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Abstract. Significant progress has been made in open-vocabulary semantic seg-

mentation tasks, particularly in recognizing and segmenting unseen categories by 

leveraging Contrastive Language-Image Pre-training (CLIP). Among existing 

methods, the Side Adapter Network (SAN) stands out as an effective approach, 

achieving strong performance. However, we identify that SAN does not perform 

well in capturing fine-grained local features in complex scenes and high-resolu-

tion images. Additionally, it suffers from high computational costs and struggles 

to effectively fuse the features generated by its internal modules with those ex-

tracted by CLIP, resulting in segmentation accuracy. To address these issues, we 

propose HSAN, which introduces the Hybrid Compression and Local Enhance-

ment Attention (HCLEA) mechanism to reduce dimensionality for lower compu-

tational complexity while using additional convolutional neural networks to pre-

serve and enhance local features. Furthermore, we design an Adaptive Feature 

Fusion Block (AFFB) that dynamically adjusts fusion weights based on input 

features, achieving better global-local feature fusion and fully leveraging CLIP’s 

generalization ability. Extensive benchmarks show that our method improves 

both accuracy and inference speed over SAN and other baselines. 

Keywords: Open-Vocabulary Semantic Segmentation, Attention Mechanism, 

Feature Fusion, CLIP. 

1 Introduction 

Semantic segmentation assigns category labels to each pixel, requiring object recogni-

tion and precise boundaries. Traditional models [1-5] work well on known categories 

but struggle with unseen ones due to fixed label sets. This limitation hinders their flex-

ibility and robustness in complex environments. To address this challenge, open-vo-

cabulary semantic segmentation uses vision-language models for cross-modal align-

ment, enabling segmentation of unseen categories and improving generalization. 

Open-vocabulary semantic segmentation typically relies on large-scale pre-trained 

vision-language models [6-7], especially CLIP [6]. Nevertheless, CLIP is originally 

built for image-level alignment and lacks the detailed feature granularity required for 

pixel-level semantic understanding. One solution is to frame the segmentation task as 

a region recognition task, as demonstrated by [8-9], which helps in unseen category 



segmentation but suffers from limited performance in complex scenes and high com-

putational cost. 

To overcome these limitations, improved model architectures have been proposed. 

Among them, the Side Adapter Network (SAN) [10] introduces a lightweight auxiliary 

network to improve feature representation and handle unseen categories. Nevertheless, 

SAN integrates mask generation and classification effectively, it still faces challenges 

in achieving a balance between efficiency and accuracy. The self-attention mechanism 

used in SAN is computationally intensive for high-resolution images, and its element-

wise fusion struggles to capture fine-grained local details in complex scenes.  

 

Fig. 1. Overall architecture of the proposed framework. The CLIP model is kept frozen during 

training. The HSAN module generates attention biases and mask proposals, guiding deeper 

CLIP layers in making full-image predictions. During inference, the final segmentation is ob-

tained by combining the proposal masks with the corresponding logits. 

To improve upon the existing SAN framework, we introduce an upgraded architecture, 

as illustrated in Fig. 1. Specifically, we incorporate the Hybrid Compression and Local 

Enhancement Attention (HCLEA) mechanism into the design to reduce computation 

cost while improving fine-grained feature representation. This modification enhances 

model inference efficiency without compromising segmentation quality. In addition, 

we develop the Adaptive Feature Fusion Block (AFFB), which adaptively recalibrates 

fusion weights based on input features, further boosting model performance without 

increasing latency. 

The proposed improvements lead to significant gains in both segmentation accuracy 

and computational efficiency. Experimental evaluations reveal that the HCLEA-AFFB 

enhanced model consistently surpasses several established baselines across diverse 

benchmark datasets, particularly excelling in scenarios demanding a balance between 

speed and fine-detail recognition. 

The contributions of this paper are as follows: (1) We present an improved local 

information enhancement architecture by integrating SAN with the HCLEA mecha-

nism, targeting performance gains for open-vocabulary segmentation. (2) AFFB is em-

ployed to better align CLIP-derived visual representations with internal features, yield-

ing improved segmentation quality. (3) Extensive comparisons across five public 

benchmarks confirm that our approach achieves highly competitive performance in 

terms of accuracy, generalization, and runtime efficiency. 
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2 Related Work 

2.1 Open-Vocabulary Semantic Segmentation and Side Adapter Network 

Open-vocabulary semantic segmentation is a computer vision task that requires a model 

to perform pixel-level classification and segmentation for unseen categories. Early ap-

proaches [11-12] primarily focused on mapping visual inputs and label names into a 

shared embedding space. More recently, vision-language models such as CLIP [6] have 

been leveraged to address this challenge by aligning cross-modal representations. Some 

methods [8, 13] attempt to fine-tune vision-language models, but this requires large 

amounts of additional data and may weaken the model's open-vocabulary capabilities. 

Other strategies [9, 14, 15] adopting a two-stage method suffer from the separation 

between the mask generator and classifier, leading to feature misalignment and affect-

ing classification performance. Furthermore, processing each mask proposal individu-

ally increases computational load, resulting in lower inference efficiency. 

SAN [10] proposes an end-to-end architecture that uses side adapter modules to 

combine the backbone network and the CLIP model, enabling efficient classification 

of mask proposals. SAN integrates the mask generation and classification processes 

seamlessly, avoiding the incompatibility issues caused by the separation of the mask 

generator and CLIP model in two-stage methods. However, the self-attention mecha-

nism used in SAN is computationally expensive when handling large-scale images, and 

its feature fusion method (element-wise addition) has certain limitations in complex 

scenes, failing to adequately capture fine-grained local information. 

To address these drawbacks, we proposes the Hybrid Compression and Local En-

hancement Attention (HCLEA) mechanism and an Adaptive Feature Fusion Block 

(AFFB), which together reduce overhead and improve the preservation of fine-grained 

local features. 

2.2 Vision Transformers 

In recent developments, the Vision Transformer (ViT) [16] has gained significant at-

tention in computer vision, achieving notable success across a variety of tasks. This 

has, in turn, stimulated the creation and refinement of numerous ViT derivatives [17-

19]. Convolutional Neural Networks (CNNs) are known for their strong capabilities in 

extracting localized visual features, while attention mechanisms possess the unique ad-

vantage of capturing global contextual information. Combining the two allows for lev-

eraging both CNN's local perception capabilities and self-attention's global relational 

modeling strengths. This combination can take several forms, including using CNNs in 

the model backbone [20], integrating convolution operations into the MHSA module 

[21-23], or embedding MHSA into ResNet-like architectures [24]. 

Recently, researchers have been exploring effective alternatives to the multi-head 

self-attention (MHSA) module, as MHSA often becomes the computational bottleneck 

in ViT architectures. A common optimization strategy is to reduce the spatial dimen-

sions of the MHSA module to lower computational complexity. During MHSA com-

putation, the input is mapped to query, key, and value. Some recent studies [25-27] 



have found that downsampling the query, key, and value can significantly improve 

computational efficiency while maintaining accuracy. Our work adopts a similar ap-

proach to achieve a more efficient model design. 

3 Method 

3.1 Overall Architecture 

 

Fig. 2. HSAN Network Architecture. The input image is tokenized and combined with learna-

ble query tokens. These tokens are processed through multiple HCLEA layers, where shallow 

CLIP features are fused at different stages. The final tokens are fed into MLPs to produce atten-

tion biases, which guide the CLIP model and generate mask proposals. 

To address the challenges of fine-grained feature extraction and open-vocabulary seg-

mentation, we introduce HSAN, a lightweight end-to-end network designed to work 

with a frozen CLIP model. HSAN enables effective segmentation by producing two 

key outputs: mask proposals for locating object regions, and attention bias for recog-

nizing mask categories. This decoupled design allows category recognition to leverage 

feature regions beyond the mask areas, enhancing segmentation performance in com-

plex scenes. 

Fig. 2 shows that the input image is projected into visual tokens and fused with shal-

low features from the CLIP model. These tokens are fused with trainable queries, which 

are then refined via a stack of HCLEA layers to better capture local semantics. This 

refinement enhances the model’s ability to focus on spatially detailed regions and im-

proves representation quality. MLPs are applied afterward to generate both spatial mask 

hypotheses and adaptive attention biases. These outputs serve as intermediate guidance 

for the downstream attention injection module. 

The attention bias is injected into the self-attention layers of the CLIP model, spe-

cifically targeting SLS tokens, which are initialized from the CLS tokens and attend 

only to visual inputs. During attention computation, the bias modifies the interaction as 

follows: 

 𝑋[𝑆𝐿𝑆]
𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄[𝑆𝐿𝑆]

𝑙 𝐾𝑣𝑖𝑠𝑢𝑎𝑙
𝑙 + 𝐵)𝑉[𝑆𝐿𝑆]

𝑙  (1) 

This allows the SLS tokens to dynamically align with the semantic regions, ultimately 

producing accurate segmentation results. 
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3.2 Hybrid Compression and Local Enhancement Attention 

 

Fig. 3. The proposed Hybrid Compression and Local Enhancement Attention module. The top 

illustrates the overall workflow, while the bottom left and right show the compression attention 

and local enhancement components, respectively. 

We propose Hybrid Compression and Local Enhancement Attention to improve effi-

ciency and local feature modeling in transformer-based segmentation. The structure of 

HCLEA is illustrated in Fig. 3, and it comprises two main stages: a compression atten-

tion module that reduces computational cost and a local enhancement module that re-

covers fine-grained details. 

In the compression attention module of HCLEA, the input sequence 𝑥 ∈  ℝ𝐿×𝑁 

where 𝐿 is the sequence length and 𝑁 is the embedding dimension, first undergoes lin-

ear projection to obtain the initial 𝑄, 𝐾, and 𝑉 representations. To boost the model’s 

sensitivity to local features, both the 𝑄 and 𝐾 are further processed by a convolutional 

layer, producing locally enhanced representations. These features are then compressed 

to a lower-dimensional space using a convolutional layer, resulting in the compressed 

query, key, and value, denoted as 𝑄𝑙𝑐 , 𝐾𝑙𝑐 , 𝑉𝑐  𝜖ℝ𝐿×𝑁𝑐. This process is formally defined 

as: 

 𝑄𝑙𝐶 = 𝑓𝑐(𝐶𝑜𝑛𝑣𝑙𝑜𝑐𝑎𝑙(𝑄)), 𝐾𝑙𝐶 = 𝑓𝑐(𝐶𝑜𝑛𝑣𝑙𝑜𝑐𝑎𝑙(𝐾)),   𝑉𝑐 = 𝑓𝑐(𝑉) (2) 

Here, 𝐶𝑜𝑛𝑣𝑙𝑜𝑐𝑎𝑙(⋅) denotes a convolution applied for local enhancement, and  𝑓𝑐(⋅) de-

notes a linear transformation that reduces the feature dimension from 𝑁 to 𝑁𝑐. Based 

on these compressed representations, scaled dot-product attention is applied to compute 

the final output of the compression module: 

 𝑥𝑐𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑙𝑐𝑘𝑘

⊤

√𝑁𝑐
) 𝑉𝑐  (3) 

This design reduces the attention complexity from 𝑂(𝐿2 × 𝑁) to 𝑂(𝐿2 × 𝑁𝑐), while 

preserving global context and enhancing local feature sensitivity through convolutional 

transformation. 

 After obtaining the output 𝑥𝑐𝑎 ∈ ℝ𝐿×𝑁𝑐 from the compression attention module, we 

enhance local details through a local enhancement operation. Specifically, we concate-

nate the original input 𝑥 with 𝑥𝑐𝑎 along the channel dimension to form a fused feature 

ℎ ∈ ℝ𝐿×(𝑁+𝑁𝐶). Then ℎ are first passed through a 3×3 convolution to strengthen local 

feature extraction, followed by a BN layer and a ReLU activation function. To adjust 



the channel dimension and generate the final output, a 1×1 convolution is applied. The 

output of the local enhancement module is denoted as 𝑥ℎ𝑐𝑙𝑒𝑎 ∈ ℝ𝐿×𝑁𝑐. 

By combining the compression attention stage with the local enhancement stage, the 

overall time complexity of HCLEA is 𝑂(𝐿2 × 𝑁𝐶 + 𝐿 × (𝑁 + 𝑁𝐶)). Compared to the 

traditional self-attention mechanism, this time complexity significantly reduces the 

computational demand, while the convolution operations improve the model’s capacity 

for extracting localized features. This enables HCLEA to efficiently handle complex 

visual tasks while retaining global information. 

3.3 Adaptive Feature Fusion Block 

 

Fig. 4. Diagram of the AFFB module. The upper and lower paths correspond to the input CLIP 

features and HSAN features, respectively. 

To enable more flexible and context-aware feature fusion, we introduce the Adaptive 

Feature Fusion Block (AFFB), which dynamically adjusts fusion weights based on the 

global characteristics of input features. By assigning adaptive importance to different 

channels, AFFB helps the network distinguish between informative and redundant fea-

tures under varying visual conditions. 

 As illustrated in Fig. 4, given two input feature maps 𝐹1, 𝐹2 ∈ ℝ𝐻×𝑊×𝐶 , global aver-

age pooling is first applied to each to obtain compact global descriptors. These de-

scriptors are processed by a shared fully connected layer with ReLU activation to gen-

erate channel-wise attention weights 𝛼, 𝛽 ∈ ℝ1×1×𝐶. The weights are then broadcasted 

and used to modulate the input features, which are subsequently fused and refined. The 

overall computation can be formulated as: 

 𝐹𝑓𝑢𝑠𝑒𝑑 = 𝜎(𝐶𝑜𝑛𝑣(𝛼 ⋅ 𝐹1 + 𝛽 ⋅ 𝐹2))  (4) 

Here, ⋅ denotes element-wise multiplication, 𝐶𝑜𝑛𝑣(⋅) is a 1×1 convolution layer, and 

𝜎(⋅) is a non-linear activation function. This design allows the network to adaptively 

adjust fusion weights based on global context, enhancing feature representation and 

robustness across diverse inputs. By learning content-aware weighting for each feature 

map, AFFB enables the model to emphasize more informative features while suppress-

ing redundant or irrelevant ones. Compared to static fusion methods, AFFB introduces 
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greater flexibility with minimal computational overhead, making it suitable for real-

time applications. 

4 Experiments 

4.1 Datasets and Evaluation Metrics 

We conduct open-vocabulary semantic segmentation experiments on six benchmark 

datasets: COCO Stuff [28], ADE20K-150 [29], ADE20K-847 [29], Pascal Context-59 

[30], Pascal Context-459 [30], and Pascal VOC [31]. Among these, the COCO Stuff 

dataset is used for model training, while the other datasets are used for testing. 

COCO Stuff. COCO Stuff contains 164,000 images annotated with 171 categories, 

split into 118,000 training, 5,000 validation, and 41,000 test images. We utilize the 

entire training set in our experiments. 

ADE20K-150 (ADE-150). ADE20K-150 offers dense annotations for 150 categories, 

including scenes, objects, and parts. It contains 20,000 training and 2,000 validation 

images, and is widely used in semantic segmentation tasks. 

ADE20K-847 (ADE-847). Sharing the same images as ADE20K-150, ADE20K-847 

expands the label set to 847 categories. It focuses on testing generalization to unseen 

concepts, making it suitable for open-vocabulary evaluation. 

Pascal VOC (VOC). Pascal VOC provides 20 segmentation classes and serves as a 

benchmark for classification, detection, and segmentation. It contains 1,464 training 

and 1,449 validation samples.  

Pascal Context-59 (PC-59). PC-59 extends Pascal VOC with 59 categories and fine-

grained pixel-level annotations. The dataset consists of 5,000 training and 5,000 vali-

dation images. 

Pascal Context-459 (PC-459). PC-459 builds upon PC-59 by increasing the number 

of annotated categories to 459, using the same image set. It is commonly used in open-

vocabulary segmentation benchmarks. 

Evaluation Metrics. We adopt the mean Intersection over Union (mIoU) metric to 

evaluate segmentation performance. As a standard and category-balanced measure, 

mIoU computes average IoU across all classes, making it suitable for performance com-

parison and robustness analysis. 



4.2 Implementation Details 

The default HSAN includes 8 HCLEA layers, each configured with 240 output chan-

nels. Within the multi-head attention unit, 6 attention heads are used with a block size 

of 16, and 100 learnable query tokens are incorporated. For visual encoding, the ViT-

B/16 CLIP model pre-trained on image-text pairs is adopted, using 224×224 resolution 

inputs. The first 9 layers are responsible for feature integration, while the final 3 focus 

on recognizing masks. The input image resolution is standardized to 640×640. 

Model training is conducted on the COCO Stuff dataset. During training, we apply 

data augmentation techniques  [5, 9, 15] , including random scaling (short edge from 

320 to 1024) and cropping to 640×640. Optimization is performed with the AdamW 

algorithm, starting with a base learning rate of 1e-4 and a weight decay parameter also 

set to 1e-4. The batch size is maintained at 8, and the model is trained over 60,000 

iterations. A polynomial decay schedule is used to adjust the learning rate, with a decay 

power of 0.9. 

For inference, all experiments are run on a single NVIDIA GeForce RTX 4090 GPU 

using CUDA 11.3 and PyTorch 1.10.0 on Ubuntu 20.04. The system setup includes 60 

GB of RAM and 24 GB of VRAM. Training is conducted in an Anaconda virtual envi-

ronment to ensure consistent dependencies. 

Table 1. Performance of Different Methods on Various Datasets. 

Method VL-Model Training Dataset ADE-847 PC-459 ADE-150 PC-59 VOC 

Group VIT[32] rand.init. CC12M+YFCC - - - 22.4 52.3 

LSeg+[33] ALIGN RN101 COCO 2.5 5.2 13.0 36.0 59.0 

OpenSeg[33] ALIGN RN101 COCO 4.0 6.5 15.3 36.9 60.0 

LSeg+[33] ALIGN EN-B7 COCO 3.8 7.8 18.0 46.5 - 

OpenSeg[33] ALIGN EN-B7 COCO 6.5 9.0 21.1 42.1 - 

OpenSeg[33] ALIGN EN-B7 COCO+Loc. Narr. 8.8 12.2 28.6 48.2 72.2 

SimSeg[10] CLIP ViT-B/16 COCO 7.0 8.7 20.5 47.7 88.4 

OvSeg[9] CLIP ViT-B/16 COCO 7.1 11.0 24.8 53.3 92.6 

SAN[10] CLIP ViT-B/16 COCO 9.5 12.0 26.6 52.2 93.5 

HSAN(ours) CLIP ViT-B/16 COCO 10.3 12.9 27.7 54.3 94.7 

4.3 System Comparison 

We performed a systematic comparison between our method and other open-vocabu-

lary semantic segmentation methods, and the results are presented in Table 1. In the 

table, VL-Model indicates the vision-language model used, Training Dataset refers to 

the dataset used during model training, and rand. init. refers to random initialization. 

Additionally, RN101 represents ResNet-101 [35], while EN-B7[36] denotes Efficient-

Net-B7 [36]. All methods were trained using the COCO dataset, with images of reso-

lution 640×640 applied to all models, and each model processing only one image per 

inference. Under these settings, our method achieves superior accuracy compared to 

other methods, with an mIoU improvement of approximately +1.2 mIoU. 
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Table 2. Comparison of inference speeds (FPS) across methods. 

Method FPS 

SimSeg[10] 0.8 

OvSeg[10] 0.8 

MaskClip[10] 4.1 

SAN[10] 15.2 

HSAN(ours) 20.7 

To further validate the efficiency of our method, we conducted an additional experi-

ment to compare the inference speed (FPS) of various models. To highlight the speed 

advantage of our method, we use Titan XP for the experiments in Table 2. Our method 

achieved significantly higher FPS compared to other open-vocabulary semantic seg-

mentation methods, demonstrating its superior efficiency while maintaining state-of-

the-art accuracy. 

 

Fig. 5. Visual comparison of open-vocabulary segmentation results from different methods. 

For a more intuitive demonstration of the performance, we visualized the model's pre-

dictions and displayed them in Fig. 5. In the experiments, we selected several scenes 

with fine-grained local features for testing, with images taken from the ADE150 and 

ADE847 datasets. 

4.4 Ablation Study 

Unless otherwise specified, the default configuration uses the ViT-B/16 CLIP model, 

with a feature dimension of 240, 6 heads in the multi-head attention, and an 8-layer side 

adapter network. 

HCLEA Module. The reason HSAN improves both model accuracy and inference 

speed is that it replaces plain self-attention with our proposed HCLEA. To evaluate 



HCLEA in practical applications and to demonstrate its advantages compared to other 

mainstream attention mechanisms, we designed a set of comparative experiments. The 

primary motivation of this experiment is to compare the performance of HCLEA with 

other attention mechanisms in semantic segmentation tasks using a unified model ar-

chitecture and training environment. This aims to verify HCLEA's actual contributions 

in handling irregular-length sequences, reducing computational complexity, and im-

proving model accuracy. 

To ensure the fairness of the experiments, we only replaced the attention mechanism 

in the HSAN model architecture. Each experiment used the same dataset, training strat-

egy, and hyperparameter settings, ensuring that the final results reflect the differences 

in the performance of the attention mechanisms themselves. 

Table 3. Efficiency and performance comparison of attention mechanisms on PC-59. 

Method mIoU FPS Param.(M) 

Self Attention[36] 52.2 56.5 8.4 

Deformable Attention[37] 51.1 77.8 7.9 

SwiftFormer[17] 51.3 92.5 8.6 

HCLEA(ours) 52.7 69.4 8.6 

Table 3 presents the performance of various attention mechanisms in the segmentation 

task, evaluated within the same model framework (HSAN) by solely replacing the at-

tention mechanism used for computation. The HCLEA mechanism stands out in terms 

of mIoU, achieving 52.7, outperforming other methods. This result demonstrates that 

HCLEA can capture global information while retaining fine-grained local features, 

making it perform better in handling complex scenes, especially in detail recognition. 

Although other methods show advantages in inference speed, they fall short in balanc-

ing global and local features, resulting in slightly lower segmentation accuracy com-

pared to HCLEA. Its ability to retain structural integrity while enhancing detailed re-

gions contributes to better overall performance. While some alternative methods 

demonstrated faster inference, they struggled to maintain consistency across both local 

and global features, leading to marginally lower accuracy compared to HCLEA. 

Table 4 shows the impact of different compression levels on the performance of the 

HCLEA module. Compression Level refers to how many dimensions remain after com-

pression compared to the original dimensions. The uncompressed HCLEA module 

achieved a segmentation accuracy (mIoU) of 26.85, with a parameter count of 12.3M. 

When the compression level increased to 1/2, the model’s accuracy slightly dropped to 

26.75, but the parameter count was significantly reduced to 8.6M, improving computa-

tional efficiency. As the compression level further increased to 1/4 and 1/8, the model’s 

accuracy dropped to 26.69 and 26.62, respectively, while the parameter count reduced 

to 8.1M and 7.7M. These results indicate that moderate compression reduces model 

complexity with only a slight loss in performance. In contrast, higher compression lev-

els continue to reduce the parameter count but also lead to a drop in accuracy. There-

fore, choosing a 1/2 compression ratio as the default setting strikes a good balance be-

tween model accuracy and computational efficiency. 
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Table 4. Comparison of compression levels in HCLEA on ADE-150 mIoU. 

Compression Level mIoU Param.(M) 

1/1 26.85 12.3 

1/2 26.75 8.6 

1/4 26.69 8.1 

1/8 26.62 7.7 

In the HCLEA module design, the local enhancement component applies convolu-

tional operations along with feature concatenation to improve the model's ability to 

capture detailed local patterns. By assessing the model’s performance across different 

configurations, we analyze the effect of the local enhancement module on segmentation 

accuracy. 

Table 5. Effects of local enhancement components on ADE-150 mIoU. 

Concat? Conv? mIoU 

no no 26.6 

yes no 26.8 

yes yes 26.9 

We perform an ablation study to assess the role of the local enhancement module in 

HCLEA.. As shown in Table 5, we compare three configurations: the full local en-

hancement module, removal of the convolution operation, and complete removal of the 

local enhancement module. The complete HCLEA achieves the highest mIoU of 26.9. 

Removing the convolution decreases performance to 26.8, while eliminating the entire 

module results in a further drop to 26.6. These results highlight the importance of local 

enhancement, particularly the convolution operation, in capturing fine-grained details. 

While some enhancement effect remains without convolution, the absence of effective 

local modeling leads to performance degradation. The complete removal causes a more 

significant decline, confirming the module’s contribution to robust segmentation in 

complex scenes. 

Importance of Adaptive Feature Fusion Block. The AFFB is one of the core innova-

tions in our model. We expect that the AFFB module, through dynamically calculating 

feature weights, will enable more flexible and effective feature fusion, thereby improv-

ing the overall performance of the model. 

Table 6. Comparison of AFFB module usage on ADE-847 dataset. 

use AFFB? mIoU FPS 

yes 9.7 52.4 

no 9.5 53.4 



We evaluate the impact of the AFFB module on the ADE-847 dataset. As shown in 

Table 6, the model with AFFB achieves a higher mIoU of 9.7 compared to 9.5 without 

it. While the addition of AFFB slightly reduces inference speed, the difference is neg-

ligible. These results demonstrate that AFFB improves segmentation performance by 

enabling adaptive feature fusion. Unlike fixed fusion strategies, AFFB dynamically ad-

justs weight distribution based on input diversity, enhancing the model’s ability to han-

dle fine-grained and complex features. 

Table 7. Comparison of AFFB implementation methods. 

Implementation Method mIoU FPS 

AVG 9.8 35.0 

Conv 9.7 34.5 

In Table 7, we compare two weight calculation methods in the AFFB: Global Av-

erage Pooling (GAP) and convolution operations. The experimental results show that 

using GAP for weight calculation slightly outperforms the convolution-based approach 

in mIoU, achieving 9.8, while the convolution-based method reaches 9.7. In terms of 

inference speed, the GAP method achieves 35.0 FPS, while the convolution method 

reaches 34.5 FPS. This indicates that GAP has lower computational overhead and ef-

fectively captures global features. Therefore, when dealing with large-scale data and 

scenarios rich in global information, it offers a better balance between performance and 

speed. Although convolution operations have an advantage in capturing local features, 

their higher computational cost results in slightly slower inference speed compared to 

GAP. 

4.5 Discussion of Limitations 

Although the HCLEA and AFFB proposed in this paper demonstrate excellent perfor-

mance in open-vocabulary semantic segmentation tasks, there are still some limitations. 

First, while HCLEA’s compression strategy effectively reduces computational com-

plexity, its design is relatively simple. In the future, more flexible compression schemes 

could be explored to further enhance feature representation capabilities. Additionally, 

the AFFB module prioritizes accuracy during inference, which leads to a slight sacrifice 

in inference speed. Future research could focus on improving inference speed while 

maintaining accuracy. Lastly, the model has primarily been tested on standard datasets, 

and further validation is needed in more complex real-world application scenarios to 

verify its generalization ability. 

5 Conclusion 

In this work, we introduced the HSAN framework, which integrates the Hybrid Com-

pression and Local Enhancement Attention (HCLEA) mechanism alongside the Adap-

tive Feature Fusion Block (AFFB) to address open-vocabulary semantic segmentation. 
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Compared with existing approaches, our method incorporating HCLEA and AFFB de-

livers superior segmentation results. The HCLEA module achieves a strong balance 

between computational cost and the ability to extract both global and detailed features, 

while AFFB improves fusion adaptability via dynamic weighting. Extensive evalua-

tions conducted on multiple benchmarks confirm that the proposed method performs 

competitively against leading segmentation models. Furthermore, ablation experiments 

were carried out to assess the individual impact of each module on the system’s overall 

effectiveness. 
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