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Abstract. Efficient deep learning methods have achieved significant perfor-

mance in single image super-resolution. Recent research on efficient super-reso-

lution has mainly focused on reducing the number of parameters and computa-

tional complexity through various network de- signs, enabling models to be better 

deployed on resource constrained devices. In this work, we propose a novel and 

effective super-resolution model based on attention mechanism and structural re-

parameterization, called Dual Path Attention and Re-parameterization Network 

(DPARN), which uses a hybrid attention mechanism to balance the running speed 

and reconstruction quality of the model. Specifically, we utilize grouped convo-

lution to introduce both parameter free and enhanced spatial attention to improve 

the feature extraction capability of student networks. Meanwhile, we adopted a 

novel lightweight network training strategy that first uses knowledge distillation 

for initial training, during which structured knowledge from the teacher network 

is transmitted to the student network. Then, multiple loss functions are combined 

to fine- tuning the student network, in order to preserve high-frequency details 

and avoid excessive smoothing caused by pixel loss. Finally, extensive experi-

ments conducted on four benchmark datasets demonstrated the effectiveness and 

efficiency of proposed DPARN. Our method achieves PSNR/SSIM performance 

comparable to state-of-the-art efficient super- resolution models, with faster in-

ference speed and fewer network parameters. 

Keywords: Super-resolution, Balance, Attention, Re-parameterization. 

1 Introduction 

Single image super-resolution (SISR) is a mature task in low-level computer vision, 

aimed at reconstructing high resolution (HR) images from a single low resolution (LR) 

image. This task has broad applicability in enhancing image quality in various fields 

[1,2,3,4,6,7], such as in the field of intelligent mining, image super resolution mainly 

solves the problems of low image quality, blurry details, and difficult extraction of ef-

fective information in coal mine images[51]. The emergence of deep learning has 

driven significant progress in this field [8,9,10,11,12,13,14,16,17]. The latest research 

in super-resolution tasks is largely driven by attention mechanisms. Many state-of-the-

art networks adopt it and even use larger visual transformers (ViT) as model 



architectures [18,19,20,21,22,31,23,24]. These networks emphasize long-range de-

pendencies between key features and image blocks through attention mechanisms, cap-

turing broader contextual information to ensure continuity of details and accuracy of 

edge textures. However, the computational requirements of attention mechanisms (in-

volving complex network structures and a large number of additional parameters) lead 

to challenges such as large model size and slow inference speed. These challenges limit 

the applicability of these models and hinder their use in efficient and high-speed com-

puting scenarios, such as SISR tasks on resource constrained mobile devices. 

Many existing efficient super-resolution (ESR) techniques have achieved notable 

success in enhancing model efficiency. Certain models primarily concentrate on mini-

mizing FLOPs and parameters, accomplishing this through techniques like Group Con-

volution and Depth-wise Separable Convolution [25,26]. Nevertheless, merely decreas-

ing FLOPs or parameters occasionally fails to notably boost the model’s inference 

speed and may even compromise its accuracy. Other models [27] diminish the size of 

model parameters by sharing feature information and pruning non-attention branches. 

However, despite their complexity, these models still encompass numerous parameters, 

leading to prolonged runtimes. Preserving a straightforward network topology is essen-

tial to guarantee rapid inference speeds. However, conventional attention mechanisms 

frequently result in more intricate network architectures. To address this issue, inspired 

by SPAN [42], we introduced a parameter free attention mechanism to balance model 

performance and speed. At the same time, to preserve the advantages of both attention 

mechanisms, we designed a dual path structure using feature split operations, which 

can also reduce the number of parameters in the model.  

Our proposed method introduces two different attention mechanisms through a dual-

path structure, ensuring the running speed of the model and solving the time-consuming 

problem caused by traditional methods and the performance challenge brought by pa-

rameter free theory. At the same time, we use re-parameterization and knowledge dis-

tillation techniques to improve the performance. Pixel loss forces the generated image 

to align with the real image at the pixel level, but tends to output averaged results, 

resulting in high-frequency detail loss, blurry or lack of sharpness in the generated im-

age. To solve this problem, we use multiple loss functions to fine-tuning the lightweight 

model, including balancing robustness and optimization stability against outliers with 

Charbonnier loss, perceptual loss making the generated image closer to the real image 

in texture, structure, and semantics, edge loss can constrain the differences between the 

generated image and the real image in the edge region. By enhancing the sharpness, 

coherence, and positional accuracy of the edges to improve the quality of high-fre-

quency detail restoration. 

In this article, our contributions can be summarized as follows: 

Design a novel dual-path structure, which uses Enhanced Spatial Attention and Swift 

Parameter-free Attention to balance the speed and accuracy of the model. 

Utilizing knowledge distillation and re-parameterization to optimize the student net-

works, the performance can be improved without increasing the computational com-

plexity. 
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Combining multiple loss functions to compensate for the high-frequency infor-

mation mislaying caused by pixel loss, making the generated super-resolution image 

more in line with human senses. 

2 Related Work 

2.1 Efficient Image Super-resolution 

In the past few years, deep neural networks (DNNs) have demonstrated outstanding 

capabilities in improving SISR performance. The groundbreaking work is SRCNN 

[28], which applies bicubic down-sampling to HR images to construct data pairs and 

uses a simple Convolutional Neural Network (CNN) to learn end-to-end mapping from 

LR to HR images. Subsequently, a large number of CNN based methods have been 

proposed to achieve better performance [29,30,31,28,32]. For example, Kim et al. [12] 

proposed a 20 layers network with residual learning, which inspired the development 

of SISR deeper and wider networks. EDSR [27] follows the idea of residual learning, 

modifying residual blocks by removing batch normalization layers to construct a very 

deep and wide network. In addition, some studies use advanced losses such as VGG 

loss [24], perceptual loss [33], and GAN loss [34] to learn real image details. Recently, 

Transformer based super-resolution methods [13,41] have become increasingly popu-

lar, achieving high performance. However, most of these methods require a large 

amount of computing resources and have a large number of parameters, FLOP, and 

inference time, which is not conducive to practical deployment and application in edge 

devices. 

Efficient image super-resolution aims to reduce the computational workload and pa-

rameter count of SR networks, while achieving faster inference time and maintaining 

high performance. In the deployment of SR models in the real world, the computing 

power of deployed devices is usually limited, such as edge devices. In this case, the 

efficiency of the SR network becomes an important aspect. In order to meet the growing 

demand for deploying SR models with limited computing resources, many works have 

refocused their attention on efficient image SR techniques [21,18]. At the same time, 

many competitions, such as NTIRE [37] and AIM [36], have launched efficient image 

super-resolution entries to promote the development of related research. In recent re-

lated studies, CARN [8] proposed local and global level linkage mechanisms to imple-

ment lightweight SR networks. IMDN [11] designed an information multiple distilla-

tion network by constructing cascaded information multi-distillation blocks to extract 

hierarchical features. The following RFDN [14] work further improved the network by 

introducing feature distillation blocks, which use 1 × 1 convolutional layers to achieve 

dimensional changes. Based on RFDN, RLFN [20] studied its speed bottleneck and 

improved its speed by removing layered distillation connections. In addition, RLFN 

proposes a feature extractor to extract more edge and texture information. With these 

advancements, they achieved first place in the NTIRE 2022 Efficient Super Resolution 

Challenge [35]. 



2.2 Attention Mechanism 

The attention mechanism is widely used in computer vision tasks. By dynamically re-

weighting features, computing resources are directed to the most prominent parts of the 

input, thereby improving the efficiency and effectiveness of various tasks 

[44,45,46,47,48]. Attention-based super-resolution networks generally require larger 

receptive fields to capture local and global information in order to improve perfor-

mance, however, using parameterized attention maps may slow down inference. For 

ESR tasks, the application of lightweight attention mechanisms plays an important role 

in improving model performance without significantly increasing complexity [15]. In-

spired by SPAN [42], attention maps can be generated without additional training and 

parameters while still having a positive impact on performance. The key to this light-

weight attention method is to maximize the representation power of the super-resolu-

tion network within a limited model budget. This method makes up for the speed dis-

advantage of parametric attention. By combining both mechanisms, we can develop a 

dual-path architecture that balances speed and performance. Our method combines the 

advantages of parameterized and parameter-free attention, and uses grouped convolu-

tion and re-parameterization to further reduce the model size while ensuring model per-

formance. This not only reduces computational complexity but also enhances its ability 

to localize weak objects, which is crucial for improving super-resolution technology. 

 

Fig. 1. The training pipeline of our method. 

3 Method 

In this section, we will first introduce our proposed Dual-path Attention Re-parameter 

Network (DPARN) in Section 3.1. In Section 3.2, we describe a feature extractor de-

signed by combining two attention mechanisms, called Dual-path Attention Block 

(DPAB). In Section 3.3, we designed a structure that is friendly to image super-resolu-

tion and can improve model performance without increasing computational costs, 

named Re-parameterization Residual Block (ReRB). In Section 3.4, we use multiple 
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loss functions to jointly fine-tune the student network, which can retain more high-

frequency information of the generated image. 

3.1 Network Architecture 

The network architecture of our proposed DPARN is shown in Fig. 1. Our DPARN 

mainly consists of two parts: a large teacher network and a lightweight student network. 

The teacher network first conduct LR feature extraction implemented by single 3 3  

convolution. Then, the key component of our teacher network utilizes multiple stacked 

Residual-Dense Group (RDG) blocks from the DRCT [49] for deep feature extraction. 

The final pixel reconstruction module consists of two learnable layers and a non-para-

metric operation (sub-pixel convolution) for saving parameters as much as possible. 

Given an input LR image 𝐼𝐿𝑅 the corresponding super-resolution image 𝐼𝑡
𝑆𝑅 can be gen-

erated by: 

 ( )SR LR

t TI N I=  (1) 

where ( )TN  is our teacher network, the loss function of it can be expressed by: 

 
1|| ||SR HR

T tL I I= −  (2) 

where HRI  indicates the target HR image and 
1||||  is 

1l  norm. After the teacher network 

training converges, save its weights as part of the next stage of the lightweight network 

training. In the first module of our proposed student network, we use one 3 3  convo-

lution to extract the shallow features: 

 1 ( )LR

shallow convF m I=  (3) 

where 1 ( )convm  denotes the first 3 3  convolution operation and shallowF  is the ex-

tracted feature maps. Then we use multiple DPABs for deep feature extraction. This 

stage can be expressed by: 

 1 0( ( ( ) ))n n

n DPAB DPAB DPAB shallowF m m m F−=    (4) 

where n

DPABm  denotes the n -th DPAB function, and 
nF  is the n -th output feature 

maps. Last, the reconstruction module aims to generate the final output SR

SI : 

 2( ( ) )SR

S rec conv n shallowI m m F F= +  (5) 

where ( )recm  denotes sub-pixel operation and 2 ( )convm  represents the second 3 3  

convolution. When training the student network, we use the SR

sI  and HR image for su-

pervised learning, we compute the following losses: 

 1 1

SR SR SR HR

SL s t sL I I I I=   −  +  −   (6) 



 

Fig. 2. (a) Structure of DPAB. (b) The structure of ReRB. (c) The structure of ESA 

where   and   are penalty coefficients to balance different aspect of loss. In addition 

to knowledge distillation, feature distillation is also a commonly used method to im-

prove model performance in the field of image super-resolution. Thus, we introduce 

Feature Affinity-based Distillation (FAKD) [5] as another loss function for student net-

work training, it can be expressed by: 

 

ˆ

1

1

1
|| ( ) ||

| |

i
T S

fa i i

i

L M M
M =

= −   (7) 

where T

iM and S

iM  represent the affinity matrices of the teacher and student network 

extracted from the feature map of the i -th layer, î  is the number of layers that we 

choose to extract. | |M  represents the number of elements in the affinity matrix,   

denotes using 1 1  convolution to expand the channel of features which extracted from 

student network. The final loss during training the student network is: 

 S SL faL L L= +   (8) 

where   is weight of faL . Using this loss, the student networks can better learn the 

feature distribution of the teacher, thereby reducing overfitting of training data. 
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3.2 Attention Mechanism 

In this section, we introduced the Dual Path Attention Module (DPAB), which can sig-

nificantly reduce inference time while maintaining model performance. As shown in 

Fig. 2a, our proposed DPAB abandons the idea of a single attention mechanism and 

instead uses grouped convolution to introduce both parameter free and enhance spatial 

attention to balance speed and effectiveness. Both the left and right branches of DPAB 

use several stacked convolutions and ReLU activation function for local feature extrac-

tion. Differently, in the left structure, the features generated by the third ReLU is added 

to the left input and then processed by ESA. In the right structure, the last convolution 

output is fed into the Sigmoid activation function to generate attention feature maps, 

and is added to the right input to generate fused features. The fused features are multi-

plied with the attention feature map to obtain the right final features. Finally, concate-

nate the outputs on the left and right sides to obtain the final output of the entire module. 

Given the input Fin, the structure can be described as:  

 

( )3 2 1

3

3 2 1

3 3

, ( )

( ( ( ) ) )

( ( ( )))

( ) ( )

( , )

in in

left right in

out left left left in in

left left left

right right right in

right right

out in

right right right right

out out

out left right

F F Split F

F E CR CR CR F F

F CR CR CR F

F F F F

F Concat F F

=

= +

=

=   +

=

 (9) 

where Split  denotes channel split layer of DPAB, in

leftF  and in

rightF  represent the input 

features of the left and right branches, left

jCR  and right

jCR  indicate the j -th 

CONV+RELU layer of the left and right, E  is Enhanced Spatial Attention, 
out

leftF  and 

out

rightF represent the out features of the left and right, 3

rightCR is the third convolution layer 

of right,  is Sigmoid activation function,  is element-wise product, Concat  is con-

catenate layer. 

3.3  Re-parameterization Residual Block 

To further improve the performance of our student network, we used structural re-pa-

rameterization to enhance its feature extraction capability. Re-parameterization has 

achieved good results in super-resolution tasks and can improve the model’s expres-

siveness without increasing complexity [17]. Therefore, we designed a novel module 

suitable for image super-resolution, namely Re-parameterization Residual Block 

(ReRB), which can effectively extract edge features in the horizontal and vertical di-

rections of the image. As shown in the Fig. 2b, the first component is a 3 3  convolu-

tion, which is used to ensure the baseline performance of the model. The second com-

ponent is composed of a 1 1  and a 3 3  convolution, where 1 1  is used for channel 

expansion because wider features can improve the model’s expressiveness. 3 3  is 



used for channel compression, converting the channel to the original input number. The 

third component is a 1 3  convolution, which is used to extract horizontal edges in the 

image. The fourth component is a 3 1  convolution, which can detect vertical textures 

in the image. In order to solve the gradient dissipation problem of deep networks, we 

added residual connection to the structure. The mathematical expression of the entire 

module is as follow: 

 
3 3 3 3 1 1 1 3 3 1( ) ( ( )) ( ) ( )out in in in in inF C F C C F C F C F F    = + + + +  (10) 

where 
i jC 

 denotes a convolution with kernel size ( , )i j , 
inF  and 

inF  are input and 

output feature of ReRB. In the inference stage, the second component can be merged 

into one single normal convolution. According to [53], the first, third and fourth com-

ponent also can be incorporated into a standard 3 3  convolution. Finally, the two par-

allel convolutions are transformed into one after re-parameterization. 

3.4 Multiple Loss Fine-tuning Strategy 

1L  loss focuses solely on pixel-level absolute differences, without considering human 

visual perception. As a result, it often struggles to effectively restore textures, edges, 

and high-frequency details, leading to noticeable information loss in fine structures. 

The generated textures tend to appear overly smooth, making the results less visually 

satisfying. In order to address this issue, some approaches combine perceptual loss with 

L1 loss during training. While this improves perceptual quality, it still lacks sufficient 

texture-related information. Inspired by MPRNet [52], we introduce edge loss to com-

pensate for this limitation. By integrating Charbonnier loss, perceptual loss, and edge 

loss, we fine-tuned the student network through joint optimization. The fine-tuning loss 

function is formulated as follows: 

 

1 2

2 2

2

2

2 2

( , ) ( , ) ( , )

|| ||

1
|| ( ) ( ) ||

|| ||

SR HR SR HR SR HR

ft char s percep s edge s

SR HR

char s

SR HR

percep j s j

j j j

SR HR

edge s

L L I I L I I L I I

L I I

L I I
C H W

L I I

= +  + 

= − +

=  −

= ( ) − ( ) +

 (11) 

where 
1  and 

2  are balance factor of three loss functions, which are set to 0.005 and 

0.05.   denotes a constant set to 0.001. ( )j x  is the output feature maps of j -th layer 

of network   when processing the image x , j j jC H W  are channel, height and width 

of ( )j x ,   denotes the Laplacian operator. 2

2||||  means the Euclidean distance be-

tween two feature representations. 
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4 Experiments 

4.1 Setup and Details 

We adopt the widely used high-quality (2K resolution) DIV2K dataset, which contains 

800 training samples, following some previous studies [20,40]. We test the performance 

of our method on five benchmark datasets: Set5, Set14, BSD100, and Urban100. 

Table 1. Comparison with state-of-the-art methods on benchmark datasets. The best perfor-

mance in red colors. The second-best results are marked in blue. MAF means MAFFSRN and 

Shuffle denotes ShuffleMixer 

Scale Model 
Params Runtime Set5 Set14 B100 U100 

K ms PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

2  

SRCNN 24 6.92 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 

VDSR 666 35.37 37.53/0.9587 33.05/0.9127 31.90/0.8960 30.77/0.9141 

LapSRN 251 53.98 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 

CARN 1592 159.10 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 

IMDN 694 77.34 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 

RFDN 534 74.51 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 

MAF 402 152.91 37.97/0.9603 33.49/0.9170 32.14/0.8994 31.96/0.9268 

ECBSR 596 39.96 37.90/0.9615 33.34/0.9178 32.10/0.9018 31.71/0.9250 

RLFN 527 60.39 38.07/0.9607 33.72/0.9187 32.22/0.9000 32.33/0.9299 

Shuffle 411 144.22 38.01/0.9606 33.63/0.9180 32.17/0.8995 31.89/0.9257 

SAFMN 228 118.07 38.00/0.9605 33.54/0.9177 32.16/0.8995 31.84/0.9256 

SPAN 481 50.39 38.08/0.9608 33.71/0.9183 32.22/0.9002 32.24/0.9294 

Ours 462 47.45 38.06/0.9603 33.72/0.9184 33.20/0.9001 32.25/0.9296 

4  

SRCNN 57 1.9 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 

VDSR 666 8.95 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 

LapSRN 502 66.81 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 

CARN 1592 39.96 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 

IMDN 715 20.56 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 

RFDN 550 20.40 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 

MAF 441 39.69 32.18/0.8948 28.58/0.7812 27.57/0.7361 26.04/0.7848 

ECBSR 603 10.21 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 

RLFN 543 16.41 32.24/0.8952 28.62/0.7813 27.60/0.7364 26.17/0.7877 

Shuffle 411 144.22 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 

SAFMN 240 72.06 32.18/0.8948 28.60/0.7813 27.58/0.7359 25.97/0.7809 

SPAN 498 13.67 32.20/0.8953 28.66/0.7834 27.62/0.7374 26.18/0.7879 

Ours 482 12.32 32.21/0.8952 28.65/0.7829 27.63/0.7376 26.18/0.7877 

We evaluate our method and the comparison methods on the Y channel of YCbCr space 

using two common metrics, namely Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM). In addition, to verify the efficiency of the method, we count 

the number of parameters and inference time of the network structure of each method 

in a standard way as validation metrics, which are statistically obtained in the same 

computing environment. 

Four DPAB modules with 52 channeled feature maps are deployed for training pro-

cedure. All experiments were completed on NVIDIA2080Ti. In the training phase, we 

use random flipping, rotation augmentation and select Adam as the optimizer. When 



training the teacher network, we set the initial learning rate to 1e-4, halve it every 

100,000 iterations, and then use L1 loss for supervision. When training the  

 

Fig. 3. Latency, PSNR and complexity of model comparison on Urban100 dataset in 4  scale 

factor task. 

student network using the progressive strategy, the initial learning rate is 2e-5 and 

halved every 20,000 iterations. In this process, the training patch size is gradually in-

creased to improve the performance, and is selected from [64, 128, 256, 384]. In the 

fine-tuning process, the initial learning rate is 1e-5 and halved every 40,000 iterations, 

fine-tuning is performed using 384 384  patches as input. 

4.2 Quantitative Results 

In this study, we scaled up the DPARN model by 2  and 4  in various benchmark 

tests, and compared its detailed test results with the current state-of-the-art and efficient 

super-resolution models [11,12,14,16,17,20,21,25,38,39,42,54]. The detailed results 

refer to Table 1. In multiple benchmark tests, DPARN has shown better performance 

than most models in terms of PSNR and SSIM, especially in terms of inference time. 

Compared with SPAN, DPARN can achieve very similar PSNR and SSIM performance 

indicators with faster inference speed. As shown in Fig. 3, by visualizing the relation-

ship between image quality, inference time, and model size, we observed that under 
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equivalent PSNR, inference speed of DPARN was significantly faster than other mod-

els; When the model parameter counts are similar, it not only performs better, but also 

runs faster. Therefore, DPARN achieves the best balance in imaging quality, parameter 

quantity, and inference speed. 
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Fig. 4. Visual comparison of the results of ours and other methods on the validation set of 

Urban100 for ×4 upscaling task. Shuffle means ShuffleMixer method 

4.3 Quanlitative Results 

As shown in Fig. 4, we compared our method with some recent efficient super-resolu-

tion methods. From the figure, it can be seen that although our model is small, we can 

still achieve good super-resolution performance. Compared with other larger methods, 

the images after super-resolution have clearer edges. This is because we used multiple 

loss functions to fine tune the student network, which makes our method more inclined 

to retain high-frequency objects during the training process. 

Table 2. Effect of using different degrees of attention on PSNR and SSIM, esa means for use 

only Enhance Spatial Attention, spa denotes Swift Parameter-free Attention alone 

Model 
Runtime Set5 Set14 B100 U100 

ms PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

DPAB_esa 15.8 32.23/0.8952 28.67/0.7830 27.64/0.7378 26.19/0.7878 

DPAB_spa 11.9 32.19/0.8949 28.63/0.7825 27.59/0.7372 26.16/0.7874 

DPAB (ours) 12.3 32.21/0.8952 28.65/0.7829 27.63/0.7376 26.18/0.7877 



4.4 Ablation Study 

Effectiveness of different attention. The results in Table 2 show the advantages of our 

dual-path method. Compared with the network that directly adopts a single attention, 

our method has a good balance between the speed and accuracy of model inference. 

Compared with only using enhanced spatial attention, our method is faster, but the ac-

curacy is only slightly reduced. Compared with only using swift parameter-free atten-

tion, our method has a decrease in accuracy, but the speed is only slightly increased. 

However, compared to the slight decrease in speed, the significant improvement in 

PSNR and SSIM performance indicators is worthwhile. 

Table 3. Effect of using different degrees of distillation on PSNR and SSIM. Teacher means 

teacher network, Shallow means the features of the shallow blocks, and Deep means the features 

of the deep blocks. 

Teacher Shallow Deep 
Set5 Set14 B100 U100 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

   32.15/0.8944 28.58/0.7823 27.58/0.7369 26.13/0.7869 
   32.17/0.8948 28.60/0.7824 27.60/0.7371 26.14/0.7873 
   32.17/0.8949 28.61/0.7826 27.61/0.7373 26.16/0.7874 
   32.19/0.8950 28.62/0.7828 27.63/0.7374 26.17/0.7876 
   32.21/0.8952 28.65/0.7829 27.63/0.7376 26.18/0.7877 

Effectiveness of different distillation. The results in Table 3 show the advantages of 

our multi-stage feature distillation. Compared to directly training a small model end-

to-end, our method can significantly improve model performance, benefit from the 

powerful representation of the teacher’s model capabilities. Meanwhile, our student 

model will not incur additional computational costs. From the results in the table, we 

found that using only deep features is better than using only shallow features, and the 

best effect is achieved when both are used simultaneously. 

Table 4. Performance comparison of using different loss functions evaluated on four bench-

mark datasets. CL denotes chain loss, PL means perceptual loss and EL denotes edge loss. 

CL PL EL 
Set5 Set14 B100 U100 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

   32.18/0.8947 28.61/0.7826 27.58/0.7371 26.15/0.7874 

   32.19/0.8949 28.63/0.7826 27.59/0.7372 26.16/0.7875 
   32.20/0.8950 28.64/0.7828 27.60/0.7375 26.17/0.7875 
   32.18/0.8949 28.63/0.7827 27.61/0.7376 26.16/0.7876 
   32.21/0.8952 28.65/0.7829 27.63/0.7376 26.18/0.7877 

Effectiveness of different loss. We show the impact of different loss function combi-

nations on PSNR and SSIM during the fine-tuning process in Table 4. In previous work, 

there have been no examples of training solely using perceptual loss or edge loss, so 

we will not make a comparison here. From the table, it can be seen that compared to 

initial training, using only chain loss for fine-tuning can achieve improvement on 
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PSNR. By combining two loss functions for fine-tuning, the chain loss and perceptual 

loss showed the most significant improvement on PSNR. But overall, the maximum 

PSNR can only be achieved when all three loss functions are simultaneously applied to 

fine-tuning.. 

Effectiveness of re-parameterization. As Table 5 showed, we compared the impact 

of using re-parameterization on performance, and the experimental results showed that 

the use of re-parameterization technology can comprehensively improve the perfor-

mance of the model, verifying the effectiveness of the ReRB module. 

Table 5. Comparison of our model with re-parameterization and no_rep without using the re-

parameterization technology for training process 

Model 
Set5 Set14 B100 U100 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

no_rep 32.16/0.8948 28.62/0.7825 27.58/0.7372 26.15/0.7873 

with_rep 32.21/0.8952 28.65/0.7829 27.63/0.7376 26.18/0.7877 

Generalization. We also investigate the generalization of our proposed multiple loss 

fine-tuning strategy. We apply this strategy to IMDN [11] and the quantitative compar-

ison results are shown in Table 6, indicating that our proposed method has generality 

and can be applied to other existing SISR models. 

Table 6. Effect of multiple loss for 4 SR. IMDN_ML employs multiple loss in fine-tuning. 

Model 
Set5 Set14 B100 U100 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

IMDN 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 

IMDN_ML 32.22/0.8950 28.62/0.7813 27.58/0.7355 26.07/0.7839 

5 Conclusion 

This article proposes a dual path attention fusion method. Specifically, we use grouped 

convolution to adopt Enhanced Spatial and Swift Parameter-free Attention mechanism, 

and employ lightweight model training strategies such as structural re-parameteriza-

tion, knowledge distillation, and multi loss joint finetuning to further improve the per-

formance of the network. Our experiments have demonstrated the effectiveness of our 

method and achieved advanced performance in terms of time consumption and model 

size on common open-source datasets. This makes our proposed method very suitable 

for real-world applications, especially in resource constrained scenarios such as mobile 

devices. Future research may apply the dual path attention mechanism to other com-

puter vision tasks and further optimize the network to improve efficiency 
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