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Abstract. Cyber Threat Intelligence (CTI) plays a critical role in enhancing the 

implementation of cybersecurity programs by offering comprehensive infor-

mation on attacks, which enables organizations to identify and respond to cyber 

threats more effectively. However, because most CTI data is presented in natural 

language and often contains ambiguous content, it requires interpretation and 

summarization by security experts for effective utilization. To address these chal-

lenges, this paper proposes a mapping method for CTI based on active and semi-

supervised SecureBERT, aimed at alleviating the scarcity of labeled data and the 

ambiguities inherent in the CTI mapping task. This method efficiently extracts 

potential attack stage information from CTI at a minimal cost, ensuring accurate 

mapping even when labeled sample sizes are insufficient. We introduce an active 

learning sampling strategy that integrates uncertainty and instance relevance, se-

lecting the most representative samples from unlabeled data to augment the train-

ing set. This strategy enhances the interpretability of labeled-scarce and ambigu-

ous CTI, facilitating precise mappings between ambiguous CTI and the accurate 

phases of cyber attacks. Validation through experiments on the CPTC and CCDC 

datasets demonstrates that the proposed method excels across various baseline 

models, considering the influence of labeled data quantity and comparisons with 

different active learning algorithms. In situations where labeled CTI is limited, 

the proposed approach significantly improves the interpretive effectiveness of 

CTI, thereby enhancing the model's classification accuracy and training effi-

ciency. 
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1 Introduction 

With the rapid development of information and communication technology, the Internet 

of Things, and Industry 5.0, modern cyber attacks have become increasingly diverse 

and covert, rendering traditional defenses like firewalls and rule-based intrusion detec-

tion insufficient against complex unknown threats [1]. Cyber Threat Intelligence (CTI) 

provides critical information for threat prediction, incident response, and security 



enhancement. It enables analysts to understand threats more effectively and detect ab-

normal behavior within networks [2]. 

However, as network scale and threat complexity grow, Cyber Security Analysis 

Centers face mounting challenges. For instance, Venezuela’s power grid suffered re-

peated cyber attacks in 2019–2020, leading to widespread blackouts [3], and in 2020 

alone, a Chinese province’s power grid experienced over 420,000 cyber attacks, with 

65.4% deemed high-risk [4]. Analysts are overwhelmed by the vast volume of CTI 

reports [5], and inconsistencies across CTI sources often result in vague or disconnected 

information, limiting both accuracy and timeliness in threat response [6]. 

To address these challenges, researchers have explored methods to extract useful 

insights from scarce and ambiguous CTI. Semi-supervised learning, for example, lev-

erages unlabeled data to generate pseudo-labels, enhancing classifier training [7]. Yet, 

its effectiveness depends heavily on the availability of quality labeled samples. Mean-

while, active learning improves labeling efficiency by selecting the most informative 

samples for expert annotation [8], although it still faces cost-related limitations. Dor et 

al. found that integrating active learning with BERT significantly boosts performance 

in real-world tasks [9]. 

Inspired by this, we propose a CTI mapping method based on Active and Semi-

Supervised SecureBERT (ASSBM), designed to address the dual challenges of ambig-

uous CTI and limited labeled data. Our approach employs SecureBERT, a state-of-the-

art pre-trained model trained on 1.1 billion cybersecurity-related tokens [10], and inte-

grates both active and semi-supervised learning to expand the training set. Active learn-

ing selects uncertain and relevant samples for expert labeling, while semi-supervised 

learning generates pseudo-labels for high-confidence data, enhancing classification 

performance. 

In summary, the main contributions of this work are as follows: 

1. We propose a method for CTI mapping based on active and semi-supervised Se-

cureBERT(ASSBM), addressing the issue of limited labeled data in CTI mapping tasks. 

The proposed method effectively interprets intelligence with minimal labeling while 

managing ambiguous sample data, thus achieving cost-efficient results. 

2. We propose an active learning sampling strategy that integrates uncertainty and 

instance relevance to select the most representative samples from unlabeled data, effec-

tively mitigating the challenges associated with data scarcity. 

3. The proposed method has been validated through experiments using the CPTC 

and CCDC datasets, demonstrating superior performance. The approach is capable of 

efficiently completing the mapping of attack stages even with a limited amount of CTI 

data. 

2 Background 

Machine learning has been widely used for CTI interpretation by modeling logs and 

network traffic to classify behaviors. Common methods include SVM, Naive Bayes, 

Decision Trees, and Random Forests, often accelerated by Apache Spark. Given CTI's 

high-dimensional features, models tailored to specific attacks are necessary—for 
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example, improved AdaBoost has been used for DDoS detection [11]. However, these 

approaches rely heavily on large labeled datasets, which are scarce in practical cyber-

security contexts. To overcome this, recent studies have focused on few-shot learning, 

transfer learning, and active learning to enable effective generalization with limited la-

beled data. 

2.1 Learning with Limited Samples 

Few-shot learning and data augmentation are effective in scenarios with limited labeled 

data. Few-shot learning enables models to learn from small datasets and quickly adapt 

to new attack types. For example, Wang et al. [12] proposed ID-FSCIL to adapt to new 

attacks while maintaining performance on known ones. Yu and Bian [13] achieved 

92.34% accuracy using under 1% of the NSL-KDD Train+ dataset. Lu et al. [14] de-

veloped a meta-learning-based IoT intrusion detection model, while Xu et al. [15] in-

troduced FC-Net, a deep network that classifies traffic efficiently using prior 

knowledge. Data augmentation techniques improve performance by expanding the 

training set with synthetic or transformed data. Yash Madwanna et al. [16] used 

SMOTE to address sample scarcity, achieving 82.19% on UNSW-NB15 and 98.87% 

on NSL-KDD. 

Unlike methods focusing solely on model-level improvements, our approach targets 

both model and data layers. It enhances diversity via data augmentation and integrates 

transfer learning for knowledge reuse, enabling better use of limited and unlabeled data 

and improving generalization. 

2.2 Transfer Learning and BERT 

Transfer learning, regarded as a form of few-shot learning [17], enables the reuse of 

pre-trained model weights for new tasks with few labeled samples. ULM-FiT [18] in-

troduced this in NLP, dividing training into pre-training and fine-tuning phases to op-

timize task-specific performance with minimal data. 

BERT [19] has proven effective in low-data NLP tasks like sentiment analysis and 

classification [20–23], though fine-tuning still requires significant data, and domain 

mismatch can reduce effectiveness in cybersecurity [24]. To solve this, SecureBERT 

[10] was developed as a domain-specific language model, enabling better transfer to 

cybersecurity tasks such as attack stage classification. It provides domain-relevant 

knowledge, outperforming general models in few-shot scenarios and improving gener-

alization to novel threats. 

2.3 Active Learning and Semi-Supervised Learning 

Active learning and semi-supervised learning (SSL) are valuable for reducing reliance 

on labeled data. Active learning selects the most informative samples for annotation, 

improving model performance with minimal labeling. For example, Boukela et al. [25] 

proposed a hybrid active learning system for incremental intrusion detection, while Li 

et al. combined active learning and MMD-based transfer learning to reduce negative 



transfer and enhance detection accuracy. SSL uses large pools of unlabeled data to 

boost model learning. Liu et al. [26] applied adversarial autoencoders for intrusion de-

tection with minimal labels, and Vahidi et al. [27] introduced a collaborative SSL model 

validated on robust datasets. Despite its promise, SSL may suffer from misclassification 

due to the absence of human oversight. 

By combining active learning with SSL, we leverage the strengths of both: active 

learning reduces annotation cost, while SSL increases training data and generalization 

capability [28–29]. This hybrid strategy leads to improved performance and training 

efficiency. 

3 Methodology 

In this section, we will employ the SecureBERT model, which is tailored for strong 

security-related applications, to perform the basic task of CTI mapping. We have de-

signed an active semi-supervised learning framework to accelerate model training and 

address the scarcity of labeled CTI. First, we will provide an overview of ASSBM in 

Section 3.1, followed by a detailed description of the other components within the 

framework in subsequent sections. 

3.1 Overview 

 

Fig. 1. The Architecture of ASSBM 

The architecture of ASSBM is shown in Fig. 1. It comprises two core components: a 

transfer learning-based model for cyber attack stage interpretation and an active semi-

supervised labeling algorithm for CTI generation. ASSBM operates cyclically through 

multiple rounds of data augmentation and model training. In each iteration, the training 

set includes both existing labeled CTI and newly labeled data generated by the labeling 

module. 

The labeling process combines active learning and semi-supervised learning. Active 

learning selects high-value samples from the unlabeled CTI dataset using a strategy 

based on uncertainty sampling and instance relevance. These samples are then manually 
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annotated and added to the labeled dataset. In parallel, semi-supervised learning iden-

tifies high-confidence unlabeled instances, assigns pseudo-labels, and incorporates 

them into the training set. The CTI mapping model is built on transfer learning, where 

SecureBERT is fine-tuned using the evolving labeled dataset. 

3.2 Cyber Attack Stage Mapping 

Attack Stage Model. The proposed model maps ambiguous CTI to clear cyber attack 

stages, helping security analysts better interpret attack intent. Choosing a concise and 

intuitive stage model is crucial for overall effectiveness. We compare three widely used 

models—Cyber Kill Chain [30], MITRE ATT&CK [31], and AIF Attack Stage Model 

[32]—and construct a CTI-oriented classification standard. The Cyber Kill Chain pro-

vides a high-level view of attacker objectives but lacks the granularity required for CTI 

interpretation. Conversely, MITRE ATT&CK defines nearly 300 detailed techniques, 

from “Active Scanning” to “Kerberos Ticket Forgery,” which, while comprehensive, 

can overwhelm analysts and degrade performance in low-resource scenarios. 

To balance interpretability and detail, inspired by the CTI-oriented perspective pro-

posed in [33], we design an attack stage model that characterizes adversarial behavior 

from both macro and micro levels. The macro level reflects what the attacker intends 

to achieve, while the micro level captures how the attack is executed. The model defines 

four macro stages: Reconnaissance and Scanning, Exploit, Maintenance Access, and 

Final Attack, along with sixteen micro behaviors. To maintain clarity and relevance, 

we exclude components with limited CTI observability, such as Passive Reconnais-

sance and Zero-Day Attacks. As shown in Table 1. 

Table 1. Attack Stage Model 

Macro Stages Micro Stages Description 

Reconnais-

sance and 

Scanning 

Host Discovery Reconnaissance of the location/IP 

Service Discovery Reconnaissance of services 

Vulnerability Discovery Reconnaissance of vulnerabilities 

Information Discovery Reconnaissance of technical information 

Exploit Privledge Esc. Actions that gain user privileges 

Brute Force Access Brute force cracking techniques 

Exploit Public Application Attacking services that are open 

Exploit Remote Services Connect to network using vpn etc. 

Arbitrary Code Execution Arbitrary code execution 

Maintenance 

Access 

Defense Evasion Techniques to evade detection 

Command & Control Establishing a channel to control target 

Final Attack End Point Dos Exploiting the system to cause crashes 

Network Dos Depleting critical network bandwidth 

Service Stop Stop services  

Data Exfiltration Remove files and information  

Data Delivery Data theft in the form of backdoors, etc. 



Cyber Attack Stage Mapping Model. The proposed Transfer Learning-Based Cyber 

Attack Stage Mapping Model combines SecureBERT and DenseNN, aiming to lever-

age the pre-trained SecureBERT model for feature extraction and representation learn-

ing, while employing DenseNN layers to further process these feature representations 

and execute classification tasks. Specifically, the architecture encompasses the follow-

ing key parameters and functions: 

SecureBERT Model: The SecureBERT model is a domain-specific language model 

for cybersecurity, derived from the BERT framework. Within the architecture proposed 

in this paper, SecureBERT is responsible for converting input text sequences into high-

dimensional semantic representations, encapsulating rich semantic features and contex-

tual information. 

DenseNN Layer: Building on the semantic representations output by the Secure-

BERT model, DenseNN (Dense Neural Network) functions as a classifier. It receives 

the semantic representations from SecureBERT as input and applies a multi-layer fully 

connected structure to further abstract and non-linearly transform the features. This 

process culminates in an output that corresponds to the number of classification labels. 

 

Fig. 2. Cyber Attack Stage Mapping Model 

3.3 Active Semi-Supervised Algorithm for CTI Label Generation 

While fine-tuning a pre-trained cybersecurity language model can interpret cyber attack 

stages (Section 3.2), its performance is constrained by limited labeled data, risking 

overfitting. To address this, we propose an Active Semi-Supervised CTI Label Gener-

ation Algorithm, combining active learning (AL) and semi-supervised learning (SSL). 

Early on, AL reduces labeling costs by selecting the most informative samples from 

limited labeled data. As labeled data grows, SSL leverages unlabeled data to improve 

generalization. This hybrid approach bridges the gap between labeled and unknown 

data, enhancing training efficiency and classification performance. 

Active Learning Sampling Strategy. AL typically relies on uncertainty/entropy-based 

methods [34], where selecting high-value subsets can achieve strong performance with 

minimal data. However, when applied to BERT, while uncertainty can help identify the 

samples with the highest model prediction uncertainty for labeling, thereby assisting 

the model in exploring unknown knowledge domains, this approach may overlook the 

correlation and representativeness among samples. This could lead to selected samples 

being skewed in data distribution or repeated selection of similar yet information-poor 
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samples, resulting in wasted labeling resources. By integrating uncertainty with in-

stance relevance in active learning, a more comprehensive evaluation of sample value 

can be achieved. This method considers not only the model's prediction uncertainty for 

individual samples but also the associations and diversity among samples. Through this 

approach, it is possible to select samples that are both challenging and representative, 

thus maximizing the utility of labeling resources. 

Thus, this paper proposes an active sampling strategy integrating uncertainty and 

instance relevance for instance selection. This strategy no longer relies on a single ap-

proach, but rather simultaneously considers both sampling uncertainty and relevance. 

The details are as follows: 

 

Fig. 3. Sampling Strategy Integrating Uncertainty and Instance Relevance 

The fig.3. illustrates the training process of ASSBM under the integrated active learning 

strategy, which begins with a small amount of labeled data and a large pool of unlabeled 

data. ASSBM consists of multiple encoding layers, and we utilize the final encoding 

layer to extract instance relevance among samples. Meanwhile, we aggregate uncer-

tainty measures to form a utility function. This function is applied to select informative 

data from the unlabeled data pool to supplement the training datasets.  

Uncertainty. Calculating uncertainty in deep learning is challenging due to the models' 

lack of interpretability and unreliable class probabilities. To address this, Gal et al. [35] 

introduced "Dropout," which randomly drops neurons during training to improve gen-

eralization. In this paper, we apply this by dropping a percentage of neurons across 

iterations and using the standard deviation of the resulting classification probabilities 

as a measure of uncertainty. 

Let the model be denoted as 𝑓𝑛𝑛, and consider a data instance 𝑥. Let 𝑇 represent the 

number of Dropout iterations, with the 𝑖  Dropout configuration denoted by 𝑑𝑖. We 

compute the average output probability of the model across 𝑇 iterations as follows: 

𝑝 =
1

𝑇
∑  

𝑇

𝑖=0

𝑓𝑛𝑛
𝑑𝑖(𝑥) (1) 

The uncertainty measure is defined as the dispersion of the predictive probabilities 

across all model iterations:  

𝑅𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛(𝑋) =
1

𝑇
∑[𝑓𝑛𝑛

𝑑𝑖(𝑥) − 𝑝]
2

𝑇

𝑖=0

(2) 

For a model, an uncertain prediction is associated with a higher dispersion value in its 

predictive probabilities (i.e., the uncertainty measure). This indicates that different parts 



of the neural network exhibit conflicting activations in response to a given input. The 

uncertainty measure can assist in selecting samples that present challenges to the model 

for labeling, thereby enhancing overall model performance. 

Instance Relevance. Regarding the relevance measure, we explore instance relevance 

by examining relationships between words in SecureBERT’s final self-attention layer. 

By calculating the average variance of multi-head attention, we assess word correla-

tions. Each word’s importance is represented by its attention weights, and summing 

these weights gives insights into its significance in the sentence. The variance across 

attention heads reflects the level of correlation. Strong correlations suggest higher 

model confidence in predictions. The relevance measure is computed by analyzing the 

attention matrices of multiple heads to evaluate word interactions [36]. 

Let 𝐴𝑀𝑖 denote the attention matrix for head 𝑖, which reflects the influence of all 

words in the text on the updating of word representations. The intra-correlation is meas-

ured by jointly considering the interactions among words within each text. The calcu-

lation formula for intra-correlation is as follows: 

𝐴𝑀𝑖 = (

𝑎11 … 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

)

𝑑voc𝑎𝑏×𝑑voc𝑎𝑏

(3) 

where 𝑛 is the dimensionality of the words in the text. 

We calculate the sum of attention weights for each word by summing the rows of 

𝐴𝑀𝑖, resulting in 𝑆𝑖. The intra-instance relevance 𝑅int𝑟𝑎(𝑋) is defined as the average 

variance across all attention heads: 

𝑆𝑖 = (𝑠1, … 𝑠𝑛)𝑇 = [

𝑎11 + ⋯ + 𝑎1𝑛

⋮
𝑎𝑛1 + ⋯ + 𝑎𝑛𝑛

]

s′ =
1

𝑛
∑  

𝑛

𝑗=1

𝑆𝑗

𝑅int𝑟𝑎(𝑋) =
1

ℎ
∑  

ℎ−1

𝑖=0

(
1

𝑛
∑  

𝑛

𝑗=1

(𝑠𝑗 − s′)
2

)

(4) 

Objective Function. Based on the definitions provided above, the selected instances 

satisfy the total objective function: 

𝑋𝑠𝑒𝑙 = arg 𝑚𝑖𝑛
𝑋

 (
𝑅int𝑟𝑎(𝑋)

𝑅𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛(𝑋)
) (5) 

This consideration unfolds from two aspects: 

1. Uncertainty Measure: High variance in predicted probabilities reflects ambiguity 

in the model's response. 
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2. Instance Relevance Measure: Low relevance indicates unclear meaning and weak 

logical connections within the instance. Lower confidence suggests ambiguity and in-

accurate relationships. 

Semi-Supervised Learning. In the Active Semi-Supervised Learning (ASSBM) 

framework, Semi-Supervised Learning (SSL) is employed to enhance the training da-

taset by generating pseudo-labels for unlabeled data. Initially, the model is trained using 

the labeled dataset. Subsequently, predictions are made on the unlabeled data, and sam-

ples with high prediction confidence are selected. These high-confidence samples are 

assigned pseudo-labels and incorporated into the training set alongside data selected 

through active learning. The model is then retrained on the augmented dataset to im-

prove its performance. 

 
Algorithm 1: ASSBM Algorithm for CTI Label Generation 

Input: The labeled data 𝐿; The unlabeled data 𝑈; Classifier 𝜃 

Output: Indicators of classifier 𝜃 

1: function ASSBM(𝐿, 𝑈, 𝜃) 

2:    while not meeting the stop criterion do 

3:       𝐷1, 𝑈 = 𝑠𝑒𝑙𝑒𝑐𝑡𝐴𝐿(𝐿, 𝑈, 𝜃) 

4:       𝐷2, 𝑈 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑆𝑆𝐿(𝐿, 𝑈, 𝜃) 

5:       𝐿 = 𝐷1 + 𝐷2 

6:       Train the classifier r model 𝜃 based on 𝐿 ; 

7:    end while 

8:    return the result 

9: end function 

10: function selectAL(𝐿, 𝑈, 𝜃) 

11:    for 𝑥𝑖 ∈ 𝑈 do 

12:       Select instance 𝑥𝑖 according to Eq.(5) 

13:       Query the label 𝑦𝑖 of 𝑥𝑖 from the expert 

14:       Remove 𝑥𝑖 from 𝑈 

15:       Merge (𝑥𝑖 , 𝑦𝑖) into 𝐷1 

16:    end for 

17:    return 𝐷1, 𝑈 

18: end function 

19: function selectSSL(𝐿, 𝑈, 𝜃) 

20:    for 𝑥𝑖 ∈ 𝑈 do 

21:       Select instance 𝑥𝑖 from 𝑈 based on high confidence levels 

22:       Assign pseudo label to 𝑥𝑖 

23:       Remove 𝑥𝑖 from 𝑈 

24:       Merge (𝑥𝑖 , 𝑦𝑖) into 𝐷2 

25:    end for 

26:    return 𝐷2, 𝑈 

27: end function 

 

Fig. 4. Active Semi-Supervised Algorithm for CTI Label Generation Algorithm 

Algorithm. The proposed active and semi-supervised algorithm for CTI label genera-

tion operates in rounds. In each round, the newly added training dataset is split into two 

parts: one selected by active learning, the other by semi-supervised learning. The train-

ing set is composed of the existing labeled CTI data and new data generated by the label 



generation module. Active learning picks critical data from the unlabeled CTI dataset 

using a strategy that combines uncertainty and instance relevance. After expert manual 

labeling, the data is added to the labeled dataset. Simultaneously, semi-supervised 

learning selects high-confidence unlabeled data, generates pseudo-labels, and adds it to 

the labeled set. 

4 Experiment and analysis 

4.1 Experiment setup 

To evaluate the proposed algorithm, we used intrusion alert data from the CPTC [37] 

and CCDC [38] competitions to simulate ambiguous CTI. We performed 10-fold cross-

validation, splitting the data into training, validation, and test subsets (6:2:2 ratio). The 

validation set was used to calculate metrics like loss, accuracy, and F1 score to monitor 

convergence, while the test set, kept separate, was used for final evaluation (metrics in 

Table 4 and Figures 7, 8). 

For active learning labeling, instead of domain experts, we followed Sun et al. [39] 

to simulate expert annotations, selecting a portion of the data for labeling and the rest 

for active semi-supervised learning. We tested with thresholds of 10%, 15%, 20%, 

25%, 30%, 35%, and 40%.  

Table 2. Dataset 

Data Source Numbers 

CPTC 3242 

CCDC 2453 

Total 5695 

This paper adopts the evaluation metrics: top-1 accuracy, top-3 accuracy, F1 score, and 

loss value as evaluation indicators. Top-1 accuracy and top-3 accuracy represent the 

percentage of correctly predicted results among all samples and the percentage of sam-

ples for which at least one of the top three predicted results is correct, respectively. The 

F1 score provides an overall evaluation based on precision and recall. 

To verify ASSBM can significantly improve the interpretability of CTI under sparse 

data conditions, the algorithm is compared with three other baseline models: 

Table 3. Baseline Model 

Model Description 

bert-base-uncased[19] Basic BERT Model 

SecureBERT[10] Basic SecureBERT Model 

SecureBERT-AL SecureBERT Model with Active Learning 

SecureBERT-SSL SecureBERT Model with Semi-Supervised Learning 

ASSBM Our work 

To ensure the rigor of the experimental results, this paper will repeat each algorithm 

experiment ten times and compute the average as the final result. The experiments were 
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conducted using an NVIDIA RTX 4060 GPU with 32GB RAM, and the software en-

vironment included Python 3.9, PyTorch 2.0.0. The optimizer uses Adam, the learning 

rate is fixed at 2e-5 (determined by grid search), and the batch size is 16. 

4.2 Experimental Results 

Comparison of Different Baseline Models. We examine the effect of iteration count 

on training efficacy, where performance ideally improves as iterations increase, with 

each iteration augmenting the labeled dataset. Figure 1 depicts the impact of iterations 

on classification accuracy across models. SecureBERT outperforms basic BERT, while 

the semi-supervised approach exhibits instability due to reliance on pseudo-labeling. 

The active learning-only model stabilizes early, as less informative samples do not sig-

nificantly enhance performance. In contrast, ASSBM effectively identifies valuable 

samples, minimizing labeled data and training costs while enhancing sample evalua-

tion. The proposed algorithm consistently outperforms both active learning and semi-

supervised methods, achieving superior accuracy in explaining macro and micro attack 

phases. 

 

Fig. 5. Comparison across Different Models for Macro Attack Stages 

 

Fig. 6. Comparison across Different Models for Micro Attack Stages 

Comparison of Different Labeled Data Proportion. We selected a specific propor-

tion of the complete dataset as labeled data for input into the model training, while 

utilizing the remaining data for active semi-supervised learning. Seven threshold values 

were chosen: 10%, 15%, 20%, 25%, 30%, 35%, and 40%. To account for the impact of 

the initial amount of labeled data on the experimental results, the specific results are 

displayed in the table 4. As observed, when the amount of labeled data is limited, all 

models perform poorly. The SecureBERT model shows a slight improvement in accu-

racy and F1 score compared to the basic BERT model. The BERT model that incorpo-

rates active learning demonstrates a more significant enhancement in accuracy—aver-

aging around a 5% increase—compared to models without active learning. Moreover, 



models based solely on semi-supervised learning yield lesser performance compared to 

those employing active learning. 

The proposed ASSBM framework significantly enhances the classification accuracy 

of the models. Unlike methods that rely solely on active learning or semi-supervised 

learning, the model presented in this paper achieves an additional 10% improvement.  

Table 4. The Impact of Different Proportions of Labeled Data on Classification Accuracy 

 
As the quantity of labeled data increases, this model can achieve an accuracy of 87.1% 

for macro attack phases, and for micro attack phases, a top-1 accuracy of 75.8% and a 

top-3 accuracy of 92.5%. This demonstrates that the proposed active semi-supervised 

network for CTI label generation effectively integrates the advantages of both active 

and semi-supervised learning. It reduces labeling costs while maximizing the use of 

limited labeled data and abundant unlabeled data to train the model, addressing the 

discrepancies between labeled datasets and unknown data. Consequently, this improves 

the training process, accelerates model training, and enhances classification perfor-

mance, as illustrated in the figure below: 

 

Fig. 7. Impact of Labeled Data Proportion on Accuracy for Macro Attack Stages(left) 

Fig. 8. Impact of Labeled Data Proportion on Accuracy for Micro Attack Stages(right) 

Comparison of Different Active Learning Algorithms. To validate our proposed ac-

tive learning strategy combining uncertainty and instance relevance, we compared 

ASSBM against three baseline methods - Least Confidence, Maximum Entropy, and 

Random Sampling - under controlled conditions with 40% labeling rate and semi-su-

pervised learning. 

The experimental results (Figs. 9-10) demonstrate ASSBM's superior performance 

across all metrics. While traditional methods like Least Confidence and Maximum En-

tropy showed slow improvements in BERT before stabilizing around iteration 15, they 

tend to select uncertain samples without considering their representativeness. This often 

leads to biased or redundant sample selection and inefficient use of labeling resources. 

In contrast, ASSBM achieved more stable performance by iteration 20 through its 

integrated approach. By simultaneously evaluating both prediction uncertainty and 
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instance relevance, our method identifies samples that are both challenging to the model 

and representative of the data distribution. This dual consideration enables more effi-

cient use of labeling resources while significantly improving the model's generalization 

capabilities. 

 

Fig. 9. Comparison of Different Active Learning Algorithms for Macro Attack Stages 

 

Fig. 10. Comparison of Different Active Learning Algorithms for Micro Attack Stages 

Comparison with Existing Methods. We conducted an experiment to compare our 

proposed method with existing works in the domains of few-shot learning and data 

augmentation[13-16], which were discussed in Section 2.1. The experiments were con-

ducted using the same datasets and experimental settings described in the respective 

papers to ensure a fair comparison. The datasets used include NSL-KDD [41], UNSW-

NB15 [42], and CICIDS2017 [43]. Considering that the evaluation metrics varied 

across the selected papers, we chose accuracy as the sole metric for comparison since 

it is the only common metric reported in all studies. The comparison results are sum-

marized in Fig.11 and Table 5, which highlights the accuracy of our proposed method 

against the selected prior methods. 

Table 5. Comparison with Existing Methods 

Reference Method Dataset 
Avg Accuracy (train-

ing/testing) 

Yu and 

Bian[13] 
DNN+CNN 

UNSW-NB15 

NSL-KDD 

0.920/0.941 

0.923/0.933 

Lu et al.[14] Meta-Learning 
UNSW-NB15 

CICIDS2017 

0.880/0.901 

0.887/0.911 

Xu et al.[15] Meta-Learning NSL-KDD 0.923/0.944 

Yash Madhavan 

et al. [16] 
Deep Learning 

UNSW-NB15 

NSL-KDD 

0.822/0.843 

0.989/0.984 

 



Our method consistently demonstrated competitive performance and outperformed 

most prior methods across the datasets. Specifically, on UNSW-NB15, our method 

achieved an accuracy of 0.941, surpassing the deep learning-based approach by 2.1%. 

On NSL-KDD, although one prior methods [16] reported a slightly higher accuracy of 

0.989, our method still maintained a comparable performance of 0.984 while showcas-

ing advantages across other methods. On CICIDS2017, our method achieved 0.911, 

outperforming the meta-learning-based model by 2.4%. 

 

 

Fig. 11. Comparison with Existing Methods 

Our approach achieves superior performance by optimizing both model and data 

layers. Unlike few-shot learning methods that focus mainly on model structures, we 

integrate data-level strategies like data augmentation and transfer learning to increase 

training data diversity and size, improving model generalization to unseen attack types. 

Additionally, active learning selects the most informative samples for labeling, while 

semi-supervised learning leverages unlabeled data. These elements collectively en-

hance the model’s robustness and adaptability, demonstrating its effectiveness in sce-

narios with limited labeled data. 

5 Conclusion 

In conclusion, this paper addresses the challenges of label scarcity and information am-

biguity in CTI by proposing a method that maps CTI effectively to specific attack 

phases. Utilizing active and semi-supervised SecureBERT, our approach enhances the 

extraction of relevant attack stage information even with limited labeled data. The ac-

tive learning sampling strategy prioritizes uncertainty and instance relevance, allowing 

for the selection of representative unlabeled samples to enrich training datasets. Exper-

imental results on the CPTC and CCDC datasets demonstrate that our method signifi-

cantly improves interpretability and classification accuracy, paving the way for more 

effective use of CTI in cybersecurity responses. Future work may consider refining this 

technique and extending its applications across various cybersecurity contexts. 

 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Acknowledgments. This work is supported by National Key R&D Program of China 

(2022YFB3105101). 

 

Disclosure of Interests. All authors disclosed no relevant relationships. 

References 

1. Alaeifar P, Pal S, Jadidi Z, et al. Current approaches and future directions for Cyber Threat 

Intelligence sharing: A survey[J]. Journal of Information Security and Applications, 2024, 

83: 103786. 

2. Sun, Nan, et al. "Cyber threat intelligence mining for proactive cybersecurity defense: a 

survey and new perspectives." IEEE Communications Surveys & Tutorials 25.3 (2023): 

1748-1774. 

3. Yang S, Lao K W, Hui H, et al. Secure distributed control for demand response in power 

systems against deception cyber-attacks with arbitrary patterns[J]. IEEE Transactions on 

Power Systems, 2024. 

4. Yang, X. (2023, June 26). Can Virtual Power Plants Become the Optimal Solution for Power 

Regulation? China Energy News. https://paper.people.com.cn/zgnyb/html/2023-06/26/con-

tent_26002578.htm. 

5. Allegretta, Mauro, et al. "Are crowd-sourced CTI datasets ready for supporting anti-cyber-

crime intelligence?." Computer Networks 234 (2023): 109920. 

6. Nadeem A, Verwer S, Moskal S, et al. Alert-driven attack graph generation using s-pdfa[J]. 

IEEE transactions on dependable and secure computing, 2021, 19(2): 731-746. 

7. Zhao F, Zhang H, Peng J, et al. A semi-self-taught network intrusion detection system[J]. 

Neural Computing and Applications, 2020, 32: 17169-17179. 

8. Ren P, Xiao Y, Chang X, et al. A survey of deep active learning[J]. ACM computing surveys 

(CSUR), 2021, 54(9): 1-40. 

9. Dor L E, Halfon A, Gera A, et al. Active learning for BERT: an empirical study[C]//Pro-

ceedings of the 2020 conference on empirical methods in natural language processing 

(EMNLP). 2020: 7949-7962. 

10. Aghaei E, Niu X, Shadid W, et al. Securebert: A domain-specific language model for cyber-

security[C]//International Conference on Security and Privacy in Communication Systems. 

Cham: Springer Nature Switzerland, 2022: 39-56. 

11. Tang D, Tang L, Dai R,et al., “MF-Adaboost: LDoS attack detection based on multifeatures 

and improved Adaboost[J],” Future Generation Computer Systems, vol.106, pp.347-

359,2020. 

12. Wang T, Lv Q, Hu B, et al. A few-shot class-incremental learning approach for intrusion 

detection[C]//2021 International Conference on Computer Communications and Networks 

(ICCCN). IEEE, 2021: 1-8. 

13. Yu Y, Bian N. An intrusion detection method using few-shot learning[J]. IEEE Access, 

2020, 8: 49730-49740. 

14. Lu C, Wang X, Yang A, et al. A Few-Shot-Based Model-Agnostic Meta-Learning for Intru-

sion Detection in Security of Internet of Things[J]. IEEE Internet of Things Journal, 2023, 

10(24): 21309-21321 

15. Xu C, Shen J, Du X. A method of few-shot network intrusion detection based on meta-

learning framework[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 

3540-3552. 



16. Madwanna Y, Annappa B, Sneha H R. YARS-IDS: A novel IDS for multi-class classifica-

tion[C]//2023 IEEE 8th International Conference for Convergence in Technology (I2CT). 

IEEE, 2023: 1-6. 

17. Bayer M, Frey T, Reuter C. Multi-level fine-tuning, data augmentation, and few-shot learn-

ing for specialized cyber threat intelligence[J]. Computers & Security, 2023, 134: 103430. 

18. Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-tuning for Text 

Classification. In Proceedings of the 56th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers), pages 328–339, Melbourne, Australia. Associ-

ation for Computational Linguistics. 

19. Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for 

language understanding[J]. arXiv preprint arXiv:1810.04805, 2018. 

20. Roy A, Pan S. Incorporating medical knowledge in BERT for clinical relation extrac-

tion[C]//Proceedings of the 2021 conference on empirical methods in natural language pro-

cessing. 2021: 5357-5366. 

21. Zhou X, Huang H, Chi Z, et al. RS-BERT: Pre-training radical enhanced sense embedding 

for Chinese word sense disambiguation[J]. Information Processing & Management, 2024, 

61(4): 103740. 

22. Garrido-Merchan E C, Gozalo-Brizuela R, Gonzalez-Carvajal S. Comparing BERT against 

traditional machine learning models in text classification[J]. Journal of Computational and 

Cognitive Engineering, 2023, 2(4): 352-356. 

23. Aftan S, Shah H. A survey on bert and its applications[C]//2023 20th Learning and Tech-

nology Conference (L&T). IEEE, 2023: 161-166. 

24. Widmann, T., and Wich, M.. 2022. “Creating and Comparing Dictionary, Word Embedding, 

and Transformer-Based Models to Measure Discrete Emotions in German Political Text.” 

Political Analysis, 1–16. 

25. Boukela L, Zhang G, Yacoub M, et al. A near-autonomous and incremental intrusion detec-

tion system through active learning of known and unknown attacks[C]//2021 International 

Conference on Security, Pattern Analysis, and Cybernetics (SPAC). IEEE, 2021: 374-379. 

26. Li J, Wu W, Xue D. An intrusion detection method based on active transfer learning[J]. 

Intelligent Data Analysis, 2020, 24(2): 363-383. 

27. Liu X, Luo E, Yang J, et al. Semi-supervised intrusion detection method based on adversarial 

autocoder[C]//2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl 

Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Compu-

ting, Intl Conf on Cyber Science and Technology Congress 

(DASC/PiCom/CBDCom/CyberSciTech). IEEE, 2021: 637-643. 

28. Sun X, Tu L, Zhang J, et al. ASSBert: Active and semi-supervised bert for smart contract 

vulnerability detection[J]. Journal of Information Security and Applications, 2023, 73: 

103423. 

29. Vahidi J, Ahmadzadeh M. A Comprehensive Semi-Suprvised Model for Collaborative In-

trusion Detection Based on Network Behavior Profiling Using The Concept of Deep Learn-

ing and Fuzzy Correlation of Alerts along[J]. Electronic and Cyber Defense, 2021, 9(3): 

165-186. 

30. LockheedMartin.com. (2011) The Cyber Kill Chain. [Online]. Available: https://www.lock-

heedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html. 

31. Cybotsai.com. (2021) An introduction to MITRE ATT&CK. [Online]. Available: 

https://cybotsai.com/introduction-mitre-attck/ 

32. Moskal S, Yang S J. Cyberattack action-intent-framework for mapping intrusion observa-

bles[J]. arXiv preprint arXiv:2002.07838, 2020. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

33. Moskal S, Yang S J. Cyberattack action-intent-framework for mapping intrusion observa-

bles[J]. arXiv preprint arXiv:2002.07838, 2020. 

34. Tharwat A, Schenck W. A survey on active learning: State-of-the-art, practical challenges 

and research directions[J]. Mathematics, 2023, 11(4): 820. 

35. Gal Y, Ghahramani Z. Dropout as a bayesian approximation: Representing model uncer-

tainty in deep learning[C]//international conference on machine learning. PMLR, 2016: 

1050-1059. 

36. Zhang A, Li B, Wang W, et al. MII: A Novel Text Classification Model Combining Deep 

Active Learning with BERT[J]. Computers, Materials & Continua, 2020, 63(3). 

37. Rochester Institute of Technology, “Collegiate penetration testing competition,” hhttp://na-

tionalcptc.org, 2018, [Online; accessed 19-July-2018]. 

38. F. Hassanabad, “suricata-sample-data,” https://github.com/FrankHassanabad/suricata-sam-

pledata/blob/master/README.md, 2019, [Online; accessed 5-May-2020]. 

39. Sun X, Tu L, Zhang J, et al. ASSBert: Active and semi-supervised bert for smart contract 

vulnerability detection[J]. Journal of Information Security and Applications, 2023, 73: 

103423. 

40. Moskal S, Yang S J. Translating intrusion alerts to cyberattack stages using pseudo-active 

transfer learning (PATRL)[C]. 2021 IEEE conference on communications and network se-

curity (CNS). IEEE, 2021: 110-118. 

41. M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A Detailed Analysis of the KDD CUP 

99 Data Set,” Submitted to Second IEEE Symposium on Computational Intelligence for 

Security and Defense Applications (CISDA), 2009. 

42. Moustafa N, Slay J. UNSW-NB15: a comprehensive data set for network intrusion detection 

systems (UNSW-NB15 network data set)[C]//2015 military communications and infor-

mation systems conference (MilCIS). IEEE, 2015: 1-6. 

43. Sharafaldin I, Lashkari A H, Ghorbani A. Toward generating a new intrusion detection da-

taset and intrusion traffic characterization[J]. ICISSp, 2018, 1: 108-116. 


