two ad-

ditional datasets: LRS3-TED [19] and TCD-TIMIT [20]. Our experiments cover both 

2-mix and 3-mix scenarios, conducted under both with and without visual cue condi-

tions. The flow for the without visual cue condition is illustrated in Fig 1. In all scenar-

ios, our model achieves state-of-the-art performance, surpassing existing methods. 

Ultimately, we highlight the contributions of this work as follows: 

• We propose the CDA mechanism, which utilizes the differences between 

speech signals to address the challenge of missing visual cues, achieving a 

significant improvement in conditions without visual information. Unlike tra-

ditional differential attention mechanisms that perform self-differentiation on 

a single input during attention computation, our CDA mechanism exploits 

cross-modal differences between multiple signals. It is specifically designed 

for the AV-MSS task, and extensive outlier experiments further demonstrate 

the effectiveness of our approach. 



 

 

• We introduce the Video Recovery module for recovering the video-aligned 

portion and the Audio Recovery module for enhancing the portion of the 

speech signal without visual cue, working together to improve the overall sep-

aration quality and further enhance the model’s performance. 

• We evaluate our model across three datasets (VoxCeleb2, LRS3-TED, and 

TCD-TIMIT) in both 2-mix and 3-mix settings, achieving state-of-the-art per-

formance in all conditions, including those without visual cues, validating its 

effectiveness in diverse settings. 

2 Related Work 

Our investigation specifically targets monaural speech separation, intentionally exclud-

ing comparative evaluations with multi-channel methods. While leveraging inter-signal 

discrepancies to enhance separation performance is a well-established principle, recent 

studies have primarily focused on applying this concept to general speech separation 

tasks. 

Our main contribution is the introduction of a novel dual-path attention architecture 

that uniquely exploits the cross-modal discrepancy between audio-visual signals and 

audio-only signals within the AV-MSS context. This represents the first systematic im-

plementation of such a mechanism in AV-MSS, demonstrating superior performance 

through dedicated parallel processing modules specifically designed to this setting. Ad-

ditionally, we conducted supplementary outlier experiments to validate that our mod-

ules align with the intended design, further confirming the effectiveness of our ap-

proach. 

2.1 Audio-only Speech Separation 

In social activity scenarios, auditory environments are often characterized by com-

ple  mi tures of multiple speakers’ voices, along with reverberation and background 

noise [21,22]. MSS and TSE are widely adopted to address these challenges. MSS, aims 

to estimate the individual speech sources of each speaker directly from the mixture 

signal [23–26]. However, it struggles with accurately associating separated speech with 

the corresponding speakers [27]. Inspired by human auditory perception [28], TSE em-

ulates selective auditory attention by treating the person of interest as the target speaker. 

In audio-only speech separation, TSE utilizes the enrolled speech [29, 30] of the target 

speaker as a reference, eliminating the need for prior knowledge of the total number of 

speakers. By leveraging this reference, the neural network can effectively extract the 

target speaker’s voice from the mi ture while mitigating the limitations of blind source 

separation. 

2.2 Audio-Visual Speech Separation 

In Audio-Visual Speech Separation (AVSS), both AV-TSE and AV-MSS utilize vis-

ual information, such as lip movement [17, 31] and facial features [6], to enhance 
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separation performance. Building on advancements in audio-only speech separation, 

several studies have extended these methods to AVSS[15, 32], with some introducing 

novel architectures[13, 17]. These approaches typically fuse audio and visual features 

using techniques such as cross-attention[15] or concatenation[13, 17, 32], followed by 

deeper processing to improve performance. As discussed earlier, AV-MSS expands on 

AV-TSE by enabling simultaneous multi-speaker processing[17, 32] or recursive strat-

egies[33], often incorporating refinement within a unified framework[12] or a two-

stage process[7, 34]. However, in real-world scenarios, challenges such as speakers 

moving off-screen or cameras being turned off can result in missing visual information 

[8–11], where existing methods exhibit suboptimal performance. Moreover, research 

addressing cases with completely absent visual cues remains scarce, despite its critical 

importance for practical applications. This gap underscores a significant opportunity 

for future research and innovation. 

2.3 Signal Exclusivity 

Numerous studies have investigated the concept of exclusivity between signals as a 

strategy to enhance performance in tasks such as denoising, extraction, and separation 

across various domains. In Natural Language Processing (NLP), differential trans-

former [14] architectures utilize differential attention to harness exclusivity in attention 

signals, effectively reducing attention noise. In computer vision (CV), reverse attention 

techniques have been successfully employed in applications such as object detection 

[16] and polyp segmentation [35]. Similarly, in the speech domain, the principle of 

exclusivity between noise and target speech has been leveraged for tasks including 

speech enhancement [36], recognition [37], and TSE [13]. However, the application of 

exclusivity to MSS remains largely underexplored, particularly under conditions where 

visual cues are absent. This gap highlights a promising direction for future research. 

2.4 Differential Attention 

The Differential Transformer [14], introduced Differential Attention (DA), signifi-

cantly enhancing modeling diversity and achieving success in tasks such as long-con-

text modeling, key information retrieval, hallucination mitigation, in-context learning, 

and reduction of activation outliers. These achievements demonstrate the effectiveness 

of differential attention. However, our work builds upon and extends this framework, 

specifically in the context of Audio-Visual Multi-Speaker Speech Separation (AV-

MSS). Our primary innovation lies in refining the differential attention mechanism 

within AV-MSS, enabling more efficient attention design, especially in scenarios with 

missing visual information, where our method outperforms existing approaches. 

The key differences between our approach and DA are as follows. First, while DA 

handles only a single input at a time, it first applies linear projections to the input signal 

𝐴, obtaining 𝐴1 and 𝐴2. It then computes output 𝐴′ only considering the self-difference 

within a single signal: 

𝐴′ = DA(𝐴1 − 𝐴2) (1) 



 

 

In contrast, our method processes multiple speech signals in parallel. For instance, 

when given two input signals 𝐴 and 𝐵, we calculate the output accounting for the dif-

ferences between the signals in both directions: 

𝐴′, 𝐵′ = CDA(𝐴 − 𝐵, 𝐵 − 𝐴) (2) 

This allows our model to better handle the complex relationships between multiple 

signals, especially in multi-speaker scenarios like AV-MSS, where signals from differ-

ent sources need to be separated effectively. 

Second, we do not rely on predefined assumptions about signal differences. Instead, 

we use two distinct linear projectors to independently learn the representations of 

speech signals with and without visual cues, effectively modeling the discrepancies and 

enhancing separation performance, particularly when visual cues are missing. In con-

trast, DA assumes uniformly distributed noise ("common-mode signals") and performs 

self-differentiation based on this assumption, which is not suitable for AV-MSS. 

In summary, while DA excels in attention for single signals, our approach adapts 

and improves this mechanism for AV-MSS, processing multiple separated speech sig-

nals simultaneously and handling missing visual cues more effectively, resulting in sig-

nificant performance improvements. 

3 Methodology 

Building upon the paradigm of time-domain speech separation models, we propose 

CDSS, which integrates an audio encoder, a visual encoder, an audio decoder, and a 

separator. The architecture of the proposed model is illustrated in Figure 2. For clarity, 

we initially focus on a 3-speaker mixture scenario with two visual cues as input, where 

the model’s output consists of the predicted audio signals for each individual speaker. 

It is important to note that our model is designed to handle a variety of scenarios, in-

cluding both complete and incomplete data, as well as 2-mix and 3-mix situations. 

While each of these scenarios has slight differences in the corresponding formulas, the 

underlying paradigm remains consistent. The 3-speaker mixture scenario is chosen as 

an illustrative example because it is the most complex case, and we believe it offers a 

clearer understanding of our model’s process for the reader. 
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Fig. 2. Diagram of the overall CDSS structure consists of six components: the Visual Encoder, 

Audio Encoder, Chunk, Separator, OverlapAdd, and Audio Decoder.  

3.1 Audio Encoder 

The audio encoder extracts the features 𝐴𝑚 from the speech mixture sequence 𝑥 ∈ ℝ𝑇𝑥 

using the 1D convolution operation with a kernel size 𝐿 and stride 𝐿/2: 

𝐴𝑚 = Conv1D (𝑥, 𝐿,
𝐿

2
) ∈ ℝ𝐷×𝑇𝑎 (3) 

where 𝑇𝑎 = ⌈2 × 𝑇𝑥/𝐿⌉ with proper zero padding and 𝐷 is the audio feature dimen-

sion. 

For the 2D audio feature 𝐴𝑚, Chunk operation divides 𝐴𝑚 into chunks of length 

𝐾 with a hop size of 𝐾/2. These chunks are then concatenated and repeated to form a 

reshaped 4D audio chunked feature: 

𝐴̃𝑚 = Chunk(𝐴𝑚) ∈ ℝ𝑀×𝐷×𝐾×𝑆 (4) 

where 𝑀 is the number of the speakers in the mixture and 𝑆 is the number of chunks, 

which is specifically designed to match the length of the visual feature. 

3.2 Visual Encoder 

We build upon prior research in audio-visual speech separation that employs a pre-

trained, frozen lip embedding extractor. This extractor consists of a 3D convolution 

layer, an 18-layer ResNet, and multi-layer TCN networks. Specifically, the Visual En-

coder takes in a gray-scale image sequence 𝑣𝑛 as input and outputs a visual feature 𝑉𝑛 ∈
ℝ𝑁×𝐷×𝑆, where 𝑁 represents the number of visual cues, 𝐷 denotes the visual feature 

dimension, and 𝑆 indicates the length of the visual feature. 
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3.3 Separator 

As shown in Figure 2, the separator comprises three key modules: the Audio-Visual 

Cross-Interaction Module (AVC), the Audio-Visual Cross Differential Attention Mod-

ule (AV-CDA), and the Audio-Visual Recovery Module (AVR). For clarity, unless 

otherwise specified, in the following sections, 𝑚, 𝑛, 𝑑, 𝑘, and 𝑠 represent positive in-

tegers, constrained by 𝑚 ≤ 𝑀, 𝑛 ≤ 𝑁, 𝑑 ≤ 𝐷, 𝑘 ≤ 𝐾, and 𝑠 ≤ 𝑆, where 𝑀, 𝑁, 𝐷, 𝐾, 

and 𝑆 are previously defined. 

Audio-Visual Cross-Interaction Module (AVC). The AVC builds on a previous 

model that integrates audio and visual features through three transformer blocks: In-

traTransformer, CrossTransformer, and InterTransformer. The IntraTransformer and 

InterTransformer use self-attention, while the CrossTransformer applies cross-atten-

tion. 

Given the audio inputs 𝐴̃, the IntraTransformer is first applied to extract frequency 

features from the audio: 

𝐴̃𝑚
′ [𝑚, : , : , 𝑠] = IntraTransformer(𝐴̃𝑚[𝑚, : , : , 𝑠]) (5) 

Next, the CrossTransformer fuses the audio and visual features at the same temporal 

granularity. The visual features 𝑉𝑛 are fused with the audio features, and the result is 

concatenated with the audio features lacking visual information: 

𝐴̃𝑚1
′ , 𝐴̃𝑚2

′ = 𝐴̃𝑚
′ [: 𝑁], 𝐴̃𝑚

′ [𝑁: ]

𝐴̃𝑚1
′′ = CrossTransformer(𝑉𝑛[𝑛, : , : ], 𝐴̃𝑚1

′ [𝑛, : , 𝑘, : ])

𝐴̃𝑚
′′ = Concatenate(𝐴̃𝑚1

′′ , 𝐴̃𝑚2
′ )

(6) 

Finally, the InterTransformer extracts temporal features from the fused representation: 

𝐴‾𝑚 = InterTransformer(𝐴̃𝑚
′′ [𝑚, : , 𝑘, : ]) (7) 

where 𝐴‾𝑚 ∈ ℝ𝑀×𝐷×𝐾×𝑆. 

Audio-Visual Cross Differential Attention Module (AV-CDA). The AV-CDA mod-

ule employs a novel cross differential attention (CDA) mechanism, integrated within 

transformer blocks, to enhance the input without visual cue. As illustrated in Figure 3, 

for mixtures involving three speakers, the first two speakers are differentiated from the 

third. Worth mentioning is that this approach is maintained even when visual cues are 

not missing. The video components are processed by the first pair of linear modules, 

while the audio-only components are processed by the second pair. Here, 𝑄𝑖 , 𝐾𝑖, and 𝑉𝑖 

are computed for each speaker from the input. 
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Fig. 3. Diagram illustrating our proposed Cross Differential Attention (CDA) mechanism.  

To ensure clarity, we first delve into the internal mechanism of the proposed CDA. 

Specifically, we detail the attention computation process, and subsequently define the 

input and output of the overall AV-CDA module. In CDA, both branches independently 

compute their self-attention matrices, and then perform cross-subtraction by removing 

the attention weights of the opposite branch. To enhance flexibility, a learnable param-

eter 𝜆 is introduced, which differs from [13]. When multiple speakers are subtracted, as 

depicted in the figure, the mean of all speakers’ attention matrices is used for calcula 

tion, unlike [13, 14], which only deal with two inputs. Given three inputs 𝑋1, 𝑋2, 𝑋3 

with shape ℝ𝑡×𝑑 (where 𝑡 is the time length and 𝑑 is the feature dimension), the com-

putations proceed as follows, setting 𝑖 = 1,2: 

𝑄𝑖 = 𝑋𝑖𝑊1
𝑄 , 𝐾𝑖 = 𝑋𝑖𝑊1

𝐾 , 𝑉𝑖 = 𝑋𝑖𝑊1
𝑉 (𝑖 = 1,2)

𝑄3 = 𝑋3𝑊2
𝑄 , 𝐾3 = 𝑋3𝑊2

𝐾 , 𝑉3 = 𝑋3𝑊2
𝑉

(8) 

The cross differential mechanism is then applied, where 𝜎(⋅) denotes the softmax op-

eration: 

𝑋𝑖
′ = (𝜎(

𝑄𝑖𝐾𝑖
𝑇

√𝑑
) − 𝜆𝜎(

𝑄3𝐾𝑖
𝑇

√𝑑
))𝑉𝑖  (𝑖 = 1,2)

𝑋3
′ = (𝜎(

𝑄3𝐾3
𝑇

√𝑑
) − 𝜆𝜎(

mean(𝑄1, 𝑄2)𝐾3
𝑇

√𝑑
))𝑉3

(9) 

Based on the above process, the final output of the AV-CDA module is defined as: 

A  CDA(𝑋1, 𝑋2, 𝑋3) = 𝑋1
′ , 𝑋2

′ , 𝑋3
′  (10) 

This CDA mechanism is applied across both the temporal and frequency dimensions. 

To clarify, we continue with the example shown in Figure 3. The input is first split as 

follows: 

 inear

     

 inear  inear

                     



 

 

𝐴‾𝑚1, 𝐴‾𝑚2, 𝐴‾𝑚3 = 𝐴‾𝑚 (11) 

Here, 𝐴‾𝑚𝑖 ∈ ℝ𝐷×𝐾×𝑆 , where 𝑖 ∈ 1,2,3. The cross differential mechanism is then ap-

plied sequentially over the temporal and frequency dimensions. First the cross differ-

ential mechanism is applied across the temporal dimension for each slice 𝑠: 

𝐴‾𝑚
′ = A  CDA(𝐴‾𝑚1[: , : , 𝑠], 𝐴‾𝑚2[: , : , 𝑠], 𝐴‾𝑚3[: , : , 𝑠]) (12) 

The outputs are then updated as: 

𝐴‾𝑚1
′ , 𝐴‾𝑚2

′ , 𝐴‾𝑚3
′ = 𝐴‾𝑚

′  (13) 

Similarly, the mechanism is applied across the frequency dimension for each time slice 

𝑘: 

𝐴̂𝑚 = A  CDA(𝐴‾𝑚1
′ [: , 𝑘, : ], 𝐴‾𝑚2

′ [: , 𝑘, : ], 𝐴‾𝑚3
′ [: , 𝑘, : ]) (14) 

The final output, 𝐴̂𝑚, is obtained with a shape of ℝ𝑀×𝐷×𝐾×𝑆. 

Audio-Visual Recovery Module (AVR). The audio-visual recovery module is de-

signed to enhance the quality of separation. As mentioned earlier, we observed that 

when training the model exclusively in scenarios without visual cue, the AV-CDA 

module caused the part without visual cue to increase while the part with visual cue 

decreased. To address this, we first employ cross-attention to recover the diminished 

video part using the video input. This is followed by self-attention to further enhance 

the part with visual cue, an approach validated by our ablation study. 

We introduce both the video recovery and audio recovery modules, each imple-

mented as a transformer block. The process begins with video recovery, followed by 

concatenation with the part without visual cue: 

𝐴̂𝑚1, 𝐴̂𝑚2 = 𝐴̂𝑚[: 𝑁], 𝐴̂𝑚[𝑁: ]

𝐴̂𝑚1
′ =  ideo ecovry(𝑉𝑛[𝑛, : , : ], 𝐴̂𝑚1[𝑛, : , 𝑘, : ])

𝐴̂𝑚
′ = Concatenate(𝐴̂𝑚1

′ , 𝐴̂𝑚2)

(15) 

Next, we apply self-attention across all speakers in the time dimension: 

𝑀̃𝑚 = Audio ecovery(𝐴̂𝑚
′ [: , 𝑑, 𝑘, : ]) (16) 

The final output, 𝑀̃𝑚, has a shape of ℝ𝑀×𝐷×𝐾×𝑆. 

3.4 Audio Decoder 

First, the OverlapAdd operation is applied to obtain masks, which are then element-

wise multiplied with the raw mixture to isolate the target speech components. Subse-

quently, the audio decoder employs a transposed convolution layer to reconstruct the 

target speech: 
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𝑀 =  verlapAdd(𝑀̃𝑚) ∈ [0,1]𝑀×𝐷×𝑇𝑎 (17) 

The separated speech signals, denoted as 𝑠̂ are computed as follows: 

𝑠̂ = TransposedConv1D(𝐴𝑚 ⊗ 𝑀̃𝑚) ∈ ℝ𝑀×𝑇𝑎 (18) 

Here, ⊗ represents element-wise multiplication. 

4 Experiments 

4.1 Datasets 

We use three datasets in our experiments: VoxCeleb2, LRS3-TED, and TCD-TIMIT. 

VoxCeleb2 is used for both training and testing, while LRS3-TED and TCD-TIMIT are 

used exclusively for testing. To ensure fair evaluation, we retrained all previous models 

to ensure a fair comparison and the speaker identities in the training and test sets of 

VoxCeleb2 do not overlap. All utterances are between 4 and 6 seconds in duration. 

For audio, we follow the methodology outlined in MuSE[17] to generate audio mix-

tures. Specifically, we select 48,000 utterances from 800 speakers in the VoxCeleb2 

training set and 36,237 utterances from 118 speakers in the test set. Unlike traditional 

approaches TSE, we focus on multi-speaker separation and do not introduce additional 

disturbances. The model is trained on two-speaker (2-mix) and three-speaker (3-mix) 

scenarios, generating 20,000, 5,000, and 3,000 samples for 2-mix, and 10,000, 2,500, 

and 1,500 samples for 3-mix. These samples are combined during training to ensure 

balanced performance across different mixture conditions. To simulate missing visual 

cues during training, we introduce a 20% probability of omitting the entire visual data 

for one speaker. 

Since the mixture audio is generated randomly, we ensure that the video correspond-

ing to the last audio source in the mixture is designated as missing. For testing on the 

LRS3 and TCD-TIMIT datasets, we follow prior work [7] by selecting 1,200 videos 

from each dataset’s original test set, comprising 600 mi tures for 2-mix and 400 for 3-

mix scenarios. 

For the visual modality, all video frames are resampled to 25 FPS. Videos from 

VoxCeleb2 and LRS3-TED, originally at a resolution of 224 × 224, can be processed 

directly using MuSE. For TCD-TIMIT, which has an original resolution of 

1920 × 1080, we manually cropped the lip region and resized it to 224 × 224 to en-

sure compatibility with MuSE. 

4.2 Implementation Setup 

Following [15], the model is trained using the Adam optimizer [38] with an initial learn-

ing rate of 1.5 × 10−4. The learning rate is halved if there is no decrease in the valida-

tion loss over the course of 3 epochs. Training is stopped if the validation loss does not 

improve over 5 consecutive epochs. 



 

 

Speech quality and intelligibility are evaluated using the perceptual evaluation of 

speech quality (PESQ)[39] metric, while the scale-invariant signal-to-distortion ratio 

(SI-SDR)[40] is used as the loss function, defined as: 

ℒ = ℒ I  D (𝑠̂, 𝑠) = −10log10 (
||

⟨𝑠̂, 𝑠⟩𝑠
||𝑠||2 ||2

||𝑠̂ −
⟨𝑠̂, 𝑠⟩𝑠
||𝑠||2 ||2

) (19) 

4.3 Experiments Results 

We evaluate the model under two scenarios. In the first scenario, "no missing", we 

e amine its performance with all visual cues, demonstrating that the model’s perfor 

mance does not degrade, but instead improves. In the second scenario, "missing one", 

we assess the model’s robustness to the loss of one visual cue, highlighting its ability 

to maintain strong performance even when the visual information of one speaker is 

missing. 

For baseline comparisons, we adhere to established audio-visual benchmarks in prior 

works, given that our contribution resides not in pioneering multimodal integration for 

speech separation but in enhancing separation efficacy within existing architectural par-

adigms. Consequently, the experimental evaluation is specifically confined to contem-

porary audio-visual separation systems. 

Table 1. The testing results for the "no missing" scenario are presented in the table. 

Network Params 

Voxceleb2 LRS3 TCD-TIMIT 

 I  D  P  Q  I  D  P  Q  I  D  P  Q 

2 mi  3 mi  2 mi  3 mi  2 mi  3 mi  2 mi  3 mi  2 mi  3 mi  2 mi  3 mi  

A  ConvTasNet[32  10.5  10.31 5.35 1.99 1.43 11.64 4.25 2.05 1.37 13.07 4.89 2.42 1.53 

 u  [17  14.3  10.95 5.63   2.11 1.43 11.59 4.26 2.07 1.38 12.91 6.76 2.29 1.69 

A   epFormer[15  28  14.05 9.81 2.39 1.84 16.01 8.97 2.55 1.82 18.77 11.71 2.87 2.09 
 A   [12  32  14.36 10.88 2.46 1.99 15.89 10.28 2.63 1.97 18.05 13.42 2.99 2.43 

 urs 32  14.40 10.74 2.47 1.96 16.34 11.15 2.65 2.02 19.49 14.62 3.10 2.52 

Performance with Visual Cues. The experimental results presented in Table 1 demon-

strate that our model outperforms others in the 2-mix scenario on the VoxCeleb2 da-

taset, with a slight drop in performance in the 3-mix case. While this may not be sur-

prising, it is noteworthy that our model maintains similar performance in the 3-mix 

scenario with visual cues on VoxCeleb2 and demonstrates significantly better perfor-

mance across all other conditions. Importantly, our model achieves this while utilizing 

a similar number of parameters as AV-SepFormer, yet outperforms it by a large margin. 

Furthermore, while our model achieves comparable performance to RAVSS in a nar-

row, specific task, it does so with significantly fewer parameters, highlighting its effi-

ciency and superior overall performance. Specifically, our model demonstrates remark-

able generalization ability, significantly outperforming existing methods in cross-do-

main evaluations. It achieves the best results on both the LRS3 and TCD-TIMIT 
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datasets, while RAVSS experiences a considerable drop in performance compared to 

previous work. 

To explain this, VoxCeleb2 and LRS3 are known as "wild" datasets due to their real-

world recording conditions, in contrast to the "studio" datasets like TCD-TIMIT, which 

are collected in controlled environments. Despite the challenges posed by  o Celeb2’s 

less predictable conditions, our model demonstrates strong robustness in these high-

quality studio settings, showcasing its excellent generalization across diverse data con-

ditions. In contrast, other methods fail to exhibit similar performance, particularly when 

tested on cross-domain data. 

Table 2. Testing results for the "missing one" scenario. 

Dataset 
Net-

Work 

SI-SDR PESQ 

2 v 2 m Δ 3 v 3 m Δ 2 v 2 m Δ 3 v 3 m Δ 

 o Celeb2 
 A    14.36 13.61 0.75 10.88 9.24 1.64 2.47 2.39 0.08 1.99 1.81 0.18 

CD   14.4 14.37 0.03 10.74 9.89 0.85 2.47 2.43 0.04 1.96 1.82 0.14 

   3 
 A    15.89 15.23 0.66 10.28 6.93 3.35 2.63 2.47 0.16 1.97 1.7 0.27 

CD   16.34 15.69 0.65 11.15 7.29 3.86 2.65 2.52 0.13 2.02 1.84 0.18 

TCD TI IT 
 A    18.05 16.66 1.39 13.42 10.46 2.96 2.99 2.78 0.21 2.43 2.22 0.21 
CD   19.49 18.62 0.87 14.62 12.67 1.95 3.1 2.94 0.16 2.52 2.34 0.18 

Robustness to Missing One Visual Cue This comparison highlights the robustness of 

our model in scenarios without visual cue. Previous models have employed minimal 

methods for this task, resulting in poor performance. For instance, AV-SepFormer 

achieves a negative SI-SDR in this scenario. Therefore, we primarily compare our 

model with the previous best-performing model, RAVSS. Unlike its originally reported 

performance in the paper, we reimplemented the model, identified some bugs in its 

code, and fixed them. 

As shown in Table 2, our model consistently outperforms RAVSS across all three 

datasets in both the 2-mix and 3-mix scenarios under the "m" condition. Additionally, 

we achieve the smallest drop between the "v" and "m" conditions in nearly all cases. 

Notably, in cases involving two speakers with one missing visual cue, our task bears 

similarity to TSE, but with a critical distinction: while TSE focuses on extracting the 

speech of a single target speaker, our approach extracts speech for all speakers. Despite 

this added complexity, our model surpasses the TSE model AV-SepFormer, while 

RAVSS performs worse in comparison.These experiments demonstrate the resilience 

of our model in handling missing visual cues, showcasing its ability to maintain high 

performance even under challenging conditions. 

Ablation Study. Table 3 demonstrates the effectiveness of each module used in our 

study. 

• Row a: This represents the baseline model with only the AVC module, which 

captures intra- and inter-chunk correlations of T-domain speech features and 

fuses audio and visual features via cross-attention. We refined the structure by 

reducing redundancy, decreasing the number of layers, and limiting cross-

modal interactions. 



 

 

• Row b: Adding the AV-CDA module significantly improves performance, 

particularly in the "missing one" scenario, with a 13.58 dB gain. For the "no 

missing" case, the improvement is 0.44 dB, addressing the limitations of pre-

vious models in leveraging speech content disparity effectively. 

• Row c and Row d: The Video Recovery and Audio Recovery modules are 

evaluated individually and jointly. Compared with Row b, while the Audio 

Recovery module (Row c) offers marginal gains, the Video Recovery module 

(Row d) provides notable improvements, especially in video-related tasks. 

• Row e: Although the Audio Recovery module may seem to contribute little at 

first, as suggested by the comparison between Row b and Row c, the compar-

ison between Row d and Row e reveals a 0.4 dB improvement under the "miss-

ing one" condition. This indicates that the Audio Recovery module alone is 

insufficient to support components without visual cue. Only when Audio Re-

covery follows Video Recovery can the framework effectively leverage the 

available information, thereby justifying the chosen module sequence. 

Table 3. The testing results for the ablation study in VoxCeleb2 dataset. 

No. AV-CDA VR AR 
SI-SDR PESQ 

2 v 2 m 3 v 3 m 2 v 2 m 3 v 3 m 

a     13.53  0.02 9.28  2.99 2.36 1.14 1.8 1.07 

b    13.97 13.56 9.43 8.43 2.39 2.33 1.82 1.66 
c    14.1 13.59 9.7 8.4 2.42 2.37 1.85 1.67 

d    14.39 13.99 10.66 9.66 2.46 2.42 1.95 1.85 

e    14.4 14.37 10.74 9.89 2.47 2.43 1.96 1.82 

Outlier Test. To systematically validate the distinct learning characteristics of the dual 

linear modules in our CDA mechanism, we conducted an outlier detection experiment 

using the cross-domain LRS3 dataset. This investigation specifically focuses on the 

video-specific linear module and audio-only-specific linear module, aiming to empiri-

cally demonstrate their differential information acquisition capabilities. 

Building upon the 3-mix "missing one" paradigm, we implemented a modified input 

configuration that strategically alters the data positioning scheme compared to the base-

line CDA mechanism architecture (Figure 3). As shown in Table 4, the baseline perfor-

mance without module swaps is shown in row a. When substituting the first two video 

elements while retaining their original video-specific processing modules (row b), the 

performance remains stable, confirming the video-specific linear module’s acquisition 

capabilities. Furthermore, we swap the last two elements, and the cross-module substi-

tution - applying the audio-only-specific module to video elements and vice versa (row 

c) - results in performance degradation. 

To enhance experimental comprehensiveness, we extended this evaluation to the 2-

mix scenario. As shown in the results, rows b and c for the 2-mix case are identical, 

both showing a drop compared to row a. This equivalency arises because all substitu-

tions in 2-mix inevitably involve cross-module interactions, unlike the 3-mix case 

where partial substitutions preserve modality consistency. We also observe that the per-

formance degradation in 2-mix is smaller than 3-mix. The result suggests that the two 
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sets of linear modules in the CDA mechanism leverage more distinct information in 

scenarios with a higher number of mixes, as the increased presence of video parts am-

plifies the differentiation. 

Table 4. The testing results for the outlier test 

No. 
SI-SDR PESQ 

2 v 2 m 3 v 3 m 2 v 2 m 3 v 3 m 

a 15.8 15.71 10.06 8.81 2.59 2.55 1.95 1.83 

b 15.66 15.57 10.08 8.83 2.58 2.55 1.96 1.83 

c 15.66 15.57 9.47 8.25 2.58 2.55 1.87 1.78 

 

These experimental findings conclusively validate our architectural design: the dual 

linear modules develop complementary specialization - the video module excels in vis-

ual pattern recognition while the audio-only module focuses on acoustic feature extrac-

tion, achieving effective cross-modal disentanglement through modality-adaptive pro-

cessing. 

5 Conclusions 

In this paper, we proposed CDSS, a novel model for audio-visual speech separation 

capable of addressing both with and without visual cue scenarios. The core innovation 

lies in our introduction of the cross differential attention (CDA) mechanism, which is 

the first to explicitly exploit the cross-modal discrepancy between audio with and with-

out visual cues to enhance separation performance in AV-MSS tasks. Specifically, 

CDSS employs distinct linear projections for audio segments with available visual in-

formation and those without, enabling the model to compute cross-modal differences 

that guide more effective separation. 

To further reinforce this design, we introduced the Audio-Visual Recovery (AVR) 

module, which separately enhances the reconstruction performance for video-aligned 

and audio-only speech. Comprehensive experiments including controlled outlier sce-

narios demonstrate that CDSS not only achieves state-of-the-art performance on both 

2-mix and 3-mix tasks under varying visual availability, but also validates the theoret-

ical motivations behind our design. 

While CDSS is currently optimized for up to three concurrent speakers, future work 

may explore extending this approach to more complex mixtures and adapting the sys-

tem to real-world challenges such as visual occlusion, reverberation, and dynamic back-

ground noise. 
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