
 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

Unsupervised Local Editing of Ocular Images via 

Reverse-Attention Block 

Renzhong Wu1, Shenghui Liao1, Jianfeng Li2, Lihong Liu3, Xiaoyan Kui1 and 

Yongrong Ji4 

1 School of Computer Science and Engineering, Central South University, Changsha 410083, 

China 
2 School of Computer Science and Engineering, Jishou University, Jishou 416000, China 
3 Department of Rehabilitation, The Second Xiangya Hospital, Central South University, 

Changsha 410011, China 
4 Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University 

School of Medicine, Shanghai, 200025, China 

Abstract. Predicting the postoperative appearance after strabismus surgery is of 

great significance for improving patients' understanding of the postoperative out-

comes, enhancing communication between doctors and patients, and alleviating 

preoperative anxiety. Although some researchers have used image generation 

models to predict postoperative appearances for various diseases, existing meth-

ods typically rely on paired data for model training. Generative Adversarial Net-

works (GANs) have demonstrated strong application potential in image genera-

tion tasks, and cycle consistency loss has promoted the development of unsuper-

vised image generation techniques. However, traditional cycle consistency loss 

often results in the retention of unnecessary traces from the source image in the 

generated images. To address these issues, we propose an unsupervised image 

generation model based on GANs. By incorporating a reverse-attention block 

into the generator, the model is guided to focus on key editing regions. Addition-

ally, we employ reverse-attention consistency loss to maintain identity con-

sistency while reducing unnecessary trace residues. Furthermore, we introduce a 

multi-scale discriminator to ensure that the generated images have more reason-

able texture details. Experimental results demonstrate that our model effectively 

reduces trace residues in the generated postoperative images and produces details 

that are more consistent with reality. 

Keywords: Image-to-image Translation, Reverse-attention Consistency Loss, 

Unsupervised Learning, Generation Adversarial Networks. 

1 Introduction 

Strabismus refers to a condition where the eyes cannot simultaneously focus on the 

same target, resulting in misaligned vision [1,2]. Strabismus may also be accompanied 

by a certain degree of ptosis (drooping of the upper eyelid), which not only affects the 

patient’s appearance but may also lead to a range of visual and psychological issues. 



Therefore, early diagnosis and treatment of strabismus are crucial. By presenting pre-

dicted postoperative visual effects, it can enhance the patient’s understanding and trust 

in the treatment process, thereby reducing anxiety and unease [3]. 

As computer technology advances, image generation models have garnered signifi-

cant attention [4-6]. Many researchers utilize image generation models to predict the 

postoperative appearance for various diseases [7-9]. Despite achieving good prediction 

results, these models typically require paired data for training. However, obtaining 

paired data often demands more human and material resources. Since unsupervised 

models do not require paired data, a feasible approach is to design an unsupervised 

generative model to predict postoperative appearance. 

Generative Adversarial Networks (GANs) [10] models have demonstrated outstand-

ing image generation capabilities in various tasks [11-13]. CycleGAN [14] introduced 

the concept of cycle consistency loss, enabling the learning of image transformations 

from unpaired datasets. As an unsupervised model, CycleGAN does not require addi-

tional conditional information and does not demand data alignment during the training 

phase. Subsequently, many mainstream models (such as: MUNIT [15], DRIT++ [16], 

starGAN V2 [17]) adopted the cycle consistency loss. However, the cycle consistency 

loss, in order to ensure that the generated images can be reconstructed into the original 

images, leaves traces of the source image in the generated target images (as shown in 

Fig. 1). To address the trace issue, ACL-GAN [18] proposed adversarial consistency 

loss, which effectively removes the traces. However, the quality of the generated im-

ages is not ideal. Additionally, these methods only consider domain-to-domain trans-

formations and do not focus on whether the details of the generated images are reason-

able. 

 

Fig. 1. Examples of existing issues in baseline. 

To address these issues, we have designed an unsupervised image generation model to 

predict the postoperative appearance of strabismus surgery. This model can maintain 

consistent identity information while reducing unnecessary traces, resulting in more 

natural predicted images. It enables patients to better understand the postoperative out-

comes, enhances communication between doctors and patients, and reduces unneces-

sary anxiety. 
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Our main contributions are as follows: 

1. We propose a novel unsupervised model for local editing of strabismus images. 

The core of this method lies in the introduction of the reverse-attention block and the 

reverse attention consistency loss. 

2. The design of the reverse-attention block enables the generation model to pre-

cisely locate the areas that require editing. Through the reverse-attention mechanism, 

the model can dynamically adjust its focus, thereby avoiding interference with irrele-

vant regions during the editing process. This mechanism not only enhances the accu-

racy of the local edit but also strengthens the model’s robustness, enabling it to handle 

complex strabismus images effectively. 

3. The proposed reverse-attention consistency loss aids the generation model in pro-

ducing images that retain identity information while minimizing unnecessary traces. 

This loss function’s design allows the model to balance local edit with global con-

sistency during the editing process, resulting in more natural images. 

4. The use of a multi-scale discriminator assists the model in evaluating the quality 

of generated images across multiple scales. This approach facilitates a better capture of 

both local details and global structures, leading to generated images with more plausible 

texture details. 

2 Method 

Our goal is to design an unsupervised model to predict the postoperative outcomes of 

strabismus. The model architecture is illustrated in Fig. 2. 
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Fig. 2. Overall architecture. 

 

 

 

 

 



Our model architecture employs an adversarial framework with dual generators and 

dual discriminators, specifically including Generator A, Generator B, Discriminator A, 

and Discriminator B. Among these, Generator A is responsible for mapping preopera-

tive strabismus images to postoperative images, while Generator B performs the reverse 

transformation, reconstructing postoperative images back to preoperative ones. The two 

discriminators are respectively tasked with assessing the authenticity of images: Dis-

criminator A focuses on distinguishing real preoperative images from the reconstructed 

images generated by Generator B, while Discriminator B is responsible for discerning 

real postoperative images from the predicted images generated by Generator A. 

To further enhance the model’s performance, we introduced a reverse attention con-

sistency loss. This loss function not only effectively preserves the identity information 

of the input images but also significantly reduces artifacts and residual traces that may 

arise during the image transformation process. Through this constraint mechanism, the 

model maintains the authenticity of the generated images while ensuring the smooth-

ness and naturalness of the transformation process. 

2.1 Generators and discriminators 

In terms of generator design, we propose an innovative reverse attention mechanism 

module (reverse-attention blocks). This module enhances the model’s ability to extract 

features from key areas, particularly demonstrating significant advantages in handling 

the fine structures of the eye region. Additionally, it effectively reduces artifacts in the 

generated images. 

The discriminator employs a multi-scale architecture, consisting of two parallel sub-

discriminators: the Global Discriminator evaluates the overall consistency of the image, 

while the Local Discriminator focuses on the authenticity of specific regions, such as 

the eye area. This design draws inspiration from the core idea of the pix2pix framework, 

helping the generator produce higher quality images, ensuring both the overall struc-

tural rationality and enhancing the realism of local details. 

2.2 Reverse-attention block 

When real preoperative and postoperative images pass through the generator, the gen-

erator is typically able to capture the differences between the two domains. However, 

these regions of focus are often relatively scattered and lack concentration on critical 

areas. Additionally, the cycle consistency loss requires that the generated postoperative 

images be able to reconstruct the source images, which to some extent results in unnec-

essary source image traces in the generated postoperative images. 

To address the above issues, we propose the reverse-attention blocks. As shown in 

Algorithm 1, this module has two outputs. The first output guides the generator to focus 

on the key regions where preoperative and postoperative images differ. The second 

output obtains the reverse-attention regions, restricting the model to only consider con-

sistency in the non-critical regions where preoperative and postoperative images differ. 
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Algorithm 1：Reverse-attention block 

Input：Real images A and B, feature map x obtained from generator downsampling 

Output: 

 1：Enhanced feature map 𝑥’’ 

2：Reverse attention matrix M 

Procedure: 

1. Build a classification network: 

Process input through two parallel branches: 

 Branch 1: Global Average Pooling (GAP) → Fully Connected Layer (FC) 

 Branch 2: Global Max Pooling (GMP) → Fully Connected Layer (FC) 

Concatenate features from both branches 

Perform classification using concatenated features 

2. Feature Enhancement: 

Obtain weights w from GAP-FC and GMP-FC layers 

Concatenate the weights w 

Apply concatenated weights to original feature map x 

Generate enhanced feature map 𝑥’ incorporating both average and max pooling infor-

mation 

3. Feature Transformation (Output 1): 

Apply 1×1 convolution to 𝑥’ 

Process through ReLU activation function 

Generate optimized feature map 𝑥’’ 

4. Generation Reverse Attention Matrix M (Output 2): 
Obtain logit from from GAP-FC and GMP-FC layers 
Concatenate logit to get 𝐿 
Apply resize, summation, negation, and normalization operations to 𝐿 to get N 

Apply thresholding (predefined threshold = 0.6): 

𝑀[𝑛,𝑚] = {
1, 𝑁[𝑛,𝑚] >  threshold

0, 𝑁[𝑛,𝑚]  ≤  threshold
 

Obtain final reverse attention matrix M. 

As shown in Algorithm 1, after the true preoperative and postoperative images pass 

through the downsampling stage of the generator, features x are obtained. These fea-

tures x are then processed by an additional classification network to capture the im-

portance of each feature, thereby identifying the key regions that distinguish preopera-

tive and postoperative images. Subsequently, convolution and ReLU operations are ap-

plied to enhance the features, resulting in Output 1. Output 2 utilizes a reverse-attention 

mechanism to exclude key regions with strong attention while recording the coordinates 

of all non-key regions and assigning a value of 1 to these coordinates, with the remain-

ing regions assigned a value of 0. In the Reverse-attention Consistency Loss described 

in Section 2.2, these binary matrices are multiplied element-wise with the true preoper-

ative image and the reconstructed preoperative image generated from the synthetic 

postoperative image derived from the true preoperative image. Finally, the Manhattan 

distance between these two results is calculated. The advantage of this design lies in 

the fact that Output 1 strengthens the features of key regions, while Output 2 preserves 



identity information effectively while reducing artifacts in the generated images. The 

reverse-attention block enhances the realism and detail quality of the generated images. 

2.3 Loss function 

We use the following loss functions to train our model. Here, 𝑥𝐴 represents the real 

preoperative image, and 𝑥𝐵 represents the real postoperative image. 

Adversarial loss. We employ the Least Squares loss [19] to train the generator and 

discriminator. The equations of Adversarial loss (ℒ𝒶𝒹𝓋) are shown in equation (1) and 

equation (2). 

 ℒ𝒶𝒹𝓋
𝒜→ℬ = 𝐸𝑥𝐵

[(𝐷𝐵(𝑥𝐵))
2

] + 𝐸𝑥𝐴
[(1 − 𝐷𝐵(𝐺𝐴→𝐵(𝑥𝐴)))

2

] (1) 

 ℒ𝒶𝒹𝓋
ℬ→𝒜 = 𝐸𝑥𝐴

[(𝐷𝐴(𝑥𝐴))
2

] + 𝐸𝑥𝐵
[(1 − 𝐷𝐴(𝐺𝐵→𝐴(𝑥𝐵)))

2

] (2) 

Class loss. The loss of the classifier (ℒ𝒸ℓ𝒶𝓈𝓈) in the Reverseattention block are shown 

in equation (3) and equation (4). 

 ℒ𝒸ℓ𝒶𝓈𝓈
𝒜→ℬ = −(𝐸𝑥𝐴

[log(𝑓𝐴(𝑥𝐴))] + 𝐸𝑥𝐵
[log(1 − 𝑓𝐴(𝑥𝐵))]) (3) 

 ℒ𝒸ℓ𝒶𝓈𝓈
ℬ→𝒜 = −(𝐸𝑥𝐵

[log(𝑓𝐵(𝑥𝐵))] + 𝐸𝑥𝐴
[log(1 − 𝑓𝐵(𝑥𝐴))]) (4) 

Reverse-attention consistency loss. To reduce unnecessary traces of the source image 

in the generated image, we designed the Reverse-attention Consistency Loss (ℒ𝓇𝒶𝒸). 

First, we obtain the reverse-attention matrix M (a binary matrix) through Algorithm 1 

in Section 2.2 Reverse-attention block. Second, we perform element-wise multiplica-

tion of these binary matrices with the real preoperative image and the reconstructed 

preoperative image. Finally, we compute the Manhattan distance between the two re-

sults. The advantage of this design is that it effectively preserves identity information 

while significantly reducing unnecessary consistency constraints, thereby minimizing 

the residual traces of the original image in the generated image and enhancing the real-

ism and detail quality of the generated image. ℒ𝓇𝒶𝒸 is defined as follows: 

 ℒ𝓇𝒶𝒸
𝒜→ℬ = 𝐸𝑥𝐴

[|𝑥𝐴 ⊙ 𝑀 − 𝐺𝐵→𝐴(𝐺𝐴→𝐵(𝑥𝐴)) ⊙ 𝑀|1] (5) 

 ℒ𝓇𝒶𝒸
ℬ→𝒜 = 𝐸𝑥𝐵

[|𝑥𝐵 ⊙ 𝑀 − 𝐺𝐴→𝐵(𝐺𝐵→𝐴(𝑥𝐵)) ⊙ 𝑀|1] (6) 

Where M is the reverse-attention matrix, ⊙ denotes element-wise multiplication, and 

| ⋅ |1denotes the Manhattan distance. 

Identity loss. To preserve identity information and prevent mode collapse during train-

ing, we employ Identity loss (ℒ𝒾𝒹), as shown in the following formula: 

 ℒ𝒾𝒹
𝐴→𝐵 = 𝐸𝑥𝐵

[|𝑥𝐵 − 𝐺𝐴→𝐵(𝑥𝐵)|1] (7) 

 ℒ𝒾𝒹
𝐵→𝐴 = 𝐸𝑥𝐴

[|𝑥𝐴 − 𝐺𝐵→𝐴(𝑥𝐴)|1] (8) 

Total loss. Summary, our total loss is as follows: 

 ℒ𝑡𝑜𝑡𝑎𝑙 = min𝐺,𝑓max𝐷(ℒ𝒶𝒹𝓋 + 10ℒ𝓇𝒶𝒸 + 1000ℒ𝒸ℓ𝒶𝓈𝓈 + 10ℒ𝒾𝒹) (9) 
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3 Experiments 

3.1 Dataset 

The data we used was provided by Shanghai Ninth People’s Hospital. Following our 

preprocessing, the dataset comprises 1345 images, including 757 abnormal eye images 

and 588 normal eye images. An example of the dataset is illustrated in Fig. 3. The 

abnormal images are categorized into three types: only strabismus, only ptosis, and 

those exhibiting both strabismus and ptosis. Additionally, 100 images were randomly 

selected from the dataset to serve as test images. 

 

Fig. 3. Dataset samples. 

3.2 Qualitative evaluation 

To visually evaluate the effectiveness of our proposed method in generating postoper-

ative images, we selected several classical models as our comparison baselines, includ-

ing g ACL-GAN [18], MUNIT [15], CycleGAN [14], DRIT++ [16], and GP-UNIT 

[20]. Each model generates postoperative images based on the Input image, and the 

results are shown in Fig. 4. 

Qualitative evaluation results demonstrate that our method outperforms the compar-

ative baselines. From Fig. 4, the following conclusions can be drawn: 

1. Image Realism: The images generated by our method most closely resemble real 

eye images. In contrast, while ACL-GAN-generated images exhibit typical human eye 

features in shape, they lack realistic skin texture details. 

 

 

Just 

strabismus
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Just 
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Strabismus

& ptosis



 

Fig. 4. Visual comparisons. 

2. Detail Accuracy: The images generated by our method have details that most closely 

match real eye images. CycleGAN-generated images show noticeable traces of the in-

put image that are unnecessary (especially in the first row), significantly affecting over-

all visual quality and detail accuracy. Additionally, MUNIT-generated images exhibit 

obvious artifacts and insufficient visual clarity. DRIT++-generated postoperative im-

ages show a certain deviation in iris shape compared to real iris shapes (particularly 

evident in the fifth row). 

3. Identity Information Preservation: Our method performs outstandingly in pre-

serving patient identity information. Skin color, skin texture, and periorbital features 

are effectively retained in the generated postoperative images, ensuring image authen-

ticity. While CycleGAN also demonstrates excellent performance in preserving identity 

information, the generated images still have a certain gap compared to real eye images. 

The postoperative images generated by DRIT++ and GP-UNIT show significant differ-

ences in skin color and texture information compared to the input images. 

4. Gaze Conversion Effect: In terms of converting strabismus to orthophoria, our 

method demonstrates exceptional results. The generated postoperative images show a 

Input OursGP-UNITDRIT++MUNIT CycleGANACL-GAN
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natural orthophoric state of the patient’s eyes, with eyeball positions consistent with 

physiological characteristics. 

In summary, through comparisons with models such as ACL-GAN, CycleGAN, 

MUNIT, DRIT++, and GP-UNIT, our method demonstrates significant advantages in 

image realism, detail accuracy, identity information preservation, and gaze conversion 

effects. These comprehensive advantages make our method stand out as the optimal 

solution for postoperative image generation tasks. 

3.3 Quantitative evaluation 

The Kernel Inception Distance (KID) is a metric used to measure the similarity between 

generated images and real images, with smaller values indicating that the quality of 

generated images is closer to that of real images. We evaluated the quality of postoper-

ative images generated by ACL-GAN, CycleGAN, MUNIT, DRIT++, and GP-UNIT 

models using the KID metric. The results are shown in Table 1. 

Table 1. Quantitative results of test datasets. 

Model KID 

Cyclegan 0.1667±9.0729e-07 

MUNIT 0.5008±1.1145e-06 

DRIT++ 0.3118±7.4429e-07 

ACL-GAN 1.3917±7.4332e-07 

GP-UNIT 1.4833±9.6052e-07 

Ours 0.1297±1.1857e-06 

From Table 1, we can see that the KID values of classic models such as CycleGAN, 

MUNIT, DRIT++, ACL-GAN, and GP-UNIT are 0.1667±9.0729e-07, 

0.50081±1.1145e-06, 0.3118±7.4429e-07, 1.3917±7.4332e-07, and 1.4833±9.6052e-

07, respectively. In comparison, the KID value of our proposed method (Ours) is 

0.1297±1.1857e-06, which is significantly lower than that of the other models. This 

indicates that, compared to existing classic models, our proposed method has a signifi-

cant advantage in the quality of generated postoperative images. 

Additionally, the KID values of CycleGAN and DRIT++ are 0.1667 and 0.3118, 

respectively, indicating a certain gap in image generation quality. The KID value of 

MUNIT is 0.50081, which is much higher than that of other models. This may be related 

to its multi-modal generation characteristics but also reflects its limitations in generat-

ing postoperative images. The KID values of ACL-GAN and GP-UNIT are 1.3917 and 

1.4833, respectively, which are significantly higher than those of other models, indicat-

ing poor performance in the task of generating postoperative images. 

Our proposed method (Ours) achieves the lowest KID value (0.1297), indicating that 

the postoperative images it generates are closer to real images in terms of quality, with 

higher reliability and practicality. This result validates the effectiveness of our method 

in the task of generating postoperative images. 

Since the KID value has some deviation from human subjective perception, we fur-

ther conducted a subjective assessment experiment to validate the quality of the post-

operative images generated by the models. Specifically, we invited three volunteers to 



vote on the effects of postoperative images generated by different models. In the exper-

iment, volunteers subjectively evaluated different models based on the postoperative 

image effects generated from the same input image and voted for the model they be-

lieved to have the best effect and retain the most identity information from the input 

image. The experiment included a total of 100 input images, and each volunteer needed 

to evaluate and vote on the generated results corresponding to all input images. Table 

2 shows the voting statistics for each volunteer’s evaluation of the postoperative image 

effects generated by each model. 

Table 2. Subjective voting record for test datasets. 

Model 1 2 3 Average 

Cyclegan 21 16 14 17 

MUNIT 8 13 8 9.67 

DRIT++ 24 25 23 24 

ACL-GAN 0 0 0 0 

GP-UNIT 20 14 27 20.33 

Ours 27 32 28 29 

From the table 2, it can be seen that Volunteer 1 gave 27 votes to the Ours model, 

Volunteer 2 gave 32 votes, Volunteer 3 gave 28 votes, with an average of 29 votes, 

which is significantly higher than the other models. This indicates that the Ours model 

received the highest satisfaction among the volunteers. The average votes for other 

models such as CycleGAN, MUNIT, DRIT++, and GP-UNIT were 17, 9.67, 24, and 

20.33, respectively, all of which are lower than the Ours model. ACL-GAN received 0 

votes, indicating that volunteers considered its generation effect to be the worst. 

This result is consistent with our previous analysis based on the KID metric. The 

KID metric showed that the postoperative images generated by the Ours model were 

closest to the real images, demonstrating the highest reliability and practicality. The 

volunteers’ votes further validated the superiority of the Ours model in subjective eval-

uations. 

In summary, the Ours model not only performed outstandingly in objective metrics 

but also received high recognition from volunteers in subjective evaluations. This indi-

cates that the Ours model has high practicality and reliability in generating postopera-

tive images. 

4 Limitations and discussion 

In this study, we propose a novel framework for local editing of strabismus images. The 

core of our model consists of the reverse-attention block and the reverse-attention con-

sistency loss. Specifically, the reverse-attention block enhances editing accuracy by 

guiding the model to effectively focus on key editing areas. Meanwhile, the reverse-

attention consistency loss addresses the issue of residual source image traces in gener-

ated images, while maintaining identity information, thus solving the problem caused 
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by traditional cycle consistency loss. Furthermore, our model exhibits superior perfor-

mance in detail representation, aligning more closely with practical demands and en-

hancing the naturalness and realism of generated images. 

Although our method outperforms state-of-the-art approaches in experimental re-

sults, it still has limitations. As shown in Fig. 5, our model generates collapsed images 

for cases with excessively severe ptosis. The reasons include: on one hand, the lack of 

data diversity and data imbalance; on the other hand, our model’s inability to constrain 

the generated shapes. In the future, we aim to enhance the quantity and diversity of our 

dataset and introduce additional masks to constrain the generated shapes. 

 

Fig. 5. Case of failure by our model. 
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