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Abstract. Multimodal Emotion Recognition in Conversation (MERC) holds sig-

nificant importance in Natural Language Processing due to its broad range of 

applications. However, existing methods still face challenges in addressing the 

highly imbalanced class problem and extracting robust representations for com-

plex conversational scenarios. To address these challenges, a cause-based super-

vised contrastive learning framework with adversarial sample-label (CaSCLA) is 

proposed in this paper. Specifically, we employ a modality balancing technique 

to fuse the multimodal features, which are then fed into a novel causal-aware 

network to effectively capture the underlying causal relationships within dia-

logues. Besides, a supervised contrastive learning with adversarial sample-label 

method is proposed to alleviate the class imbalance problem by learning label 

representations and optimizing the similarity between sample features and label 

embeddings. Furthermore, CaSCLA applies an adversarial samples training strat-

egy, constructing additional positive sample-label pairs to enhance the diversity 

of the data and increase the robustness of the model. Extensive experiments on 

the IEMOCAP and MELD benchmark datasets demonstrate that CaSCLA 

achieves competitive performance. 

Keywords: Class Imbalance, Supervised Contrastive Learning, Emotion 

Recognition in Conversation. 

1 Introduction 

Multimodal emotion recognition in conversation (MERC) is crucial for dialogue sys-

tems, enabling the understanding and generation of empathetic responses [21]. It has 

widespread applications in areas such as social media analysis, empathetic chatbots, 

and medical diagnosis. Previous studies primarily focus on context modeling [30] and 

emotion representation learning [14, 29]. Recently, there has been a growing body of 

research [10, 25] that leverages supervised contrastive learning (SCL) to learn robust 

and generalized feature representations better suited for emotion classification. 



 

Fig. 1. An illustrative example of imbalanced data distribution on the MELD benchmark da-

taset. (a) The ratios of the seven emotion labels to all, respectively. (b) The overall performance 

of some baseline models and their classification performance on the minority class labels "fear" 

and "disgust". 

Although these methods have yielded some progress, they still face certain limita-

tions: (1) Existing methods often overlook the severe class imbalance issues in widely 

used ERC benchmark datasets. This leads to a satisfactory overall performance, but 

notably poor F1 scores for minority classes. Taking the popular multimodal benchmark 

dataset MELD [20] shown in Fig. 1 as an example, the “disgust” and “fear” emotion 

labels only account for 2.61% and 1.91% of the total labels, respectively, and all base-

line models achieve F1 scores below 20.81% for these two emotion labels. Similarly, 

this problem exists on other multimodal benchmark datasets. (2) In the domain of rep-

resentation learning, label-based contrastive learning techniques generate generalized 

representations by capturing intra-class similarities while contrasting them with inter-

class instances. However, existing methods often fail to fully exploit emotion label in-

formation, hindering the discrimination of similar emotions in complex dialogue sce-

narios. (3) When modeling the dependencies of intra-speaker emotional changes and 

inter-speaker emotional interactions, there is a limitation in capturing deeper and richer 

emotional dynamics clues due to not considering the actual emotional triggers that elicit 

the target emotions. 

To address the aforementioned issues, we propose an innovative approach named 

CaSCLA, which balances multimodal data and retrieves causal clues from com-

monsense knowledge to guide the causal feature extraction process. It is a modified 

version of Causal Aware Interaction Network (CauAIN) [32]. Additionally, the SCLA 

module constructs positive and negative sample-label pairs and incorporates multi-

modal information along with adversarial training, effectively addressing class imbal-

ance issues while enhancing the model's robustness and generalization ability. Another 

significant contribution of our method is the application of the adversarial samples 

training (AST) strategy through Soft SCL [6], which generates context-aware pertur-

bations to create hard positives, thereby dispersing the representation space of each 

class and challenging less robust models. Besides, we conduct extensive experiments 

on the IEMOCAP and MELD benchmark datasets to confirm the superiority of our 

method. The main contributions of this work can be summarized as follows: 
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─ We propose a cause-based supervised contrastive learning framework with adver-

sarial sample-label, named CaSCLA, which not only fuses semantic information 

across modalities, but also utilizes a novel SCLA module to alleviate the class im-

balance issue. 

─ We introduce a causal aware interaction network to accurately recognize complex 

emotions in conversations from the perspective of emotional causes. 

─ We devise an AST strategy that enhances the model's contextual robustness by gen-

erating context-level worst-case samples as adversarial samples. 

─ The results of extensive experiments on two datasets demonstrate the effectiveness 

of CaSCLA, especially on the emotion of the minority class. 

2 Related Work 

2.1 Emotion Recognition in Conversation 

The field of ERC has made significant strides over the past decade, with achievements 

broadly classified into unimodal and multimodal approaches. Unimodal approaches 

tend to solve the emotion recognition task using only text modality. DialogueRNN [17] 

considers the global state, party state, and emotion state of speakers and utilizes three 

GRUs to model intra- and inter-speaker dependency. DAG-ERC [24] employs directed 

acyclic graphs to represent the interaction between utterances and speakers.  

COGMEN [9] is a contextualized graph neural network that integrates both local and 

global conversational data. CoMPM [11] utilizes a transformer-encoder and a speaker-

aware pretrained memory module to capture conversational contexts. Over recent years, 

MERC integrates multiple sensory channels to boost the model's emotional perception. 

LR-GCN [22] introduces a latent relationship representation learning mechanism to 

represent the interactive relationships by learning the latent connections between nodes. 

GraphMFT [12] utilizes multiple enhanced graph attention networks to capture intra-

modal contextual information and inter-modal complementary information. While 

these methods help capture information in multimodal data, they do not specifically 

address the challenge of class imbalance. 

2.2 Imbalanced Classification 

Some studies have observed the issue of class imbalance in MERC. Dave and Khare 

[3] tackle this issue by using class weights to fine-tune the model training process, 

which is a commonly adopted methodology. However, selecting appropriate weights 

relies on domain expertise, and improper choices can degrade performance or increase 

instability. CBERL [18] combines data augmentation, deep joint variational autoencod-

ers, and multi-task graph neural networks to enhance model classification performance 

and mitigate the impact of class imbalance. However, it fails to account for the charac-

teristics of multimodal conversational emotion recognition data and overlooks the mis-

classification of correct samples caused by decision boundary adjustments. This may 

reduce the model's generalization ability and hinder the recognition of minority emotion 

categories. 



 

Fig. 2. The overall architecture of CaSCLA. 

3 Methodology 

Formally, a dialogue contains a sequence of M utterances {𝑢1, 𝑢2, … , 𝑢𝑀}, where each 

utterance 𝑢𝑖 consists of multi-sensory data, including textual 𝑢𝑖
𝑡, acoustic 𝑢𝑖

𝑎 and vis-

ual 𝑢𝑖
𝑣 modalities. Predicting the emotion category 𝑦𝑖  of each utterance in a dialogue 

from a predefined set of 𝐾 classes is the goal of MERC. 

Fig. 2 shows the architecture of the CaSCLA, which consists of three modules. In 

the multimodal feature fusion module, we infer feature-aware attention weights for each 

modality, which aims to produce a balanced representation. The causal-aware interac-

tion module utilizes commonsense knowledge to capture deep emotional clues and de-

rive causal features. In the SCLA module, we adopt a novel label learning approach 

and constructing positive and negative sample-label pairs for contrastive learning. We 

will discuss each component in detail as follows.  

3.1 Multimodal Feature Fusion 

To retain the unique characteristics of each modality, we create corresponding feature 

extractors: RoBERTa [16] for text modality and openSMILE toolkit for audio modality. 

For visual features, we use a pretrained DenseNet for the MELD dataset and a 3D-CNN 

for the IEMOCAP dataset. Subsequently, we utilize a Transformer [26] network as the 

encoder to generate a unimodal representation respecting to the modality 𝑚 as: 

                                             𝑐𝑖
𝑚 = 𝜙(𝜃(𝑚), 𝑢𝑖

𝑚), 𝑚 ∈ {𝑡, 𝑎, 𝑣}  (1) 
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Where 𝑐𝑖
𝑚 ∈ 𝑅𝑀×𝑑𝑚, the function 𝜙(𝜃(𝑚)) is the Transformer network with learnable 

parameter θ(𝑚). 

Given the issue of modality imbalance in multimodal ERC, we apply tensor contrac-

tion [31] to infer feature-aware attention weights for each modality. Specifically, we 

extend the traditional attention mechanism by replacing the query (Q) and key (K) rep-

resentations with tensor-ring decomposition-based counterparts. The modality 𝑚 core 

tensor 𝒢𝒾,𝒬
𝓂 ∈ 𝑅𝑑𝑚×𝑟𝑠×𝑟𝑤  and 𝒢𝒾,𝒦

𝓂 ∈ 𝑅𝑑𝑚×𝑟𝑠×𝑟𝑤  are computed using a Linear Trans-

form , as expressed below: 

{

𝒢𝒾,𝒬
𝓂 = reshape ((𝑐𝑖

𝑚𝑊𝑄𝑚

(1)
) ⊗1 (𝑐𝑖

𝑚𝑊𝑄𝑚

(2)
))

𝒢𝒾,𝒦
𝓂 = reshape ((𝑐𝑖

𝑚𝑊𝐾𝑚

(1)
) ⊗1 (𝑐𝑖

𝑚𝑊𝐾𝑚

{(2))
})

                         (2) 

where 𝑚 ∈ {𝑡, 𝑎, 𝑣} , 𝑊𝑄𝑚

(1)
∈ 𝑅𝑑𝑚×𝑟𝑠 , 𝑊𝑄𝑚

(2)
∈ 𝑅𝑑𝑚×𝑟𝑤 , 𝑊𝐾𝑚

(1)
∈ 𝑅𝑑𝑚×𝑟𝑠 , 𝑊𝐾𝑚

(2)
∈

𝑅𝑑𝑚×𝑟𝑤  are the linear transformation matrices, the index 𝑠, 𝑤 ∈ {1, 2, 3}, and 𝑠 ≠ 𝑤;  

⊗1 denotes the mode-1 Khatri-Rao product. To perform multimodal attention in the 

tensor space, we need to compute the attention coefficient matrix Θ𝑖
(𝑚)

 from the ten-

sorized input: 

Θ𝑖
𝑚 = softmax (

1

√𝑑𝑘

𝒢𝒾,𝒬
𝓂 ⊙ 𝒢𝒾,𝒦

𝓂 )                                    (3) 

where ⊙ denotes the element-wise product, √𝑑𝑘 is a scaling factor. Then, we use at-

tention mechanism to address the varying impact of each modality on inter- and intra-

modality interactions. The attention pooling matrices 𝐀𝑖
(𝑚)

∈ 𝑅𝑟𝑠×𝑟𝑤  can be calculated 

by averaging Θ𝑖
(𝑚)

, and the feature-aware attention matrix 𝐴𝑡𝑡𝑖
𝑚 ∈ 𝑅𝑀×𝑑𝑚  is com-

puted as follows: 

                                 𝐴𝑡𝑡𝑖
𝑚 = Linear(Θ𝑖

(𝑚)
×3

1 𝐀𝑖
(𝑡)

×3
1 𝐀𝑖

(𝑎)
×3

1 𝐀𝑖
(𝑣)

) (4) 

where ×3
1 is the mode - (3

1) tensor contraction. The feature-aware balanced represen-

tation 𝑥𝑖
𝑚(𝑓−𝑎𝑑𝑎𝑝𝑡)

∈ 𝑅𝑀×𝑑𝑚  for a given modality 𝑚 is computed as: 

                                               𝑥𝑖
𝑚(𝑓−𝑎𝑑𝑎𝑝𝑡)

= 𝐴𝑡𝑡𝑖
𝑚𝑐𝑖

𝑚 + 𝜂𝑐𝑖
𝑚 (5) 

where η ∈ [0,1] is a parameter to regulate the contribution of the original unimodal 

feature vector 𝑐𝑖
𝑚. Finally, we incorporate modality-wise L2 normalization to properly 

weight features to prevent any single modality from dominating the fusion process. The 

final multimodal balanced representation 𝐱𝑖 of the given utterance is calculated as fol-

lows:          

𝐱𝑖 = ∑
𝑊𝑚𝑥𝑖

𝑚(𝑓−adapt)

‖𝑊𝑚‖‖𝑥
𝑖
𝑚(𝑓−adapt)

‖
                                             𝑚∈{𝑡,𝑎,𝑣} (6) 



where 𝑊𝑚 ∈ 𝑅𝑑𝑚×|𝐘| is the output matrix of the model pertaining to modality m, and 

𝐘 is the set of emotion classes. 

3.2 Causal-aware Feature Extraction 

Currently, common ERC datasets lack emotion cause labels. Previous works [23] 

demonstrate that neural networks can anticipate causes and effects of previously unseen 

events by leveraging ATOMIC's rich inferential knowledge. ATOMIC is a large-scale 

knowledge graph composed of structured triplets detailing events, relations, and out-

comes. In light of this, we ingeniously leverage ATOMIC to obtain causal clues by 

exploring six types of these relationships. Among these, 𝑥𝑅𝑒𝑎𝑐𝑡 , 𝑥𝐸𝑓𝑓𝑒𝑐𝑡  and 

𝑥𝑊𝑎𝑛𝑡 provide intra-cause clues that represent influences generated by the speaker's 

own utterances, while 𝑜𝑅𝑒𝑎𝑐𝑡, 𝑜𝐸𝑓𝑓𝑒𝑐𝑡, and 𝑜𝑊𝑎𝑛𝑡 capture the effects on others, 

offering inter-cause clues. We concatenate utterance text features together with rela-

tionships and mask tokens (e.g., (𝑢𝑖
𝑡  [𝑀𝐴𝑆𝐾] 𝑜𝑅𝑒𝑎𝑐𝑡)), and input them into the gen-

erative commonsense transformer model COMET [1]. The hidden state representation 

from the last encoder layer of COMET is taken as a causal clue. For each 𝑢𝑖, three 

intra-cause clues are concatenated and passed through a linear layer to obtain a 2𝑑ℎ-

dimensional 𝐶𝑙𝑢𝑒𝑖
𝑖𝑛𝑡𝑟𝑎 . While the inter-cause clues can be similarly represented as 

𝐶𝑙𝑢𝑒𝑖
𝑖𝑛𝑡𝑒𝑟 .  

In the conversation scenario, contextual information can aid in comprehending the 

emotion of the current utterance. We leverage multimodal features 𝐱𝑖 and the Bi-di-

rectional Gated Recurrent Unit (Bi-GRU) to model the sequential dependencies be-

tween utterances. The original contextual representation ℎ𝑖 and its adversarial contex-

tual representation ℎ𝑖
𝑟  are computed as in Eq.7. The ℎ𝑖

𝑟  is obtained by introducing 

minor perturbations within the Bi-GRU, and the details on perturbation generation will 

be provided in Section 3.4. 

                                       ℎ𝑖 = 𝐺𝑅𝑈 ⃡       (𝐱𝑖, ℎ𝑖−1), ℎ𝑖
𝑟 = 𝐺𝑅𝑈 ⃡       (𝐱𝑖 , ℎ𝑖−1

𝑟 )    (7) 

where ℎ𝑖 ∈ 𝑅2×𝑑ℎ represents the hidden state vector at time step 𝑖 and 𝑑ℎ is the di-

mension of a GRU cell output. 

To further enrich context representation with emotion cause, we establish the two-

step causal-aware interaction to extract causal features. Initially, we retrieve causal 

clues and assign corresponding weights to explore the relationship between the emo-

tional reasons of the target utterance and intra- or inter-cause utterances. When deter-

mining the association degree of intra-cause clues, we focus on the same speaker's im-

pact and evaluate the association score 𝑠𝑖,𝑗
𝑖𝑛𝑡𝑟𝑎: 

 𝑠𝑖,𝑗
𝑖𝑛𝑡𝑟𝑎 =

[𝑓𝑞(ℎ𝑖)(𝑓𝑘(ℎ𝑗)+𝑓𝑒(𝐶𝑙𝑢𝑒𝑗
𝑖𝑛𝑡𝑟𝑎))]𝑚𝑖,𝑗

𝑖𝑛𝑡𝑟𝑎

√𝑑ℎ
 (8) 

 𝑚𝑖,𝑗
𝑖𝑛𝑡𝑟𝑎 = {

1,
0,

𝑗 ≤ 𝑖  and  𝜙(ℎ𝑖) = 𝜙(ℎ𝑗)

otherwise
                                        (9) 
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where 𝑓𝑞(⋅), 𝑓𝑘(⋅), 𝑓𝑒(⋅) are all linear transformations, 𝜙 maps the index of the utter-

ance into that of the corresponding speaker, 𝑚𝑖,𝑗
𝑖𝑛𝑡𝑟𝑎 checks whether the retrieved causal 

clue and the target utterance originate from the same speaker. Similarly, we can com-

pute the association degree of inter-cause clues 𝑠𝑖,𝑗
𝑖𝑛𝑡𝑒𝑟  by focusing on utterances from 

other speakers. At the causal utterance traceback layer, we perform weighted aggrega-

tion of the contextual representation ℎ𝑖 and the emotional clues from the preceding 

layer, guided by the association scores to emphasize emotion-relevant utterances, yield-

ing the final causal-aware feature representation 𝑓𝑖. Correspondingly, the final adver-

sarial feature representation 𝑓𝑖
𝑟 is produced through the causal-aware interaction be-

tween the adversarial contextual representation ℎ𝑖
𝑟  and the causal clues. 

3.3 Supervised Contrastive Learning 

Supervised contrastive learning is a representation learning technique that aims to en-

hance the robustness of learned representations. However, when dealing with imbal-

anced datasets, a larger batch size is required to ensure that each minority class sample 

has at least one positive pair within the batch. The SCLA module proposed in this paper 

offers a novel solution to this problem.  

Similarity Measure. We embed each discrete emotion category into a dense label em-

bedding using a simple yet effective two-layer MLP. Specifically, given a 𝐾-class emo-

tion category set 𝒴 = {1,2, … , 𝐾}, the label embedding 𝑧𝑖 ∈ 𝑅𝑑  for the 𝑖-th emotion 

label is obtained as follows:  

𝑧𝑖 = Dropout (ReLu(𝑊𝑔𝑒𝑖 + 𝑏𝑔))                                           (10) 

    𝑒𝑖 = max(0,EmbeddingLayer(𝑖))  (11) 

where 𝑒𝑖 ∈ 𝑅𝑑𝑒 is the hidden output, 𝑊𝑔 ∈ 𝑅𝑑×𝑑𝑒  is the weight matrix, and 𝑏𝑔 ∈ 𝑅𝑑 

is the bias parameter. Subsequently, we utilize the label embedding 𝑧𝑖 as the ground-

truth representation for class  i  samples. In contrast to traditional methods, our training 

objectives are designed to maximize the similarity between sample feature and its 

ground-truth label embedding, while minimizing similarity with label embedding from 

different classes. This alteration ensures that each sample has at least one positive pair 

within the batch, regardless of the batch size. In addition, we compute the similarity 

using soft-HGR [27]. Give a batch of 𝑀 samples, we obtain the feature representations 

𝐹 = [𝑓1, 𝑓2, ⋯ , 𝑓𝑀]T ∈ 𝑅𝑀×𝑑, and the sentiment labels 𝑌 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑀]T ∈ 𝑅𝑀, are 

mapped to obtain the label embeddings 𝑍𝑦 = [𝑧𝑦1
, 𝑧𝑦2

, ⋯ , 𝑧𝑦𝑀
]
T

∈ 𝑅𝑀×𝑑. We employ 

the inner product formed from feature covariances as a soft regularizer, thereby replac-

ing the hard whitening constraints in HGR. Then the similarity of a sample-label pair 

𝑓𝑖 ∈ 𝐹 and 𝑧𝑦𝑖
∈ 𝑍𝑦 can be expressed as: 

                       Sim(𝑓𝑖 , 𝑧𝑦𝑖
) =

1

𝑀−1
𝑓𝑖

T𝑧𝑦𝑖
−

1

2
∑ 𝑐𝑜𝑣𝑀

𝑙=1 (𝑓𝑖, 𝑓𝑙)cov(𝑧𝑦𝑖
, 𝑧𝑦𝑙

) (12) 



Positive Sample-Label Pairs Generation. When 𝑦𝑖  is the ground-truth label of 𝑓𝑖, 

we treat (𝑓𝑖 , 𝑧𝑦𝑖
) as a positive sample-label pair. However, for a minority of samples, 

there is only one positive sample-label pair, which may prevent the model from ade-

quately learning the diversity within categories, thereby restricting its generalization 

ability. 

To tackle this limitation, inspired by adversarial training [19], a regularization 

method for models to improve robustness, we introduce adversarial perturbations to 

generate additional positive sample 𝑓𝑖
𝑟. On the one hand, we construct the adversarial 

sample-label pairs as augmentations of the original sample features, on the other hand, 

incorporating such challenging samples into the training process facilitates the enhance-

ment of the model's robustness. Additionally, given the crucial role of the textual mo-

dality in emotion classification, we also incorporate textual causal-aware features 𝑓𝑖(𝑡), 

obtained through causal interaction from textual features 𝑐𝑖
𝑡, as augmentations of 𝑓𝑖. 

Importantly, our data augmentation technique does not alter the multimodal fusion 

mechanism employed in our model. The augmented positive sample-label loss for the 

𝑖-th sample can be calculated as follows: 

  Aug
(𝑖) = ∑ exp (Sim(𝑓, 𝑧𝑦𝑖

))
𝑓̃∈𝐹aug

(𝑖)                      (13) 

𝑝pos
(𝑖) =

exp(Sim(𝑓,𝑧𝑦𝑖
))

∑ exp(Sim(𝑓𝑖,𝑧𝑗))𝑧𝑗∈𝐙 +Aug
(𝑖)                         (14) 

                                                𝑙pos
(𝑖) = − ∑ log(𝑝pos

(𝑖)) (1 − 𝑝pos
(𝑖))

𝛼

𝑓∈𝐹aug
(𝑖)

∪{𝑓𝑖}
 (15) 

where α is a positive focusing parameter that forces the model to focus on hard positive 

examples, 𝐹aug
(𝑖)

 is the set of augmented sample features for 𝑓𝑖  and comprises 

{𝑓𝑖(𝑡), 𝑓𝑖
𝑟}, 𝑍 = [𝑧1, 𝑧2, ⋯ , 𝑧𝐾]T ∈ 𝑅𝐾×𝑑. 

Negative Sample-Label Pairs. A pair (𝑓𝑖 , 𝑧𝑦𝑖
) is referred to as a negative sample-la-

bel pair if 𝑦𝑖  is not the ground-truth label of 𝑓𝑖. Unlike existing SCL approaches that 

do not directly compute the loss from negative pairs, SCLA loss includes a term spe-

cifically for negative pairs. If the model incorrectly predicts samples, this term penal-

izes the model to minimize the similarity between such pairs. The negative sample-

label loss for the 𝑖-th sample can be calculated as follows: 

𝑝neg
(𝑖) =

exp (Sim(𝑓𝑖 , 𝑧𝑦𝑖
))

∑ exp (Sim(𝑓𝑖 , 𝑧𝑗))𝑧𝑗∈𝐙

                                      (16) 

𝑙neg
(𝑖) = − ∑ log(1 − 𝑝neg

(𝑖) ) 𝑝neg
(𝑖) 𝛽

                               

𝑧𝑦𝑖
∈𝑍neg

(𝑖)

(17) 
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where 𝛽 is a negative focusing parameter that assigns more focus to hard negative 

samples, 𝑍neg
(𝑖) = {𝑧𝑘 ∈ 𝒁|𝑧𝑘 ≠ 𝑧𝑦𝑖

} is the set of negative label embeddings for 𝑓𝑖. 

In summary, SCLA loss for M samples can be calculated as follows: 

𝐿SCLA = ∑ (
𝑀

𝑛𝑦𝑖

)

𝛾

(𝑙pos
(𝑖) + 𝑙neg

(𝑖) )                                         

𝑀

𝑖=1

(18) 

where 𝑛𝑦𝑖
 is the count of label 𝑦𝑖 within the batch, 𝛾 is a parameter to assign higher 

weights to minority emotions. 

3.4 Adversarial Samples Training 

 

Fig. 3. A Bi-GRU network with contextual adversarial perturbations 𝒓. 

Adversarial training [5] is a technique designed to bolster model robustness to small, 

approximately worst-case perturbations by incorporating adversarial examples into the 

training process. In context-dependent scenarios, directly generating adversarial sam-

ples can disrupt sample relationships and impair context comprehension. To solve this 

problem, we design a contextual adversarial sample training (AST) strategy based on 

Bi-GRU to obtain diverse contextual features and enhance model robustness. Let us 

denote 𝐱𝑖 as the input, θ as the parameters of the model and ϵ as the norm constraint 

to limit the size of the adversarial perturbations. When applied to a classifier, adversar-

ial training adds the following term to the cost function − log 𝑝 ( 𝑦 ∣∣ 𝐱𝑖 + 𝒓𝑎𝑑𝑣; θ ), 

where 

𝒓𝑎𝑑𝑣 = arg min
𝒓,|𝒓|≤ϵ

log 𝑝 ( 𝑦 ∣∣ 𝐱𝑖 + 𝒓; θ̂ )                    (19) 

in which 𝑟 is a perturbation on the input and θ̂ is a constant set to the current param-

eters of a classifier. At each step of training, we identify the worst case perturbations 

𝒓𝑎𝑑𝑣 against the current model 𝑝(𝑦 | 𝐱𝑖; 𝜃̂) in Eq. (19), and train the model to be robust 

to such perturbations through minimizing Eq. (19) with respect to 𝜃. However, this 

value is difficult to calculate accurately, because exact minimization with respect to 𝒓 

is impractical for complex models like neural networks. [5] proposed to approximate it 

by linearizing log 𝑝 ( 𝑦 ∣∣ 𝐱𝑖; 𝜃̂ )  around 𝐱𝑖 . With a linear approximation and a 𝐿2 



norm constraint in Eq. (19), the resulting adversarial perturbation shown by Eq. (20) is 

put on the context-aware hidden layers of the model. 

 𝒓𝑎𝑑𝑣 = −𝜖𝑔/‖𝑔‖2 where 𝑔 = ∇𝐱𝑖
log 𝑝 ( 𝑦 ∣∣ 𝐱𝑖 ; 𝜃̂)   (20) 

Here, we take the Bi-GRU network with a sequence input [𝐱1, 𝐱2, … , 𝐱𝑀] as an ex-

ample. Adversarial perturbations are put on context-aware hidden layers of the GRU in 

a multi-channel way, including two gated layers and candidate hidden state in the GRU 

structure, as shown in Fig. 3. After introducing AST, we obtain more diverse adversar-

ial sample features ℎ𝑖
𝑟 . Most importantly, our SCLA can construct more positive sam-

ple-label pairs to enable the model to learn more smooth representation spaces from 

context-dependent inputs, as well as enhance the model's context robustness.   

3.5 Overall Training Objective 

The overall training objective is a linear combination of the SCLA loss and the cross-

entropy (CE) loss, which is defined as follows: 

𝐿𝑇𝑟𝑎𝑖𝑛 = 𝐿𝐶𝐸 + 𝐿𝑆𝐶𝐿𝐴                                                  (21) 

𝐿𝐶𝐸 = − ∑ 𝑝𝑖[𝑦𝑖]

𝑀

𝑖=1

                                                    (22) 

where 𝑝𝑖  is the probability distribution of emotion classes for 𝑓𝑖.  

4 Experiments 

4.1 Dataset 

Table 1. The statistics of two datasets. 

Datasets Dialogues Utterances 

train val test train val test 

IEMOCAP 120 31 5810 1623 

MELD 1039 114 280 9989 1109 2610 

We evaluate model on two benchmark ERC datasets. The statistics are reported in Ta-

ble 1. IEMOCAP [2] is a multimodal ERC dataset in which each conversation is at-

tended by two speakers. Each utterance is labeled as one of six emotions, namely neu-

tral, happy, sad, anger, frustrated, and excited. MELD [20] is a multi-modal multi-party 

conversation dataset from the TV series. There are seven emotion labels: neutral, joy, 

surprise, sadness, anger, disgust, and fear. 

 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Table 2. Overall results against various methods on IEMOCAP. 

Models Happy Sad Neutral Angry Excited Frustrated W-f1 

DialogueRNN∗ 33.18 78.80 59.21 65.28 71.86 58.91 62.75 

DialogueCRN‡ 57.69 82.35 60.63 63.57 75.63 58.66 66.26 

CTNet∗ 51.30 79.90 65.80 67.20 78.70 58.80 67.50 

MM − DFN‡ 38.62 80.59 67.27 69.11 75.29 66.81 67.90 

SPCL − CL† - - - - - - 67.74 

CauAIN† 60.29 74.14 62.90 63.31 70.61 64.00 66.09 

CoG − BART∗ - - - - - - 66.18 

MVTCN∗ 30.20 74.20 59.00 62.70 72.50 66.60 64.10 

DialogueINAB∗ - - - - - - 67.22 

CaSCLA 65.32 76.11 67.71 62.37 79.12 67.24 68.56 

Table 3. Overall results against various methods on MELD. 

Models Neu-

tral 

Sur-

prise 

Fear Sad Joy Dis-

gust 

Anger W-f1 

ConGCN∗ 77.40 50.30 08.70 28.50 53.10 10.60 46.80 59.40 

DialogueRNN∗ 73.54 49.47 01.23 23.83 50.74 01.73 41.54 55.97 

DialogueCRN‡ 77.03 47.44 00.00 21.07 52.95 00.00 46.97 58.22 

CTNet∗ 77.40 52.70 10.00 32.50 56.00 11.20 44.60 60.50 

MM − DFN‡ 75.30 48.42 01.02 26.87 53.31 00.00 45.63 57.85 

SPCL − CL† - - - - - - - 65.45 

CauAIN† 78.91 57.95 12.90 41.65 61.44 20.81 52.20 64.84 

CoG − BART∗ - - - - - - - 64.81 

MVTCN∗ 76.00 46.90 08.80 04.60 52.30 06.70 47.60 58.60 

DialogueINAB∗ - - - - - - - 57.78 

CaSCLA 76.29 55.37 27.72 44.34 62.51 31.78 54.09 66.21 

NOTE: Models annotated with the ∗ symbol indicate results are from their original papers, the † symbol 

means that the results are obtained through author replication, and the ‡ symbol denotes results from [13]. 

4.2 Baselines and Implementation Details 

We compare our proposed model with the following methods: ConGCN [30], Dia-

logueRNN [17], DialogueCRN [8], CTNet [15], MM-DFN [7], SPCL-CL [25], 

CauAIN [32], CoG-BART [14], MVTCN [28] and DialogueINAB [4]. We choose F1 

score per class and weighted-F1 score as the evaluating metric. All of our results are 

averaged on 5 runs. 



Hyperparameter Settings: For unimodal feature extraction, models are trained using 

Adam optimizer with a batch size of 32 and the dimensionality of the unimodal feature 

vectors 𝑑𝑚 is 1024 on both datasets. For all representations in the following parts of 

CaSCLA, 𝑑ℎ is set to 300. The training of CaSCLA is also performed using the Adam 

optimizer, with a learning rate of 1e-4. The positive and negative focusing parameters 

α and β are set to 2.0 and 0.5 respectively, the sample-weight parameter γ is chosen 

among {0.5, 1.0, 1.5}. 

5 Results and Analysis 

5.1 Overall Results 

The overall results are reported on two datasets, IEMOCAP and MELD, in Table 2 and 

Table 3 respectively. CaSCLA achieves the best overall recognition performance 

across the two datasets compared to other methods. Specifically, on the IEMOCAP 

dataset, CaSCLA achieves a weighted F1 score of 68.56%, marking a 2.47% improve-

ment over the baseline model CauAIN and an average gain of 2.56% compared to other 

state-of-the-art models. On the MELD dataset, our model attains a weighted F1 score 

of 66.21%, outperforming the baseline CauAIN by 1.37% and achieving an average 

improvement of 6.44% over other state-of-the-art methods. 

We also report fine-grained results on two datasets. It is noteworthy that CaSCLA 

achieves better results for most emotion categories (5 out of 7 classes) on the highly 

imbalanced MELD dataset. Particularly for the minority categories of “fear” and “dis-

gust”, its F1 scores surpass the second-best model CauAIN, by 14.82% and 10.97% 

respectively, while showing average improvements of 20.61% and 23.27% over other 

models. Additionally, on the IEMOCAP dataset, for the happy category, which is the 

least represented among all categories and accounts for only 9% of the total categories, 

CaSCLA achieves the highest F1 score of 65.32%, representing an average improve-

ment of 20.11% over other models, while also demonstrating strong performance across 

the remaining categories. 

These results indicate that CaSCLA not only achieves the best overall performance 

but also makes significant improvements in minority classes, effectively addressing the 

class imbalance. Taking all aspects into consideration, our model demonstrates the most 

outstanding performance in emotion recognition. 

5.2 Ablation Study 

We conduct ablation studies, with results presented in Table 4. 

Impact of SCLA. To study the contribution of SCLA, we remove the proposed SCLA 

module. The experimental results show that the performance of CaSCLAw/o SCLA drops 

significantly on both datasets. These demonstrate that the SCLA module effectively 

optimizes the model's performance in supervised contrastive learning tasks by con-

structing positive and negative sample label pairs. It not only enhances the model's  
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Table 4. Ablation results of CaSCLA. 

Models Performance(weighted-F1) 

IEMOCA MELD 

CaSCLA 68.56 66.21 

w/o SCLA 66.89(↓1.67) 64.97(↓1.24) 

w/o AST 67.23(↓1.33) 65.35(↓0.86) 

w/o causal-aware 67.31(↓1.25) 65.32(↓0.89) 

ability to distinguish between different classes but also improves its handling of chal-

lenging samples. 

Impact of AST. We implement CaSCLAw/o AST , excluding adversarial training for 

generating additional sample features. Its performance significantly deteriorates on 

both datasets, with the most pronounced decline observed on IEMOCAP, likely due to 

the presence of semantically similar emotion categories, such as “happy” and “excited”. 

This confirms the superiority of AST in enhancing the model's ability to identify similar 

emotions in complex dialogue scenarios. 

Impact of causal-aware. When the causal-aware interaction module is removed (i.e., 

w/o causal-aware) and the contextual feature representation ℎ𝑖 is directly used as the 

sample feature, the performance significantly declines on both datasets. This result val-

idates the effectiveness of our approach in detecting emotional causes and improving 

emotion recognition performance. 

5.3 Batch Sizes Stability of CaSCLA  

Table 5. Performance comparison on MELD dataset. 

Models MELD (weighted-F1) 

BS=4 BS=8 BS=16 BS=32 

SupCon 57.20 61.43 62.57 64.16 

SPCL-CL 61.34 62.92 63.54 65.45 

CaSCLA(Ours) 65.74 66.21 65.94 65.85 

To investigate the stability of CaSCLA across different batch sizes, we conduct exper-

iments on the imbalanced MELD dataset. As shown in Table 5, the results show that 

CaSCLA consistently outperforms methods using these two SCL loss functions across 

all batch size settings, maintaining superior performance even with small batch sizes. 

This demonstrates the model's stability across different batch sizes and its effectiveness 

in addressing large batch sizes limitations. 



6 Conclusion 

In this paper, to address the limitations of the class imbalance and insufficient model 

robustness in MERC, we propose an innovative framework named CaSCLA. Specifi-

cally, we achieve modality balance and integrate a causal-aware interaction network to 

extract causal features associated with emotional reasons. Moreover, the SCLA module 

is designed to map discrete emotion labels into a dense embedding space and construct 

positive and negative sample-label pairs, thereby alleviating the issue of class imbal-

ance and reducing the necessity of large batch sizes. Additionally, we introduce a con-

textual AST strategy, which generates additional positive sample features to further 

enhance the model's robustness. Experimental results demonstrate the effectiveness of 

CaSCLA.  
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