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Abstract. Industrial batch processes are extensively employed in the modern 

manufacturing industry due to their efficiency and flexibility. However, control-

ling and optimizing batch processes is difficult because of their complex non-

stationary dynamics and inherent time-varying uncertainties. In order to address 

these issues, this paper proposes a Q-learning-based optimal control scheme for 

time-varying batch processes to achieve optimal control while reducing reliance 

on process modeling. Based on the time-varying nominal model, an initial control 

policy is derived from the principle of optimality and dynamic programming. 

Nevertheless, the presence of unknown time-varying system uncertainties hin-

ders the optimal performance of the initial control policy. To overcome this lim-

itation, we utilize the repetitive nature of the batch process to collect operational 

data from multiple batches runs under the initial control policy. Then, the Q-

learning-based optimal control scheme is developed to iteratively improve the 

initial control policy under the reinforcement learning framework. Finally, the 

results from the experimental simulations in the numerical multi-input multi-out-

put batch system and the injection molding process confirm the efficiency, ap-

plicability, and superior control performance. 

Keywords: Reinforcement Q-learning, Optimal Control Scheme, Time-varying 

batch processes, Time-varying system uncertainties. 

1 Introduction 

Batch processes are repetitive operations that execute the same tasks over a finite pe-

riod. Due to their notable advantages, such as low capital costs, less material, and flex-

ible production conversion, batch processes such as robotic manipulators [1,2], chemi-

cal industries [3,4], and integrated circuits [5] are extensively employed in modern 

manufacturing. However, controlling batch processes is extremely challenging due to 

the increasing complexity of production requirements, particularly in complex system 

dynamics, model uncertainties, and changing operating conditions. Over the past dec-
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ades, many advanced control strategies have been developed for batch processes, in-

cluding iterative learning control (ILC) [6,7], model predictive control (MPC) [8,9], 

and reinforcement learning control (RLC) [10]. Nevertheless, most existing works have 

concentrated on traditional time-invariant batch processes that are impacted by external 

perturbations, model errors, and environmental noise [11,12]. In contrast, limited atten-

tion has been given to practical time-varying batch processes, such as injection molding 

[13] and continuous stirred tank reactors [14]. Time-invariant control strategies often 

fail to ensure adequate performance and robustness in time-varying batch processes. 

For time-varying batch processes, Owens proposed a least-norm ILC to achieve 

high-precision trajectory tracking [15], while Sebastian enhanced the D-type ILC by 

incorporating a feedback loop to improve control performance [16]. Additionally, in-

put-constrained MPC has been developed to ensure asymptotic stability in multi-input 

multi-output (MIMO) linear time-varying (LTV) batch processes [17]. Although these 

control schemes demonstrate effective control performance, they rely on the accuracy 

of the system model. In practical applications, there are inevitable modeling errors be-

tween the actual system and the nominal model. These modeling errors can signifi-

cantly degrade control performance and compromise system stability and safety. 

Numerous control schemes combined with robust control theory have been proposed 

to address the inevitability of the model uncertainties. The fundamental idea of robust 

control is to minimize the maximum possible control error in the presence of bounded 

modeling uncertainties. Jan proposed a robust ILC to ensure monotonic convergence 

for the time-varying batch processes [18]. Hao developed a novel PI-type indirect ILC 

by integrating PI-type ILC with robust control to address the time-varying model un-

certainties [19]. Additionally, Zhang extended MPC by employing a systematic min-

max optimization method to counteract system uncertainties [20]. The above robust 

control schemes can effectively suppress the system uncertainties and guarantee control 

performance. However, robust control approaches assume known limitations for the 

unknown uncertainties. A significant uncertainty boundary makes the robust controller 

conservative, preventing optimal control performance, whereas a small uncertainty 

boundary hinders robustness and can not effectively eliminate system uncertainties. 

Thus, designing the optimal control scheme for time-varying batch processes with time-

varying uncertainties remains a significant challenge. 

Reinforcement learning (RL) has emerged as a powerful method for optimizing in-

tricate dynamic systems. Unlike model-based control schemes, RL directly interacts 

with the controlled systems to learn unknown system uncertainties and achieve the op-

timal control objective. Without system dynamics, Lopez proposed an efficient off-

policy Q-learning method for infinite discrete time-invariant systems to achieve opti-

mal control performance [21]. A two-dimensional ILC scheme based on the Q-learning 

algorithm was proposed for linear time-invariant batch processes to perform high-pre-

cision control [22]. These control schemes highlight reinforcement learning as an ef-

fective advanced technology that can enhance traditional model-based control methods 

and restrain the negative influence of system uncertainties in time-varying batch pro-

cesses. 

Inspired by the principle of RL and the repetitive nature of batch processes, this 

paper proposes a novel Q-learning-based optimal control scheme for time-varying 
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batch processes with time-varying system uncertainties. Initially, a non-optimal control 

policy is derived from the principle of optimality and dynamic programming based on 

an inaccurate nominal model. Using the repetitive nature and the off-policy Q-learning 

algorithm, we develop a Q-learning-based optimal control scheme to improve the initial 

non-optimal control policy. Finally, the effectiveness and the control performance of 

the proposed control method are validated in the linear MIMO time-varying batch sys-

tem and the time-varying injection molding process. The key innovations and contri-

butions of this work are as follows: 

1. We propose a novel data-driven optimal control scheme for time-varying batch pro-

cesses with time-varying uncertainties by integrating the Q-learning algorithm with 

dynamical programming. 

2. Unlike the previous time-varying batch control schemes, which depend on the model 

accuracy [15,16,17], or the robust control schemes [18,19,20], which rely on the 

prior knowledge of the uncertainty boundary, the proposed model-free control 

scheme only utilizes the batch data to achieve optimal control policy. 

3. Compared with the reinforcement learning control schemes for time-invariant batch 

processes [21,22], the Q-learning-based optimal control scheme provides an effec-

tive control scheme for time-varying batch processes. 

The structure of this paper is outlined as follows: Section 2 includes the problem 

description along with the design objectives for the optimal control scheme. Section 3 

provides a comprehensive explanation of the proposed Q-learning-based optimal con-

trol scheme. In Section 4, simulations of the proposed control scheme are conducted 

on the MIMO time-varying batch system and the injection molding process to demon-

strate outstanding control performance. The paper finally concludes with important 

conclusions and insights in Section 5. 

2 Problem Description 

It is assumed that the industrial batch process with time-varying system dynamics 

and system uncertainties can be described by: 

  (1) 

where  denotes the batch number;  represents the time step;  is the batch operation 

length; , , and  are the system state, output, and input, re-

spectively; , , and  represent the known nominal 

time-varying model matrices; , ,  are the un-

known time-varying system uncertainties. 

In practice, optimal control design aims to closely follow predefined reference tra-

jectories while minimizing the control signal to reduce energy consumption in batch 



processes. Thus, the following practical cost function is given for time-varying batch 

processes:  

  (2) 

with 

  (3) 

where  denotes the reference trajectory, which is repetitive for each batch in 

the batch processes;  represents the tracking error;  represents the sym-

metric positive semi-definite weighting matrix;  denotes symmetric positive def-

inite weighting matrix. 

For time-varying batch processes, the control scheme is designed to minimize the 

specified cost function (2). However, time-varying system dynamics and unknown un-

certainties deteriorate control performance and prevent the achievement of the optimal 

control objectives.  

Design Objectives: For the time-varying batch process with unknown time-varying 

system uncertainties, the optimal control scheme is designed to meet the following ob-

jectives: 

• The optimal control policy is designed to determine the optimal control signal 

 to minimize the given cost function . 

• The influence of unknown time-varying system uncertainties on the control perfor-

mance must be eliminated. 

3 Control Scheme 

This section introduces a novel data-driven Q-learning-based optimal control 

scheme. Initially, the initial control policy is designed based on the nominal model, 

excluding time-varying system uncertainties. By using the repetitive nature of batch 

processes, this mode-based initial control policy is employed to sample operation data 

from time-varying batch processes. Then, the Q-learning-based optimal control scheme 

is proposed to optimize the initial control policy from the sampled operation data.  

3.1 Model-based Initial Control Policy 

To design the model-based optimal control scheme, we first define the following refer-

ence trajectory model: 
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  (4) 

where  represents the th scalar of the reference trajectory;  is the sum of 

the reference trajectory;  and  are the time-varying reference trajec-

tory matrices. Based on the reference trajectory model (4) and the practical batch pro-

cess (1), the optimal control scheme is derived as follows: 

 

Theorem 1 (Model-based Optimal Control Scheme). For time-varying batch pro-

cesses with time-varying system uncertainties (1), the optimal control policy  and 

the corresponding minimal cost function  are given as follows: 

  (5) 

  (6) 

where the optimal control gain matrix  and the optimal cost function matrix  are 

computed as follows: (from  to  ): 

  

  

  

  

Remark 1: At the terminal time , there is no cost for the next time. Thus, the 

optimal cost function  and the corresponding matrix  are equal to zero. Addition-

ally, without the reference trajectory ,  is set to zero. 

Proof of Theorem 1: For the current time , the given cost function is expressed by: 

  (7) 



Based on optimality principle [23], the optimal cost function satisfies the following 

properties: 

  (8) 

Additionally, replacing Eq. (4) and Eq. (6) in Eq. (8) leads to: 

  (9) 

Moreover, based on Eq. (1), the augmented dynamic system is formulated: 

  (10) 

Substituting Eq. (10) into Eq. (9) results in a new expression: 

  (11) 

The derivative of the cost function  with respect to  is obtained: 

  (12) 

By solving Eq. (12) set to zero, the optimal control signal  is determined: 

  (13) 

By applying Eq. (13) to Eq. (11), the resulting optimal cost function is derived: 

  (14) 

Thus, Theorem 1 is proved. Fig. 1 depicts the comprehensive structure of the model-

based optimal control scheme for time-varying batch processes. 
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Fig. 1. The overall framework of the model-based optimal control scheme. 

3.2 Q-learning-based Optimal Control Scheme 

According to Theorem 1, the optimal control policy is directly derived when the 

time-varying system models (1) is fully known. However, the system uncertainties 

,  and  are not easily determined, which affects the model-based optimal 

control scheme design. In this subsection, we apply Q-learning to further optimize the 

initial control policy and eliminate the adverse effects of the unknown time-varying 

uncertainties. In addition, the following lemma is given to derive the Q-learning-based 

optimal control scheme. 

Lemma 1: For the time-varying batch process, if the control signal satisfies the fol-

lowing structure: 

  (15) 

at each time , the cost function takes the following quadratic expression: 

  (16) 

where  is the symmetric matrix.  

We specify the current control policy  for the Q-learning-based control scheme as: 

  (17) 

Then, according to the Q-learning RL and Lemma 1, the value function  

under the control policy  at time  is expressed by: 

  (18) 

where  represents the control signal from the control policy ;  is the cost func-

tion matrix corresponding to the control policy . 

Analogous to the value function, the Q-function  under the current 

policy  is defined as: 

  (19) 



where  is the arbitrary control signal. The subsequent control signals from time 

 to the end of the batch are generated by the current control policy . 

Inserting Eq. (16) into Eq. Eq. (19) yields the following form of the Q-function: 

  (20) 

with 

   

  

As indicated in Eq. (10), the relationship between  and  is represented by: 

  (21) 

For the off-policy Q-learning RL, we define two control policies: behavior control 

policy  and target control policy  (17). The behavior control policy  generates the 

behavior control signal  to interact with the batch systems, while the target control 

policy is employed for policy improvement. 

Given the fixed target control policy , Eq. (21) can be rewritten as: 

  (22) 

Additionally, the Q-function from the target control policy  and the target control 

signal  at time  is expressed by: 

  (23) 

Incorporating Eq. (21) and Eq. (22) into Eq. (23) gives: 

 

                                   (24)  

Based on Eq. (22) and Eq. (23), the Q-function has another expression: 

   (25) 
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with 

  

Inserting , , and Eq. (25) into Eq. (24)  results in the following equation: 

  (26) 

To solve the matrix , Eq. (26) is reformulated in Kronecker Product form: 

  (27) 

with 

  

  

where  is the Kronecker Product; The function  denotes the vectorization of 

the matrix. By using the repetitive nature of the batch processes, the behavior control 

policy  is utilized in the controlled batch systems to sample the process data. With  

sets of the sampled process data, Eq. (27) is formulated as follows: 

  (28) 

with 

  

where the superscript indicates the th process data. Based on Eq. (28) and the least 

squares method [24], the vector  is computed. Subsequently, the matrix  is recon-

structed from the vector  as follows: 

  (29) 

Remark 2: It contains  independent parameters 

to be estimated for the symmetric matrix . By the least squares estimation frame-

work, the number of data samples  must satisfy the condition  to ensure parame-

ter identifiability. 

The optimal control policy is derived via policy evaluation and policy improvement 

in the Q-learning-based optimal control scheme. 

Policy Evaluation: The Q-function  is obtained by the reverse recur-

sive framework (from  to  ): 



Algorithm 1 Q-learning-based Optimal Control Scheme 

1: Input the known nominal system matrices   . 

2: Give the reference trajectory  and compute matrices  and . 

3: Set time-varying cost function weighting matrices  and . 

4: Compute the initial control policy based on Theorem 1: 

  

5: Using the initial control policy plus an exploration noise  to sample  batches 

data and save data  in the buffer . 

6: Set the iteration number  and the iteration termination condition . 

7: for  do 

8:     for  do 

9:         Policy Evaluation: 

10:         The sampled operation data from buffer  is used to construct  and . 

11:         Determine the matrix  as follows: 

  (30) 

12:         Calculate the matrix  for policy evaluation based on Eq. (33). 

13:         Policy Improvement: 

14:         Improve the control gain matrix  based on the obtained matrix : 

  

15:     end for 

16:     The enhanced control policy  is formulated below: 

  

17:     When conditions  are satisfied, the iteration stops. 

18: end for 

19: Finally, the Q-learning-based optimal control policy is applied to the time-var-

ying batch process. 

  (31) 

As stated by Eq. (28) and Eq. (29), the matrix  is determined. However, the matrix 

 must be determined at time . Built upon the Q-learning RL algorithm, the 

value function and Q-function have the following property: 

  (32) 
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Inserting Eq. (17), Eq. (18), and Eq. (25) into Eq. (32) yields the following expres-

sion: 

  (33) 

Policy Improvement: Based on the obtained Q-function , the current 

control policy  is improved by: 

  (34) 

According to Eq. (31), the Q-function ) is differentiated on the target 

control signal  and setting it to zero, the improved target control signal is deter-

mined by: 

  (35) 

The improved control policy  is noted by: 

  (36) 

The current control policy  is undoubtedly improved by the Q-learning-based opti-

mal control scheme. Algorithm 1 outlines the Q-learning-based optimal control 

framework. The overall structure of the Q-learning-based optimal control scheme is 

depicted in  

Fig. 2. 

 

Fig. 2. The structure of the proposed Q-learning-based optimal control scheme. 



4 Numerical Simulations 

To validate the efficacy and control performance of the Q-learning-based optimal con-

trol scheme, we conduct simulations on a numerical linear MIMO time-varying batch 

system and a time-varying injection molding process. 

4.1 Linear MIMO Batch System 

The numerical linear MIMO time-varying batch system is considered and modeled 

by: 

  (37) 

with 

  

  

where , , and  are known system matrices of the linear MIMO batch system; 

, , and  represent unknown time-varying system uncertainties; The fixed 

time duration per batch  is 100; All entries of the initial system state  is generated 

randomly between  and . Additionally, the desired trajectory is given by: 

  (38) 

First, for the Q-learning-based optimal control scheme, the time-varying reference 

trajectory model matrices  and  are computed based on the given desired trajec-

tory. According to mode-based optimal control scheme (Theorem 1), the initial model-

based control policy is then designed: 

  

where the time-varying cost function weighting matrices  and  are set as follows: 

  

In addition, the exploration batch  is specified. The initial control policy  

adds a random exploration noise  to constitute the behavior control signal  to sam-

ple the process data: 
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  (39) 

where  represents the random exploration noise between  and . 

 

Fig. 3. The convergence curve of the policy iteration. 

After data collection, the proposed Q-learning-based optimal control scheme Algo-

rithm 1 is employed to improve the initial control policy . In the process of policy 

iteration, the specific iterative parameters are set with the maximum iteration number 

 and the iteration termination condition . Fig. 3 illustrates that the control 

policy progressively converges to the optimal solution through the policy iteration by 

the Q-learning-based optimal control scheme. 

 

Fig. 4. The output response of the MIMO batch . 

Finally, after 25 batches of data sampling and 20 off-policy policy iterations, the 

trained Q-learning-based control policy is applied to control the MIMO batch system 



and compare control performance with the model-based initial control policy. As shown 

in Fig. 4, the output response under the model-based initial control policy exhibits sig-

nificant deviation from the reference trajectory, primarily due to its inability to com-

pensate for control errors induced by time-varying system uncertainties. This result 

highlights the substantial negative impact of time-varying uncertainties on control per-

formance, thereby limiting the practical applicability of such model-based approaches 

in real-world systems. Conversely, the output response under the Q-learning control 

policy closely follows the trajectory reference, demonstrating that the proposed Q-

learning-based optimal control scheme achieves superior tracking performance. For an 

accurate comparison of the control performance, the RMSE (the root-mean-square er-

ror) and SAE (the sum of absolute error) of the tracking error for the entire batch are 

listed in Table 1. As illustrated in Table 1, the RMSE and the SAE corresponding to 

the Q-learning control policy are much lower than the initial control policy. This ex-

perimental simulation shows that the Q-learning-based optimal control scheme is an 

effective control method for time-varying batch processes.  

Table 1. RMSE and SAE of the initial control policy and Q-learning-based control scheme. 

Algorithm RMSE SAE 

Initial Control Policy 8.53 1032.44 

Q-learning-based Control Policy 0.008 1.017 

4.2 Injection Molding 

Injection molding is considered a fundamental batch process in chemical engineer-

ing. Typically, the injection molding is modeled as a time-varying batch process with 

unknown, time-dependent uncertainties [19]: 

  (40) 

with 

  

 

  

where , , and  are known model matrices of the injection molding; , , 

and  represent unknown time-varying uncertainties; The operation time  of each 

batch is 200; The initial state  is generated randomly between  and 
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. According to the practical applications, the following trajectory profile is 

given: 

  (41) 

Analogously, without system uncertainties, Theorem 1 is used to design the initial 

model-based control policy: 

  

where the time-varying cost function weighting matrices , , and the 

exploration batches  are specified. Meanwhile, the control signals  from the 

initial control policy  adds a random exploration noise to control the injection mold-

ing process: 

  (42) 

After sampling the data, the Q-learning-based optimal control scheme Algorithm 1 

is used to improve the initial model-based control policy iteratively. The policy iteration 

number  and the termination condition  are set as  and , respectively. Fig. 5 

shows that the initial control policy  significantly differs from the optimal control 

policy . Through the policy iteration, the control policy progressively converges into 

the optimal control policy . 

 

Fig. 5. The convergence curve of the policy iteration. 

After the 10 batches of data sampling and 15 policy improvements, the Q-learning-

based control policy is tested for the control performance in the time-varying injection 



molding process. As illustrated in Fig. 6, the output response governed by the model-

based initial control policy exhibits pronounced deviation from the reference trajectory. 

This deviation stems from the policy's inability to compensate for dynamic perturba-

tions introduced by time-varying system uncertainties. The result quantitatively demon-

strates the detrimental effect of uncertainties on control performance. In contrast, the 

output response under the Q-learning control policy is very close to the trajectory ref-

erence, showing the superior tracking performance of the proposed Q-learning-based 

optimal control scheme. In addition, we compare the control performance of the Q-

learning-based control scheme with the initial control policy and the model-based PI-

type indirect ILC [19]. After 40 batch iterations, the PI-based indirect ILC control 

scheme exhibits better control performance but remains less effective than the Q-learn-

ing-based optimal control scheme. Additionally, we compute the RMSE and SAE of 

the three control schemes in Table 2 to compare the control performance more pre-

cisely. Both the RMSE and the SAE of the Q-learning-based control policy are lower 

than that of the PI-based indirect ILC even after 40 iterations, which indicates the opti-

mality of the proposed Q-learning-based optimal control scheme. 

 

 

Fig. 6. The injection molding process's output response and control signal. 

Table 2. RMSE and SAE of the three control schemes. 

Algorithm RMSE SAE 

Initial Control Policy 39.29 7090.62 

PI-type Indirect ILC after 40 Batch 6.124 1017.30 

Q-learning-based Control Policy 0.013 1.57 

In summary, the simulations in the numerical MIMO batch system and the time-

varying injection molding process demonstrate that the proposed Q-learning-based op-

timal control scheme is a universal control solution for time-varying batch processes 

with time-varying system uncertainties.  
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5 Conclusions 

Given the widespread application of batch processes in modern industry, we propose 

a novel data-driven Q-learning-based optimal control scheme for time-varying batch 

processes with time-varying uncertainties in this paper. The nominal model-based ini-

tial control policy is derived based on the principle of optimality and dynamic program-

ming. However, this initial control policy is non-optimal due to the unknown time-

varying system uncertainties. By leveraging the repeatability of the batch processes, the 

non-optimal control policy is utilized to sample the operation data from the time-vary-

ing batch process. Then, the Q-learning-based optimal control scheme is developed to 

optimize the initial control policy to eliminate the impact of the time-varying system 

uncertainties. Finally, the numerical simulations on the MIMO time-varying batch sys-

tem and the injection molding process illustrate the effectiveness and advantages of the 

proposed Q-learning-based optimal control scheme. 
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