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Abstract. With the advent of the intelligent era, human activity recognition has 

become increasingly important in application scenarios such as intelligent moni-

toring and human-computer interaction. The application of millimeter-wave ra-

dar in human behavior recognition has also emerged as a research hotspot in re-

cent years. The point cloud data of millimeter-wave radar can provide depth in-

formation in a three-dimensional space, which endows it with unique advantages 

in capturing spatial postures. This paper proposes a general method for human 

behavior recognition based on millimeter-wave radar point clouds. This method 

first processes the point cloud data of each frame in the spatial dimension to ex-

tract spatial features. Subsequently, it models the temporal dimension. By intro-

ducing attention mechanisms in both space and time, the model can focus on 

important features, thereby improving the accuracy of behavior recognition. Fi-

nally, the extracted features are classified through a multi-layer perceptron 

(MLP). By comparing with other methods on public datasets, the results show 

that the proposed ST-PCN network model outperforms other baseline models, 

verifying its effectiveness and superiority. 

Keywords: Millimeter-wave Radar, Point Cloud, Behavior Recognition. 

1 Introduction 

1.1 A Subsection Sample 

In daily life, application scenarios of smart homes, human-computer interaction, and 

intelligent monitoring can be seen everywhere [1]. These application scenarios are sup-

ported by human pose recognition technology. Therefore, pose recognition has always 

been a key focus highly anticipated by researchers. Currently, most methods use visual 

sensors [2] and wearable devices [3]. After years of continuous development, these so-

lutions have undoubtedly achieved remarkable results. However, visual sensors are 



prone to privacy leakage issues, and poor lighting conditions can affect the recognition 

effect [4]. For the wearable device solution, problems such as cost, wearing experience, 

and convenience have always been challenges [5]. In recent years, with the progress of 

electronics and information technology, radars have gradually been widely used in the 

market, especially in fields such as intelligent transportation, security monitoring, au-

tonomous driving, and healthcare [6]. Millimeter-wave radars have unique advantages 

in action recognition compared to other sensors. They are not affected by lighting con-

ditions and can work stably in dark or strong-light environments. Moreover, millimeter-

wave radars do not capture facial or other sensitive biometric information, thus having 

significant advantages in privacy protection [7]. For these reasons, how to use millime-

ter-wave radars for accurate human pose recognition has become a research hotspot 

recently. 

The commonly used method is to use the time-frequency analysis method to map the 

original radar echo signal to the time-frequency spectrum and observe the micro-Dop-

pler effect of different behaviors [8, 9]. However, although traditional time-frequency 

spectrograms can display the frequency and time distribution of signals on a two-di-

mensional plane, they lack depth information and cannot fully capture the spatial pose 

changes of signals. In addition to providing time-domain and frequency-domain signal 

information, millimeter-wave radars can also generate high-precision point cloud data. 

Radar point cloud data contains key information such as the Cartesian coordinates of 

the target object and reflection intensity. This information can not only describe the 

spatial characteristics of the target object but also be used for further analysis of the 

object’s motion state and behavior pattern. The addition of this depth information gives 

radar point cloud data unique advantages in fields such as human action recognition. 

Radar point clouds have the characteristics of sparsity and inhomogeneity, and thus 

cannot be directly used as the input of a neural network. In previous works, it was com-

mon to transform radar point clouds into other forms for processing. For example, [10] 

transformed radar point clouds into three-dimensional voxel grids and utilized a three-

dimensional convolutional neural network (3D CNN) to extract spatial features. [11] 

proposed a method based on graph neural networks (GNNs), which modeled the point 

clouds as a graph structure (where points serve as nodes and the relationships between 

points serve as edges), and extracted spatial and topological features through graph 

convolution operations for pose estimation. [12] projected radar point clouds onto a 

two-dimensional plane to generate depth images and used a convolutional neural net-

work (CNN) for feature extraction and classification. These methods have their draw-

backs. Although voxelization is suitable for 3D CNNs, it will lead to a loss of spatial 

resolution. In the scenario of sparse point clouds, a large of empty voxels will be intro-

duced, increasing computational and memory redundancy, reducing efficiency, and los-

ing precise geometric information, making it difficult to capture subtle pose changes. 

While graph structure modeling can preserve the topological relationships between 

points, the construction and calculation complexity of the graph structure are high, and 

the computational cost increases significantly when the amount of point cloud data is 

large. Projecting point clouds into depth images can handle occlusion problems, but in 

complex scenarios, it is difficult to accurately reflect the complete human pose, and the 
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three-dimensional spatial information of the point clouds will be lost. Although input-

ting time-series point clouds can capture the dynamic changes of actions, the computa-

tional cost of sequential processing is high. Since sequential methods have high require-

ments for time synchronization and data continuity, it is difficult to meet the real-time 

requirements. 

Methods that convert point clouds into other forms make up for the disadvantage 

that point clouds cannot be directly used as the input of neural networks. However, the 

process of converting point clouds into other forms (such as graph structures, voxels, 

depth images, etc.) is a computationally intensive process. Therefore, there are still 

many problems in practical applications. To address these issues, this paper proposes a 

neural network named ST-PCN (Spatio-Temporal Dynamic Point Cloud Network) that 

is suitable for directly processing millimeter-wave radar dynamic point clouds for hu-

man pose classification and recognition. We verified our method on a public dataset 

and achieved a high accuracy rate. 

In summary, the contributions of this paper are as follows: 

- We design a model framework that incorporates spatio-temporal attention 

mechanisms for directly processing point clouds. 

- We propose a method to address the non-uniformity of point clouds, enabling 

their direct use as neural network inputs. 

- We introduce a data augmentation technique to increase the number of training 

samples for the model. 

2 Related Work 

2.1 Millimeter-wave Radar and Point Cloud Acquisitionse 

The transmitted signal of an FMCW radar can be expressed as: 
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where cf is the carrier frequency of the transmitted signal, )(Tf  is the instantaneous 

frequency of the transmitted signal, B is the signal bandwidth, and cT  is the period of 

a chirp signal. The received signal of the radar is: 
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where   is the time delay of the received signal: 
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where R is the target distance, rV  is the target radial velocity, and c is the speed of 

light. By mixing the transmitted and received signals and applying lowpass filtering, 

the intermediate frequency (IF) signal required for experiments is obtained: 
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Simplifying, we obtain: 
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The distance of the radar-detected target can be expressed as: 
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where c is the speed of light, cT is the duration of a chirp, and B is the bandwidth of 

the radar signal.  

Based on the above theory, the target distance can be calculated by performing a Fast 

Fourier Transform (FFT) on the fast-time dimension, i.e., the sequence of echo chirp 

signals within a single cycle, to extract the frequency corresponding to the spectral 

peak. Subsequently, a Doppler FFT is performed on the IF signal to measure the phase 

changes and obtain the target velocity. Additionally, to determine the spatial coordi-

nates x, y, and z of the target, angle estimation is required. The azimuth angle   and 

elevation angle   are calculated using the phase differences between antennas: 
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where z  and x  are the phase differences between the azimuth antennas and the 

corresponding elevation antennas, as well as the phase differences between consecutive 

azimuth antennas, respectively, after Doppler FFT processing. 

The conversion from the radar coordinate system to the Cartesian coordinate system 

is shown in Figure 1, and the calculation is as follows: 

  
x = R × cos(φ) × sin(θ)

y = R × cos(φ) × cos(θ)

z = R × sin(φ)

 

 (12) 

 

Fig. 1. Conversion diagram 

2.2 Point cloud network 

With the development of deep learning, the traditional Convolutional Neural Network 

(CNN) has achieved remarkable results in fields such as image processing and speech 

recognition. By virtue of local perception and weight sharing, it can effectively extract 

features from regular grid data (such as images) and perform task classification. How-

ever, with the popularization of devices such as lidar and depth cameras, point cloud 

data needs to be processed in application scenarios such as autonomous driving and 

pose recognition. Point cloud data has the characteristics of sparsity, disorder, and ir-

regularity, which do not conform to the fixed input format (matrix or image grid struc-

ture) that traditional CNNs rely on. A point cloud is composed of a large of discrete 

points, and each point contains spatial coordinates (such as x, y, z) and other possible 

attributes (such as intensity, color). Unlike images, point cloud data has no fixed struc-

ture, and the relative positions between points have different degrees of importance for 

tasks, so it is difficult for traditional deep learning models to directly handle the spatial 

relationships of point clouds. 

To solve this problem, point cloud networks have emerged as the times require. Their 

aim is to design deep learning models that can handle disordered and irregular point 

cloud data. For example, PointCNN [13] performs local convolution operations on 

  

 
       

     



point clouds through the X-transformation method, overcoming the disorder and irreg-

ularity of point clouds. The demand for point cloud networks is driven by the need for 

processing three-dimensional spatial data in practical applications, especially in the 

field of recognition, where real-time and accurate understanding and analysis of the 

surrounding environment are crucial. Point cloud data is high-dimensional, sparse, and 

difficult to standardize, and traditional methods cannot meet these requirements. Point 

cloud networks have made innovations in feature extraction, spatial relationship mod-

eling, and temporal dynamic processing, further promoting the application and devel-

opment of deep learning technology in the processing of three-dimensional spatial data. 

3 Design of ST-PCN 

In this chapter, we will introduce the proposed ST-PCN model method, which is capa-

ble of utilizing raw millimeter-wave radar point clouds for human pose recognition. 

Our method consists of three main components: point cloud uniformization, data aug-

mentation, and the ST-PCN model. 

3.1 Point cloud homogenization 

To ensure that the number of points in each frame of point cloud data is consistent while 

preserving the spatial characteristics and diversity of the data, we propose a point cloud 

augmentation strategy based on dynamically calculated offsets. This method combines 

the local statistical features of the point cloud data, avoiding unnecessary redundancy 

during data augmentation while enhancing data diversity. First, we set an appropriate 

threshold k . When the number of points in a frame exceeds the predefined threshold 

k ,we randomly discard some points until the remaining number of points equals k . 

When the number of points is less than the threshold k ,we augment the point cloud by 

adding points with locally perturbed offsets to the existing points. Specifically, we ran-

domly select nk −  points from the original point cloud (where n  is the number of 

points in the current frame) and apply perturbation offsets calculated based on the sta-

tistical features of the current frame to each added point. The method for calculating 

the perturbation offsets is as follows: 

Calculate the Offset for Each Feature, for all n points in each frame, we compute 

the mean ( x 、 y 、 z 、 ensityint ) and standard deviation ( x 、 y 、 z 、

ensityint ) of each feature (e.g., x , y , z , and intensity). Taking x  and intensity as ex-

amples: 
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Calculate the Perturbation Offsets, for each newly added point, a small offset is 

generated based on the statistical features of the current frame. The offset is determined 

by the mean and standard deviation of the current frame’s point cloud. The generated 

perturbations x 、 y 、 z 、 ensityint are defined as: 

 )100,0( xx =  (17) 

 )100,0( intint ensityensity =  (18) 

where ),0(   represents Gaussian noise with a mean of 0 and standard deviation 

 . This ensures that the perturbations are dynamically adjusted according to the actual 

distribution of each frame’s point cloud, introducing only minor adjustments without 

deviating from the overall distribution of the original point cloud. 

Apply the Perturbations, for each newly generated point (x′,y′,z′,intensity′), the 

calculated perturbations are applied: 

 

xxx ii +='  

yyy ii +='  

zzz ii +='  

 ensityensityensity ii intintint ' +=  (19) 

By generating perturbation offsets based on the actual distribution of each frame’s 

point cloud, we ensure that the newly generated points do not deviate from the distri-

bution characteristics of the original point cloud, avoiding structural damage that might 

be caused by random noise. Figure 2(a) shows the distribution of a point cloud frame 

before uniformization, and Figure 2(b) shows the same frame after uniformization. It 

can be observed that the spatial distribution of the point cloud remains largely un-

changed before and after processing. Therefore, this method allows us to ensure uni-

form point cloud counts per frame without disrupting the original spatial distribution of 

the point cloud. 

 



 
(a) Point Cloud before uniform 

 
(b) Point Cloud after uniform 

Fig. 2. Point cloud distribution before and after uniformization. 

3.2 Data Augmentation 

Radar sensors detect the distance, velocity, and shape of objects by emitting electro-

magnetic waves and receiving reflected signals [14]. In dynamic point cloud data, the 

motion of objects can be divided into two types: tangential motion and radial motion 

[15]. Tangential velocity refers to the velocity of an object along a direction parallel to 

the radar’s line of sight. Tangential velocity primarily affects the position and geometric 

shape of the object in the radar image, causing changes in the reflected signal received 

by the radar, particularly in terms of angle and intensity [16]. Radial velocity, on the 

other hand, refers to the velocity of an object along the radar’s line of sight, primarily 

affecting the distance between the object and the radar, thereby influencing the time 

delay and frequency changes of the radar’s received signal. 

The intensity of the signal received by the radar is related to the reflectivity, distance, 

and shape of the object. When rotating the point cloud, the reflected signal of the object 

does not change significantly due to variations in the rotation angle, especially when 

the object’s reflectivity is uniform. Rotation only changes the relative position of the 

object without altering its distance from the radar (i.e., the radial distance), and thus 

does not cause significant changes in intensity. Therefore, rotation operations can ef-

fectively simulate radar data from different observation angles without introducing sig-

nificant intensity disturbances 

We use a rotation matrix R(θ) to transform the coordinates of each point to a new 

position. Assuming the coordinates of each point in the point cloud in three-dimen-

sional space are ( x , y , z ), the rotated coordinates (x′,y′,z′) can be obtained using the 

following formula: 
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where the rotation matrix R(θ) is defined as: 
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Excessive rotation angles may cause unnatural changes in the geometric structure of 

the point cloud and may indirectly affect the intensity feature. On the other hand, too 

small rotation angles may not effectively increase data diversity, resulting in insignifi-

cant data augmentation effects. Therefore, it is necessary to select an appropriate rota-

tion angle to ensure that data diversity is increased while maintaining the geometric 

consistency of the point cloud and minimizing interference with the intensity feature.  

3.3 Model Design 

Point cloud data is divided into static point clouds and dynamic point clouds. Static 

point clouds are usually used to capture three-dimensional information of static scenes, 

such as buildings, terrain or industrial parts scanning. It does not contain a time dimen-

sion, and the data represents the spatial distribution at a certain moment, so it is suitable 

for 3D modeling, mapping and static scene analysis [17]. Dynamic point clouds intro-

duce the time dimension and can capture the motion process of targets in the scene. 

Because factors such as object motion, occlusion, sensor viewpoint changes and sam-

pling rate will change with the motion of targets, the number of point clouds captured 

in different frames will be different. 

In a typical scenario, the complete process of a human body posture is a dynamic 

process. Usually, a complete posture from the start to the end is composed of many 

frames of point clouds, and we refer to this kind of point cloud as dynamic point cloud. 

In our previous work, we have already carried out homogenization processing on the 

point cloud data of each frame, so that the point cloud of each frame can be directly 

used as the input of the neural network. In this part, we will design a network model 

that is capable of handling the data structure of dynamic point clouds, which possess 

both spatial and temporal features. The overall framework is shown in Figure 3. 

First is the spatial feature extraction stage. In this stage, the TNet method is intro-

duced. The TNet method learns a transformation matrix through affine transformations 

such as rotation and translation of point cloud data to adjust the input point cloud so 

that it can be processed in a unified spatial framework, thus ensuring that the extraction 

of spatial features is not affected by unnecessary spatial transformations. We first pro-

cess each frame of point cloud data through a TNet, and then pass the data through the 

first convolutional layer for preliminary feature extraction to obtain 64-dimensional 

features. To enhance the modeling ability of local geometric relationships, the model 

introduces a Spatial Deal module, and adds the output of this module to the original 

features in the form of residual connections. The enhanced features are then processed 

by the second TNet, and finally the feature dimension is gradually increased through 

two convolutional layers, and each frame of point cloud is compressed into a 1024-

dimensional feature vector through global max pooling. 



 

Fig. 3. Overall architecture of ST-PCN model 

The core of the temporal feature extraction stage is the GRU-based feature extraction 

method. GRU consists of two gating units - the update gate and the reset gate, which 

control the flow of information and memory updates respectively, enabling GRU to 

decide how to update the hidden state at each time step based on the input and past 

memory states. Their mechanisms are as follows: 

 

Zt = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡])

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡])

ℎ̃𝑡 = tanh(𝑊 ⋅ [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡])

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡

 (22) 

where rz and tr  are the reset gate and update gate respectively, 1−th  is the hidden 

state of the previous time step, tx  is the input of the current time step, and zW , rW ,W  

are the parameters of the gating operation. This gating mechanism of GRU enables it 

to gradually update the model’s memory according to the temporal relationship when 

processing dynamic point cloud data, thereby capturing the motion and changes of ob-

jects in the time dimension. In the temporal feature extraction stage, the processed 

1024-dimensional features of all frames are stacked in chronological order to form a 

temporal feature tensor. First, temporal modeling is performed through a two-layer 

GRU network, and then the obtained features are processed by introducing a Temporal 

Deal module. Finally, the last 128-dimensional feature is taken and mapped to the out-

put through a fully connected layer. 

Since static objects remain unchanged while dynamic activities have temporal per-

sistence. For continuous actions such as human postures, the spatial position infor-

mation of each frame of point cloud will change, and the point cloud data between 

frames has temporal continuity. Therefore, when extracting dynamic point cloud fea-

tures, it is necessary to comprehensively consider the correlation of time series and 
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obtain global features in the spatial dimension. To this end, this paper designs a spati-

otemporal attention feature extraction module, which aims to better model the spatio-

temporal dependence in point cloud data through the spatiotemporal attention mecha-

nism. This module consists of a Spatial Deal module and a Temporal Deal module. The 

former assigns different importance weights to each point in the point cloud in the spa-

tial dimension to emphasize the global information of local spatial features, while the 

latter dynamically adjusts the weights between frames in the time series dimension to 

capture the temporal dependence between different time steps. For the spatial level, 

each frame of point cloud consists of N points, and each point in the point cloud has a 

d-dimensional feature vector 
d

i Rx  . Its spatial relationship can be extracted by cal-

culating the similarity of each point to other points in the point cloud. We calculate the 

Query (Q), Key (K) and Value (V) spaces: 

 

where CC
kq WWW v、、  are learnable weight matrices and C is the feature di-

mension. 

First, we calculate the attention score: 
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where B is the batch size, N is the number of points. 

Then perform weighted output: 

 AVFout =  (24) 

Finally, perform residual connection: 

 

 𝐹final = 𝐹out + 𝐹                                                       (25) 

 

Similarly, for the temporal level, we take the output containing T frames of infor-

mation after the spatial attention mechanism and temporal feature extraction as the in-

put of the temporal attention mechanism. By calculating the similarity between frames, 

the model can assign different temporal weights t  to each frame, thereby emphasiz-

ing the time steps related to the current frame and weakening the influence of irrelevant 

frames. Through the joint attention weights of space and time, the model can flexibly 

focus on the key spatial regions and time series in the dynamic point cloud data, thereby 

improving the classification accuracy in the dynamic point cloud classification task.  



4 Experimentation 

4.1 Datasets 

The MMActivity dataset is one of the few publicly available datasets for human pose 

recognition research using millimeter-wave radar [18]. The dataset was recorded using 

the Texas Instruments IWR1443BOOST millimeter-wave radar and includes five types 

of actions: boxing, jumping jacks, jumping, squatting, and walking. Each point cloud 

contains spatial coordinates (x, y, z) and radar intensity information. Since the samples 

in the MMActivity dataset are common human poses and align with the application 

scenarios of this study, we use this dataset to evaluate the proposed dynamic point cloud 

recognition method. 

4.2 Implementation Details 

In the point cloud uniformization process, considering the dataset characteristics, we 

set the point cloud quantity threshold per frame to 40. Using data augmentation meth-

ods, each file in the dataset is rotated by ±10◦ clockwise and counterclockwise respec-

tively to increase data volume, ensuring model generalization and robustness. 

We employ an Adam optimizer with fixed learning rate decay (decay rate of 0.1 

every 20 epochs) for model training, with initial learning rate set to 5×10−4. The ratio 

of training set to verification set is 8:2, using multi-class cross-entropy loss function. 

After 50 validation epochs, the model converges, achieving 97.37% accuracy on the 

test set. Figure 4 shows the corresponding confusion matrix. 

 

Fig. 4. Confusion matrix of ST-PCN model test set 
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To further validate model stability and generalization capability, we conduct 5-fold 

cross-validation and perform statistical analysis on the mean accuracy across different 

folds, with results shown in Table 1. The cross-validation results demonstrate relatively 

consistent performance across different data partitions with minimal overall fluctua-

tion, indicating model robustness to random data splitting. Further t-test results show 

all p-values between different folds greater than 0.05, suggesting statistically insignifi-

cant accuracy differences between folds. 

Table 1. Cross-validation results 

Fold Comparison t-statistic p-value 

Fold1 vs Fold2 0.32 0.74 

Fold1 vs Fold3 0.55 0.57 

Fold1 vs Fold4 0.33 0.74 

Fold1 vs Fold5 0.03 0.97 

4.3 Comparative Experiments 

In this part, we compared the recognition effects of various baseline models on the 

MMActivity dataset, as shown in Table 2. Methods 1–4 are sourced from reference 

[18], including traditional machine learning algorithms such as Support Vector Ma-

chine (SVM) and Multi-Layer Perceptron (MLP), as well as deep learning models such 

as Convolutional Neural Network (CNN) and Long Short-Term Memory network 

(LSTM). These methods all process the point cloud data after voxelization (Voxel). 

Although they can extract certain spatial features, they have performance bottlenecks 

when dealing with sparse and irregularly structured raw point cloud data, especially in 

terms of temporal sequence modeling where their capabilities are limited. Method 5 

[19] and Method 6 [20] belong to the modeling methods for point cloud sequences. 

They respectively introduce spatial feature extraction and temporal sequence modeling 

modules, which can better mine the dynamic information in the point cloud data, with 

recognition accuracies of 94.97% and 94.19% respectively. Although these methods 

perform excellently in dynamic point cloud modeling, they still lack effective mecha-

nisms in aspects such as key frame selection and attention to key areas, making it dif-

ficult to fully focus on the core spatio-temporal features during the action process. The 

TD-PCN model proposed in this paper acts directly on the raw point cloud data, and 

introduces spatial attention and temporal attention mechanisms during the spatio-tem-

poral feature extraction process, thus achieving accurate modeling of the key spatio-

temporal features. In the recognition task, the accuracy of TD-PCN reaches 95.35%, 

which is significantly better than the above various baseline methods. Further ablation 

experiments show that the accuracy of the model with only the spatial attention mech-

anism introduced is 86.24%, and the accuracy of the model with only the temporal 

attention mechanism introduced is 92.47%. This indicates that the temporal attention 

mechanism plays a crucial role in capturing dynamic changes, enabling the model to 

more effectively model the temporal dependencies in the point cloud sequence; while 

the spatial attention mechanism enhances the model’s perception ability of the local 



spatial structure and improves the accuracy of point cloud representation. However, 

relying solely on the spatial attention mechanism makes it difficult to fully mine the 

motion patterns in the temporal dimension. After combining the two, TD-PCN achieves 

a further improvement in recognition accuracy, verifying the complementarity and syn-

ergistic effect between the modeling of spatial features and temporal features. 

Table 2. Test results of different models 

No Input Format Model Accuracy 

1 Voxels SVM 63.74% 

2 Voxels MLP 80.34% 

3 Voxels Bidirectional LSTM 80.34% 

4 Voxels Time-distributed CNN + Bidirectional LSTM 90.47% 

5 Point Cloud PointLSTM 94.97% 

6 Point Cloud Pantomime 94.19% 

7 Point Cloud TD-PCN 95.35% 

8 Point Cloud TD-PCN (With temporal attention) 92.47% 

9 Point Cloud TD-PCN (With spatial attention) 86.24% 

 

5 Conclusion 

In this work, we propose a neural network model capable of processing dynamic point 

clouds based on millimeter-wave radar. This model eliminates the additional step of 

converting dynamic point clouds into other representations, as required by previous 

approaches. Furthermore, by incorporating a spatiotemporal attention mechanism dur-

ing the processing of sparse point clouds, the model effectively extracts spatiotemporal 

features from dynamic point clouds while achieving a favorable balance between pa-

rameter quantity and model performance. Experimental results demonstrate that the 

TD-PCN model outperforms traditional methods in sparse point cloud classification 

tasks, showing significant performance improvements compared to baseline models. 

This study provides a novel approach for the efficient processing of millimeter-wave 

radar point clouds, particularly suitable for dynamic scene perception tasks that require 

direct extraction of pose information from sparse point clouds. 
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