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Abstract. Multimodal sentiment analysis has emerged as a key research field, 

particularly for decoding emotions conveyed through text and images on social 

media platforms. However, many approaches encounter difficulties when inte-

grating textual and visual features across diverse dimensions, often leading to 

suboptimal performance. To address this, we propose a novel approach for mul-

timodal sentiment recognition that designs a simple yet efficient network, in-

spired by feature pyramids. In this model, feature vectors are split into high-di-

mensional and low-dimensional representations, which are then processed 

through distinct cross-attention mechanisms tailored to their scales, followed by 

a fusion step to capture comprehensive cross-modal interactions. This strategy 

enhances the network’s ability to model relationships between modalities effec-

tively. We evaluated our approach on the well-established MVSA-Single and 

MVSA-Multiple datasets, where it consistently surpasses existing techniques. 

Specifically, it achieves an accuracy of 78.27% and an F1 score of 77.95% on 

MVSA-Single, and an accuracy of 71.18% and an F1 score of 68.92% on MVSA-

Multiple. These results demonstrate the potential of combining high- and low-

dimensional features with dual cross-attention for social media sentiment analy-

sis. 

Keywords: Multimodal Sentiment Analysis, Cross-Attention Mechanism, 

Multi-Scale Features. 

1 Introduction 

Multimodal sentiment analysis[1][2][3] plays a crucial role in understanding human 

emotions expressed through text and images, particularly in the context of social media, 

where it supports applications like public opinion monitoring and mental health assess-

ment. In real-world scenarios, challenges such as inconsistent feature representations, 

varying emotional intensities across modalities, and complex interactions between tex-

tual and visual cues often result in inaccurate sentiment predictions or overlooked emo-

tional nuances. Conventional methods typically rely on unimodal feature extraction or 

simplistic fusion techniques, which struggle to scale effectively, fail to capture intricate 

cross-modal dependencies, and fall short of delivering robust performance in diverse 



 

and dynamic datasets, thus limiting their applicability in modern sentiment analysis 

tasks. 

Traditional machine learning techniques have long been applied to multimodal sen-

timent analysis tasks. These approaches typically emphasize independent feature ex-

traction, such as statistical measures for text and local descriptor-based representations 

for images, aiming to identify sentiment indicators within each modality. While they 

provide some ability to handle basic noise and modality differences, their dependence 

on separately crafted features hinders effective integration of textual and visual infor-

mation across varying dimensions, often leading to incomplete capture of emotional 

nuances and diminished performance on complex social media data. This highlights the 

pressing need for more advanced strategies that can overcome these integration chal-

lenges and enhance sentiment recognition[4][5][6] in real-world multimodal settings. 

The rapid progress in deep learning, spanning natural language processing and com-

puter vision, has transformed multimodal sentiment analysis, enabling a range of algo-

rithms to decode emotions from text and images, particularly in the expansive domain 

of social media. Joint-fusion approaches, such as CLIP[7][8], VisualBERT[9][10], and 

LXMERT[11], seek to integrate modalities directly within a single architecture, lever-

aging large-scale pretraining to align text and visual cues. Despite their promise, these 

methods often stumble in real-world scenarios, where varying emotional intensities, 

informal language, and noisy or ambiguous images degrade their ability to consistently 

capture nuanced cross-modal interactions, limiting their effectiveness for fine-grained 

sentiment tasks. On the other hand, unimodal-pretrained approaches, including 

BERT[12][13], RoBERTa[14], and XLNet[15] for text, alongside ResNet[16][17], 

VGG[18][19], and Inception[20] for images, first extract features independently using 

well-established pretrained models before attempting fusion. While these techniques 

excel at producing strong modality-specific representations, they frequently encounter 

inefficiencies in the subsequent combination phase, relying on intricate fusion layers or 

attention mechanisms that struggle to align high- and low-dimensional features, result-

ing in scalability issues and suboptimal performance on diverse datasets. Currently, 

multimodal sentiment recognition remains challenged by the complexity of integrating 

heterogeneous modalities, with existing models often failing to balance accuracy and 

adaptability, underscoring the need for more effective solutions in practical applica-

tions. 
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Fig. 1. This figure compares the performance of state-of-the-art methods on the MVSA-Single 

and MVSA-Multiple datasets, showing Accuracy and F1 scores for both datasets. Our approach 

(Ours)，achieves the highest scores of 78.27% Accuracy and 77.95% F1 on MVSA-Single, 

and 71.18% Accuracy and 68.92% F1 on MVSA-Multiple, demonstrating its superior perfor-

mance in multimodal sentiment recognition. 

To tackle these challenges, we propose a novel and efficient deep learning-based 

approach for multimodal sentiment recognition, designed to effectively integrate fea-

tures across modalities by leveraging dual cross-attention mechanisms. Inspired by fea-

ture pyramids, our method first splits feature vectors into high-dimensional and low-

dimensional representations, which are then processed through two tailored cross-at-

tention mechanisms: Distance-Modulated Exponential Cross Attention (DECA) for 

low-dimensional features, which enhances interaction through exponential distance 

modulation, and Interaction-Gated Differential Cross Attention (IDCA) for high-di-

mensional features, which prioritizes salient cross-modal interactions via differential 

gating. These features are subsequently fused to capture comprehensive emotional cues. 

The effectiveness of our method is demonstrated in Fig. 1, which compares its perfor-

mance against other leading methods on two benchmark datasets: MVSA-Single and 

MVSA-Multiple. The figure shows our approach achieving promising results with 

78.27% Accuracy and 77.95% F1 on MVSA-Single, and 71.18% Accuracy and 68.92% 

F1 on MVSA-Multiple, highlighting its potential for advancing multimodal sentiment 

analysis. 

2 Our Method 

In our framework for multimodal sentiment recognition, we propose a novel architec-

ture designed to facilitate effective cross-modal feature integration, as illustrated in Fig. 

2. The framework consists of three main stages: an input stage, a feature extraction and 

interaction stage, and a prediction stage. Initially, paired text and image inputs are pro-

cessed to extract visual and textual embeddings using CLIP, a pretrained vision-lan-

guage model. These embeddings are then transformed into coarse-grained and fine-



 

grained feature spaces to capture different levels of abstraction. In the feature extraction 

and interaction stage, the features are processed by two cross-attention mechanisms, 

DECA and IDCA, to model cross-modal relationships, followed by a fusion step to 

combine the processed features. The prediction stage then uses these fused features for 

sentiment classification, enabling accurate emotion recognition across diverse social 

media datasets through a simple yet highly efficient design. 

 

Fig.2.  This figure depicts the overall architecture of our framework for multimodal sentiment 

recognition, featuring an input stage for paired text and image data, a feature extraction and in-

teraction stage with dual cross-attention mechanisms (DECA and IDCA), and a prediction stage 

for sentiment classification, optimized for efficient and accurate performance on diverse social 

media datasets. 

Our framework processes the multimodal inputs through a series of carefully de-

signed steps to achieve effective sentiment recognition. Starting with the visual and 

textual embeddings extracted by CLIP, the features are first projected into two distinct 

spaces to represent different levels of abstraction, followed by normalization, non-lin-

ear activation, and regularization to ensure robust representations. The features captur-

ing broader patterns are then passed through DECA, which applies a distance-modu-

lated attention mechanism to compute interactions between text and image modalities, 

while the features focusing on detailed interactions are processed by IDCA, which lev-

erages a differential gating mechanism to prioritize emotionally significant relation-

ships. The outputs from DECA and IDCA are weighted and combined to balance their 

contributions, followed by a fusion layer that integrates all features into a unified rep-

resentation. This fused representation is further refined before being fed into a classi-

fier, which outputs the final sentiment predictions. By streamlining the cross-modal 

interaction process, our architecture achieves a balance between computational effi-

ciency and predictive accuracy, making it well-suited for practical multimodal senti-

ment analysis tasks. 
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2.1 Distance-Modulated Exponential Cross Attention (DECA) 

In multimodal sentiment recognition, fusing low-dimensional features poses a chal-

lenge in capturing global cross-modal interactions, as these coarse-grained features of-

ten lack fine-grained alignment between text and image modalities, leading to subopti-

mal interaction modeling. To address this, we propose Distance-Modulated Exponen-

tial Cross Attention (DECA), a novel attention mechanism that enhances the fusion of 

low-dimensional features by dynamically scaling attention scores based on feature dis-

tances. As depicted in Fig. 3, DECA takes the image low features as query (Q) and 

value (V) alongside the text low features as key (K) for one direction of cross-attention, 

and symmetrically, the text low features as Q and V with the image low features as K 

for the other direction, ensuring comprehensive interaction modeling through a bidirec-

tional attention process, followed by normalization to stabilize the output. 

 

Fig. 3 This figure illustrates the architecture of Distance-Modulated Exponential Cross Atten-

tion (DECA), where image and text low features (Q, K, V) undergo distance and scale compu-

tation, followed by softmax normalization and an add & norm step to model cross-modal inter-

actions effectively. 

𝑄 = 𝑊𝑞𝑄,  𝐾 = 𝑊𝑘𝐾,  𝑉 = 𝑊𝑣𝑉                                          (1) 

Firstly, in Eq.(1) , 𝑄, 𝐾and 𝑉 represent the query, key, and value features, respec-

tively, where 𝑄 and 𝑉 are typically the image low features, and 𝐾 is the text low feature 

(or vice versa in the bidirectional process). The matrices 𝑊𝑞, 𝑊𝑘, and 𝑊𝑣 are learned 

weights that project the features into a common space, ensuring alignment for attention 

computation. 

 



 

distance = |𝑄expanded − 𝐾expanded|                                        (2) 

Next, in Eq.(2), 𝑄expanded and 𝐾expanded are the expanded forms of the query and 

key features, adjusted to enable pairwise comparison across the batch. The distance 

term captures the absolute difference between these expanded features, quantifying the 

dissimilarity between query and key along each dimension for attention weighting. 

 

scale_factor = 𝜎(𝑄expanded + 𝐾expanded)                                  (3) 

After that, in Eq. (3), scale_factor has the same shape as the expanded features. The 

𝑄expanded  and 𝐾expanded compute the element-wise sum of the expanded query and key 

features, and 𝜎 denotes the sigmoid function, mapping the sum into the range (0,1). 

This scale factor modulates the influence of the distance, emphasizing contextually rel-

evant features. 

 

attn_scores = exp(− ∑(distance ⋅ scale_factor))                           (4) 

Subsequently, Eq.(4) combines the feature distance and the scale_factor by multi-

plying them element-wise, then summing the result across the feature dimension to 

produce a matrix of raw attention scores. By applying an exponential function with a 

negative sign, the computation ensures that smaller distances, indicating more similar 

features, result in higher attention scores, while the scale factor fine-tunes the sensitiv-

ity of this distance-based weighting to enhance relevant cross-modal interactions. 

 

attn = softmax(attn_scores) output = attn ⋅ 𝑉                         (5) 

Finally, as shown in Eq.(5), attn_scores contain the raw attention scores, and the 

softmax function is applied across the keys for each query, producing attn, where each 

row sums to 1, ensuring the attention weights are properly distributed. The attn weights 

are then multiplied with V, the value feature, to compute the output, which captures the 

enhanced cross-modal representation, where each query feature is informed by the most 

relevant key features. This process effectively aligns the query and key features, ena-

bling the model to focus on the most pertinent information. Ultimately, the output pro-

vides a refined representation that enhances the model's ability to capture cross-modal 

relationships. 

 

2.2 Interaction-Gated Differential Cross Attention (IDCA) 

During the integration of high-dimensional features in multimodal sentiment analysis, 

a major difficulty arises in pinpointing emotionally significant cross-modal relation-

ships, as these fine-grained features often involve intricate interactions that are chal-

lenging to prioritize effectively. To overcome this, we introduce Interaction-Gated Dif-

ferential Cross Attention (IDCA), a novel attention mechanism tailored for high-dimen-

sional features to selectively focus on the most relevant cross-modal connections. As 

shown in Fig. 4, IDCA takes the image high features as query (Q) and value (V) along-

side the text high features as key (K) for one direction of cross-attention, and symmet-

rically, the text high features as Q and V with the image high features as K for the other 
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direction, employing an interaction and difference computation followed by softmax 

and normalization to enhance the precision of fine-grained feature fusion for improved 

sentiment recognition. 

 

Fig. 4 This figure illustrates the architecture of Interaction-Gated Differential Cross Attention 

(IDCA), where image and text high features (Q, K, V) undergo interaction and difference com-

putation, followed by softmax normalization and an add & norm step to model salient cross-

modal interactions effectively. 

interaction = 𝑄expanded ⋅ 𝐾expanded                                       (6) 

Initially, as presented in Eq.(1), likewise，we first obtain the query (Q), key (K), 

and value (V) features through linear transformations. Secondly, in Eq.(6), 𝑄expanded 

and 𝐾expanded are the expanded forms of the query and key features, adjusted to enable 

pairwise comparison across the batch. The interaction captures the element-wise mul-

tiplication of these expanded features, quantifying the interaction strength between 

query and key along each dimension to emphasize cross-modal relationships. 

 

difference = ReLU(𝑄expanded − 𝐾expanded)                                  (7) 

In Eq.(7), difference has the same shape as the expanded features. The 𝑄expanded 

and 𝐾expanded compute the element-wise subtraction of the expanded query and key fea-

tures, and the ReLU function ensures non-negative differences, highlighting the distinct 

aspects between query and key for attention weighting. 

 

attn_scores = ∑(interaction ⋅ difference)                                 (8) 

Eq.(8) combines the interaction strength and the difference by multiplying them el-

ement-wise, then summing the result across the feature dimension to produce a matrix 

of raw attention scores. This computation ensures that attention scores are higher for 



 

features with both strong interactions and significant differences, effectively prioritiz-

ing emotionally salient cross-modal relationships. 

 

attn = softmax(attn_scores) output = attn ⋅ 𝑊                         (9) 

As shown in Eq.(9), attn_scores contain the raw attention scores, and the softmax 

function is applied across the keys for each query, producing attn, where each row 

sums to 1, ensuring the attention weights are properly distributed. The attn weights are 

then multiplied with W, the value feature, to compute the output, which captures the 

enhanced cross-modal representation, where each query feature is informed by the most 

relevant key features. This mechanism allows IDCA to effectively highlight emotion-

ally significant interactions, significantly improving the accuracy of sentiment recog-

nition in multimodal scenarios. 

3 Experiments 

The experiments are conducted on the MVSA datasets, specifically MVSA-Single and 

MVSA-Multiple, which are standard benchmarks for multi-modal sentiment analy-

sis.As illustrated in Table 1, MVSA-Single comprises 4511 samples, while MVSA-

Multiple includes 17024 samples, each with three label categories: positive, neutral, 

and negative. For both datasets, the samples from each label category are split into 

training, validation, and test sets in an 8:1:1 ratio, ensuring that all sets maintain a pro-

portional distribution of labels and mitigating class imbalance. The implementation is 

developed using Python with PyTorch 2.3.1 and CUDA 12.1 to enable efficient deep 

learning computations. All experiments are performed on a single NVIDIA 4080 GPU, 

providing sufficient computational resources for training and evaluation. For the key 

hyper-parameter settings of our model which is presented in Table 2, we use a batch 

size of 32, an initial learning rate of 6e-5 for MVSA-Single and 8e-5 for MVSA-

Multiple, and achieve the best results after training for 42 epochs on MVSA-Single and 

20 epochs on MVSA-Multiple, leveraging the pretrained ViT-B/32 CLIP model for 

feature extraction. 

Table  1. Statistics of the MVSA datasets 
Dataset Label Train Validation Test Total 

MVSA-Single Positive 2147 268 268 2683 

Neutral 376 47 47 470 

Negative 1088 135 135 1358 
All 3611 450 450 4511 

MVSA-Multiple Positive 9056 1131 1131 11318 

Neutral 3528 440 440 4408 

Negative 1040 129 129 1298 

All 13624 1700 1700 17024 
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Table  2. Hyper-parameter configuration for our model. 
Hyper-parameter MVSA-Single MVSA-Multiple 

Image size 224 224 

Text length 77 77 

Batch size 32 32 
Optimizer Adam Adam 

Initial learning rate 6e−5 8e−5 

Learning rate decay 0.4 0.4 
Epoch 42 20 

Pretrained CLIP model ViT-B/32 ViT-B/32 

 

3.1 Compared with Sota 

Table  3. Performance Comparisons of Different methos on MVSA-Single 

Model Accuracy F1 

MultiSentiNet 0.6984 0.6963 

HSAN 0.6988 0.6690 

Co-MN-Hop6 0.7051 0.7001 

CLMLF 0.7533 0.7346 

MLFC 0.7644 0.7561 

DNN-LR 0.6142 0.6103 

CNN-Multi 0.6120 0.5837 

Dual-Pipeline 0.5700 0.5600 

MVAN 0.7298 0.7298 

(Ours) 0.7827 0.7795 

 

Table  4.  Performance Comparisons of Different methos on MVSA-Multiple 

Model Acc(%) F1(%) 

MultiSentiNet 0.6886 0.6811 

HSAN 0.6796 0.6776 

Co-MN-Hop6 0.6892 0.6883 

CLMLF 0.7053 0.6745 

MLFC 0.7053 0.6797 

DNN-LR 0.6786 0.6633 

CNN-Multi 0.6639 0.6419 

Dual-Pipeline 0.7300 0.6900 

MVAN 0.7236 0.7230 

(Ours) 0.7118 0.6892 

 

The performance of our model on the MVSA datasets is presented in Table 3 and 

Table 4. On MVSA-Single, our method achieves an accuracy of 78.27% and an F1-

score of 77.95%, while on MVSA-Multiple, it records an accuracy of 71.18% and an 

F1-score of 68.92%. These results demonstrate the exceptional effectiveness of our ap-

proach, showcasing its robust capability to handle multi-modal sentiment analysis tasks 

with high accuracy and balanced performance across both datasets. The superior per-

formance of our model can be attributed to its innovative design, which integrates 



 

multi-scale feature representations to capture a wide range of cross-modal interactions. 

By processing both coarse- and fine-grained features, our method ensures a compre-

hensive understanding of the relationships between visual and textual modalities, lead-

ing to enhanced sentiment prediction accuracy. Additionally, the model’s ability to 

adaptively focus on relevant cross-modal cues further contributes to its strong perfor-

mance, making it highly effective for multi-modal learning tasks. 

3.2 Ablation Study 

Table  5. Module Comparisons of MVSA 

model MVSA-Single  MVSA-Multiple 

Accuracy F1  Accuracy F1 

None 0.6874 0.6727  0.6343 0.6312 

DECA 0.7340 0.7261  0.6652 0.6611 

IDCA 0.7528 0.7327  0.6842 0.6792 

Ours 0.7827 0.7795  0.7118 0.6892 

 

 

Fig. 5 Clustering visualizations using t-SNE for MVSA-Single and MVSA-Multiple datasets, 

where more concentrated colors indicate better clustering of positive (cyan), neutral (purple), 

and negative (yellow) classes. (a) Clustering on MVSA-Single without any mechanism, show-

ing dispersed distributions with significant overlap. (b) Clustering on MVSA-Single using 

DECA, displaying moderate concentration but still with noticeable overlap. (c) Clustering on 

MVSA-Multiple using IDCA, exhibiting improved but limited class concentration. (d) Cluster-

ing on MVSA-Multiple with our dual cross-attention mechanism, demonstrating highly concen-

trated and well-separated class clusters. 
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Table  5 presents the performance of our  with different modules on MVSA-Single 

and MVSA-Multiple, where our dual cross-attention mechanism achieves an accuracy 

of 78.27% and an F1-score of 77.95% on MVSA-Single, and 71.18% accuracy with a 

68.92% F1-score on MVSA-Multiple, outperforming the variants without attention 

(68.74% accuracy on MVSA-Single, 63.43% on MVSA-Multiple), with DECA 

(73.40% on MVSA-Single, 66.52% on MVSA-Multiple), and with IDCA (75.28% on 

MVSA-Single, 68.42% on MVSA-Multiple). Fig 5 further illustrates this superiority 

through t-SNE clustering visualizations, where subfigure (a) (MVSA-Single, no mech-

anism) shows dispersed class distributions, subfigure (b) (MVSA-Single, DECA) dis-

plays moderate concentration, subfigure (c) (MVSA-Multiple, IDCA) exhibits limited 

concentration, and subfigure (d) (MVSA-Multiple, our dual cross-attention) reveals 

highly concentrated and well-separated class clusters. These results highlight the ex-

ceptional capability of our dual cross-attention mechanism in enhancing multi-modal 

sentiment analysis by effectively capturing inter-modal relationships. The strong per-

formance stems from the mechanism’s ability to integrate coarse- and fine-grained fea-

tures, allowing the model to focus on the most relevant cross-modal interactions and 

produce more discriminative representations, as evidenced by the improved clustering 

in Fig. 5. Overall, our approach demonstrates significant advancements in multi-modal 

learning through the strategic use of dual cross-attention. 

 

fused = Linear (C(𝑥 ⋅ ft2v
low, 𝑥 ⋅ fv2t

low, 𝑦 ⋅ vhigh + 𝑧 ⋅ ft2v
high

, 𝑦 ⋅ thigh + 𝑧 ⋅ fv2t
high

))     (10) 

 

Table  6. Performance Comparison of Different Parameters On MVSA-Single 

Parameters Accuracy F1 

self-adaptation 0.7588 0.7498 

x=0.5, y=0.5, z=0.5 0.7612 0.7527 

x=1.2, y=0.7, z=0.3 0.7827 0.7795 

 

Table  7. Performance Comparison of Different Extractions On MVSA-Single 

Extration Accuracy F1 

BERT+ResNet 0.6265 0.6178 

BERT+VGG 0.6397 0.6236 

CLIP+CLIP 0.6874 0.6727 

We conduct ablation studies on the MVSA-Single dataset to evaluate the effective-

ness of our proposed framework, focusing on the weighting parameters and feature ex-

traction methods. In Eq.(10), the parameter 𝑥 determines the contribution of low-di-

mensional cross-attention features, capturing global interactions between modalities, 𝑦  

weights the high-dimensional raw features, preserving fine-grained details, and 𝑧 em-

phasizes the high-dimensional cross-attention features, highlighting emotionally signif-

icant relationships, all of which are concatenated and linearly transformed to produce 

the final fused representation. Table  6 examines the impact of these parameters, where 



 

the self-adaptation setting dynamically adjusts 𝑥, 𝑦 and 𝑧 by computing the cosine sim-

ilarity between the low- and high-dimensional features of each modality, averaged 

across the batch to reflect alignment strength; specifically, we normalize the similarity 

scores to the range [0, 1], then scale 𝑥 proportionally to the low-dimensional similarity, 

𝑦 to the high-dimensional raw feature similarity, and 𝑧 to the high-dimensional cross-

attention similarity, ensuring adaptive weighting based on feature alignment, though 

this results in moderate performance due to over-balancing. In contrast, equal weights 

(x=0.5, y=0.5, z=0.5) slightly improve performance by treating all features uniformly, 

but through extensive experiments, we identify the optimal configuration (x=1.2, y=0.7, 

z=0.3) as the best, demonstrating the importance of emphasizing low-dimensional 

cross-attention features for effective multimodal fusion. Table 7 compares different 

feature extraction methods under the condition of excluding any fusion modules to iso-

late their impact, where BERT+ResNet and BERT+VGG show lower performance due 

to their limited ability to capture multimodal interactions, while our CLIP+CLIP con-

figuration achieves the highest accuracy and F1 score, highlighting CLIP’s superior 

capability in extracting and aligning textual and visual features for sentiment recogni-

tion. In summary, our ablation studies validate the effectiveness of the proposed 

weighting strategy and feature extraction approach, with the optimal parameter settings 

significantly enhancing the model’s ability to capture cross-modal interactions. 

4 Conclusion 

To address the challenges of capturing global cross-modal interactions in low-dimen-

sional features and prioritizing emotionally significant relationships in high-dimen-

sional features for multimodal sentiment recognition, this paper proposes a novel 

framework integrating Distance-Modulated Exponential Cross Attention (DECA) and 

Interaction-Gated Differential Cross Attention (IDCA). Firstly, DECA enhances the 

fusion of coarse-grained features by dynamically scaling attention scores based on fea-

ture distances. Secondly, IDCA selectively focuses on fine-grained cross-modal con-

nections through an interaction-gated differential mechanism. Experimental results on 

diverse social media datasets demonstrate that our approach significantly improves sen-

timent recognition accuracy compared to existing methods, while maintaining compu-

tational efficiency. Future work will focus on incorporating additional modalities, such 

as audio, to further enhance the framework’s robustness and applicability in real-world 

multimodal scenarios. 
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