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Abstract. With the increasing complexity of the integrated modular avionics 

(IMA) and the growing demand for efficient operation in multi-task environ-

ments, IMA systems must not only utilize various resources efficiently but also 

consider communication latency, system safety and real-time responsiveness dur-

ing task execution. Because of the number and complexity of tasks increasing, 

the system faces dual challenges: real-time task scheduling and resource utiliza-

tion optimization. Therefore, we propose a task scheduling method based on a 

multi-stage Q-learning differential evolution algorithm. First, a bilevel schedul-

ing model for IMA systems is constructed, which comprehensively considering 

key factors such as resource utilization, communication latency and safety. Sec-

ond, an enhanced differential evolution algorithm is employed to optimize the 

model. Specifically, in the population initialization stage, the proposed algorithm 

uses a chaotic logistic map to ensure a uniform distribution of the initial popula-

tion in the solution space. During the population evolution process, the fitness of 

each infeasible individual is corrected through the penalty function. Meanwhile, 

the proposed algorithm utilizes a Q-learning mechanism to dynamically adjust 

the evolutionary operators to improve their adaptability and employs a multi-

stage constraint addition strategy to expand the search space of the algorithm. 

Finally, experimental results comparing the proposed algorithm with other algo-

rithms demonstrate its superior performance, which indicates its effectiveness in 

solving task scheduling problems in integrated avionics systems. 

Keywords: IMA Task Scheduling, Constraint Handling, Differential Evolution 

(DE), Q-learning Algorithm, Adaptive Operator. 

1 Introduction 

With the rapid development of aviation technology, traditional avionics system archi-

tectures can't meet the complex requirements of modernization. To enhance system op-

erational efficiency and ensure flight safety and reliability, IMA system has emerged 

[1]. Currently, several advanced aircraft have adopted the IMA architecture, for in-

stance, the Boeing 787, Airbus A350, and COMAC C919 [1,2].  In IMA system, task 

scheduling follows the bilevel scheduling model defined by the ARINC 653 standard. 



 

This model includes both inter-partition scheduling and intra-partition scheduling and 

ensures that all applications execute within spatially and temporally separated partitions 

[3]. By this partitioning mechanism, the IMA architecture guarantees that tasks running 

in different partitions do not interfere with each other [4]. Compared to traditional fed-

erated and integrated avionics systems, the IMA architecture has the advantages of 

time-partitioning and resource sharing, which effectively enhance the operational effi-

ciency and fault tolerance of the system. However, these advantages also make the sys-

tem more complex and present new challenges for system design. In the design process 

of IMA architecture, the core challenge is how to effectively allocate tasks while en-

suring system schedulability [5]. Kim et al. [6] solved the maximum task load bounda-

ries for each IMA partition using linear programming. Davis et al. [7] used both greedy 

algorithms and exhaustive search algorithms to explore the entire solution space, ob-

taining a globally optimal set of parameters. Al-Sheikh et al. [8] proposed an optimal 

response algorithm based on game theory to obtain the optimal solution. Considering 

the optimization of the IMA task scheduling system is a complex non-linear and non-

convex optimization problem [9], the traditional optimization algorithms used in the 

above studies are difficult to meet these multi-objective requirements at the same time. 

The complexity of task scheduling in IMA system requires balancing multiple con-

flicting objectives and constraints. Single-objective optimization algorithms struggle 

with this challenge, so an appropriate multi-objective optimization algorithm is key to 

solving the IMA task scheduling problem. CHEN [10] improved the decomposition-

based multi-objective evolutionary algorithm (MOEA/D) by introducing the con-

strained dominance principle to solve the IMA partition parameter configuration prob-

lem. However, this method relies on too many parameters. Chu [11] solved the IMA 

resource parameter configuration problem using a forward-checking algorithm and an 

NSGAII with an elite retention strategy. However, this approach is prone to uneven 

solution distribution and premature convergence. Aminifar et al. [12] addressed real-

time system task allocation using a simulated annealing algorithm, but the model is 

easy to getting trapped in local optima. Shojafar et al. [13, 14] optimized job allocation 

in cloud computing using fuzzy theory and genetic algorithms, but their study did not 

address constraints. The DE algorithm [15] is widely used in multi-objective optimiza-

tion because of its strong global search capability, fast convergence speed, ease of im-

plementation and simple parameter settings. However, traditional DE algorithms have 

some limitations. For instance, they initialize populations randomly, which may cause 

the initial population to be concentrated in certain regions of the solution space. Addi-

tionally, they use fixed evolutionary operators, which can lead to slow and unstable 

convergence.  

To address this, this paper proposes an improved DE-based solution for the task 

scheduling problem in IMA systems. The main contributions of this paper are summa-

rized as follows: 

─ A bilevel scheduling model is constructed, including task scheduling and partition 

scheduling, which considers resource constraints, communication delays, and sys-

tem safety. 
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─ A multi-stage Q-learning DE algorithm is designed, which optimizes aspects such 

as population initialization, constraint handling, and adaptive adjustment of crosso-

ver and mutation operators. 

─ Simulation experiments validate the proposed algorithm's superiority in optimization 

performance, demonstrating its potential for solving complex system task scheduling 

problems. 

2 System Model and Problem Formulation 

2.1 The Bilevel Scheduling Model 

The IMA system typically employs a distributed processing framework. It consists of 

multiple embedded processing nodes interconnected via the AFDX network. Each pro-

cessing node can host multiple partitions, and each partition allocated one or more pre-

defined real-time tasks, as illustrated in Fig. 1.  

 

Fig. 1. IMA system framework.  

We define a bilevel scheduling model as shown in Fig. 2. The first level scheduling 

divides tasks into task groups, and each group resides in a partition. The second level 

scheduling assigns partitions to nodes and establishes a scheduling model to optimize 

and obtain the final allocation results. We define a set of tasks as 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛𝑇}. 

Each task can be represented as a triple 𝑡1 = (𝑇𝑀𝑖 , 𝐶𝑖, 𝐷𝑖), where 𝑇𝑀𝑖 is the memory 

requirement, 𝐶𝑖 is the maximum execution time, and 𝐷𝑖  is the deadline. Task priorities 

are determined using the Earliest Deadline First (EDF) algorithm. The set of 𝑛𝑃 parti-

tions is defined as {𝑝1, 𝑝2, … , 𝑝𝑛𝑃}. Each partition is characterized by 𝑝𝑗 = (𝑃𝑀𝑗 , 𝑃𝑇𝑗), 

where 𝑃𝑀𝑗 is the partition’s memory size and 𝑃𝑇𝑗 is the partition frame time. A set of 

𝑛𝑁 nodes is represented as {𝑛1, 𝑛2, … , 𝑛𝑛𝑁}. Each node is defined as 𝑛𝑘 = (𝑁𝑀𝑘 , 𝑁𝑇𝑘), 

where 𝑁𝑀𝑘 is the memory capacity and 𝑁𝑇𝑘 represents the main frame time. 



 

 

Fig. 2. The bilevel scheduling model.  

2.2 Task Scheduling Problem Modeling 

Task-to-Partition Scheduling. In this scheduling level, 𝐴𝑇is defined as an allocation 

matrix, where 𝐴𝑖𝑗
𝑇  represents the allocation of task 𝑡𝑖 to partition 𝑝𝑗. Considering safety 

factors in the scheduling process, some tasks cannot be assigned to the same partition. 

To address this, we define 𝑀𝑇as the task mutual exclusion matrix, where 𝑀𝑖𝑗
𝑇  indicates 

that task 𝑡𝑖 and task 𝑡𝑗 are mutually exclusive. 

To meet the different resource requirements of tasks, some constraints must be sat-

isfied during the allocation process.  

The schedulability constraint requires that the completion time of each task does not 

exceed its deadline, which can be expressed as: 

 𝑇𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

= ∑  𝑚∈ℎ𝑝(𝑖) 𝐴𝑚𝑗
𝑇 ⋅ 𝐴𝑖𝑗

𝑇 ⋅ 𝐶𝑚 + 𝐶𝑖 ≤ 𝐷𝑖 (1) 

where ℎ𝑝(𝑖) denotes the set of tasks with higher priority than task 𝑡𝑖.  

The memory constraint requires that the total memory occupied in the same partition 

does not exceed the partition's available memory, which can be expressed as: 

 ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝑇𝑀𝑖 ≤ 𝑃𝑀𝑗 (2) 

The CPU utilization constraint requires the total execution time of tasks assigned to 

the same partition does not exceed the partition's frame time. It can be expressed as: 

 ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝐶𝑖 ≤ 𝑃𝑇𝑗 (3) 

 For safety reasons, two mutually exclusive tasks cannot be assigned to the same par-

tition. This constraint can be expressed as: 
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 ∑  𝑛𝑇

𝑖=1 ∑  𝑛𝑇

𝑗=1 ∑  𝑛𝑃

𝑘=1 𝐴𝑖𝑘
𝑇 ⋅ 𝐴𝑗𝑘

𝑇 ⋅ 𝑀𝑖𝑗
𝑇 = 0 (4) 

To evaluate the quality of the task scheduling results, this paper employs two opti-

mization objectives. The maximum partition utilization is used to measure the load bal-

ancing between partitions. It consists of the partition memory utilization and partition 

CPU utilization, and can be expressed as: 

 𝑃𝑢𝑠𝑒 = 𝑚𝑎𝑥
1≤𝑗≤𝑛𝑃

 (𝜆1 ⋅
∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅𝐶𝑖

𝑃𝑇𝑗
+ 𝜆2 ⋅

∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅𝑇𝑀𝑖

𝑃𝑀𝑗
)  (5) 

where 𝜆1 and 𝜆2 represent the weights and the sum equal to 1.  

The average completion time is defined as the mean of the completion times of all 

tasks. This objective can be expressed as: 

 𝐹𝑇𝑎𝑣𝑔 =
1

𝑛𝑇
∑  𝑛𝑇

𝑖=1 𝑇𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

 (6) 

In summary, the optimization objectives for task-to-partition scheduling can be ex-

pressed as: 

 𝑚𝑖𝑛{𝑃𝑢𝑠𝑒 , 𝐹𝑇𝑎𝑣𝑔} (7) 

Partition-to-Node Scheduling. In this scheduling level, the matrix 𝐴𝑃 is used to rep-

resent the allocation of partitions on nodes.  𝐴𝑗𝑘
𝑃 = 1 represents that 𝑝𝑗 is allocated to 

𝑛𝑘. Matrix 𝑀𝑃 represents the partition mutual exclusion matrix, where 𝑀𝑖𝑗
𝑇 = 1 indi-

cates that 𝑝𝑖  and 𝑝𝑗 are mutually exclusive. In addition, a matrix 𝐸 of size 𝑛𝑃 × 𝑛𝑃 rep-

resents the communication delay between partitions, where 𝐸𝑗𝑘 represents the commu-

nication delay caused by 𝑝𝑗 and 𝑝𝑘 on different processing nodes. 

We also define the memory constraint, the CPU utilization constraint and the parti-

tion mutual exclusion constraint, which are similar to the task-to-partition scheduling. 

 ∑  𝑛𝑃

𝑗=1 𝐴𝑗𝑘
𝑃 ⋅ 𝑃𝑀𝑗 ≤ 𝑁𝑀𝑘 (8) 

 ∑  𝑛𝑃

𝑗=1 𝐴𝑗𝑘
𝑃 ⋅ 𝑃𝑇𝑗 ≤ 𝑁𝑇𝑘 (9) 

 ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 ∑  𝑛𝑁

𝑘=1 𝐴𝑖𝑘
𝑃 ⋅ 𝐴𝑗𝑘

𝑃 ⋅ 𝑀𝑖𝑗
𝑃 = 0 (10) 

The optimization goal of partition-node scheduling comprises two parts. The maxi-

mum node usage consists of node memory usage and node CPU usage. 

 𝑁𝑢𝑠𝑒 = 𝑚𝑎𝑥
1≤𝑗≤𝑛𝑁

 (𝜇1 ⋅
∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅𝑃𝑇𝑖

𝑁𝑇𝑗
+ 𝜇2 ⋅

∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅𝑃𝑀𝑖

𝑁𝑀𝑗
) (11) 

In the formula, 𝜇1 and 𝜇2 represent the weights and their sum is 1.  

The communication delay refers to the time delay caused by data exchange between 

partitions located on different processing nodes in a multi-processor system or a multi-

partition system.  



 

 𝐶𝑜𝑠𝑡 = ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 𝐸𝑖𝑗 − ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 ∑  𝑛𝑁

𝑘=1 𝐴𝑖𝑘
𝑃 ⋅ 𝐴𝑗𝑘

𝑃 ⋅ 𝐸𝑖𝑗 (12) 

In summary, the optimization goal of partition-to-node scheduling can be expressed 

as: 

 𝑚𝑖𝑛{𝑁𝑢𝑠𝑒 , 𝐶𝑜𝑠𝑡} (13) 

3 Proposed Algorithm 

3.1 Overall Framework of MSQ-MODE 

Algorithm 1: Procedure of the proposed MSQ-MODE 

Input: population size: 𝑁𝑃; maximum number of iterations: 𝐺; set of constraints: 𝐶. 

Output: population: 𝑃. 

1. Initialize the current constraint set 𝑐𝑢𝑟𝐶 ← ∅ and external archive 𝐴 ← ∅; 

2. for 𝑖 ← 1 to 𝑁𝑃 do 

3.       𝐹(𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1); 𝐶𝑅(𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1); 

4. 𝑃1 ← Evolve 𝑃 using DE for 𝐺 generations; 

5. for 𝑖 ← 1 to 𝑙𝑒𝑛(𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) do 

6.      𝑖𝑓𝑟(𝑖) ← Calculate the infeasibility rate 𝑖𝑓𝑟 of constraint 𝑖 on 𝑃; 

7. 𝑝𝑟𝑖𝑜𝑟𝐶 ← Sort constraints in descending order according to 𝑖𝑓𝑟; 

8. while 𝑐𝑢𝑟𝐶 is not equal to 𝐶 do 

9.      if |𝐴| ≥ 𝑁𝑃 then 

10.           𝑃 ← Select 𝑁 individuals from 𝐴 based on the SPEA2 strategy; 

11.      if |𝐴| < 𝑁𝑃 then 

12.           𝑟𝑒𝑚𝑎𝑖𝑛𝑃 ←  Generate 𝑁𝑃 − |𝐴|  individuals according to ( 𝑥𝑖 = ⌊𝑧𝑖 ⋅ 𝑛⌋

 (15); 

13.           𝑃 ← 𝐴 ∪ 𝑟𝑒𝑚𝑎𝑖𝑛𝑃; 

14.      𝑐𝑜𝑛𝑠 ← Select from 𝑝𝑟𝑖𝑜𝑟𝐶 based on the priority order; 

15.      𝑐𝑢𝑟𝐶 = 𝑐𝑢𝑟𝐶 ∪ 𝑐𝑜𝑛𝑠; 

16.      while the transformation conditions are not satisfied do 

17.           Calculate 𝑟𝑘, 𝑟𝑧𝑘 and 𝑟𝑛𝑘 according to (𝑟𝑘 ≡ 𝑚𝑎𝑥{𝑟𝑧𝑘 , 𝑟𝑛𝑘} ≤ 𝜖 (20), 

(𝑟𝑧𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑧𝑖

𝑘−𝑧𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑧𝑖
𝑘−𝑙|,Δ}

} (21) and (𝑟𝑛𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑛𝑖

𝑘−𝑛𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑛𝑖
𝑘−𝑙|,Δ}

} (22); 

18.           for 𝑖 ← 1 to 𝑁𝑃 do 

19.                Calculate 𝐹(𝑖) and 𝐶𝑅(𝑖); 

20.                𝑜 ← Generate offspring based on the DE/rand/1 strategy and binary 

crossover strategy; 

21.                Calculate the fitness of 𝑜 based on (𝐹𝑖
𝑇 = {𝑃𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑇 , 𝐹𝑇𝑖

𝑎𝑣𝑔
+ 𝑃𝑖

𝑇} (18) 

or (𝐹𝑖
𝑃 = {𝑁𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑃, 𝐶𝑜𝑠𝑡𝑖 + 𝑃𝑖

𝑃} (19); 

22.                Update 𝑃 based on the dominance relationship between 𝑥 and 𝑜, and 

update the rewards and actions; 

23.                Update the Q-table; 

24.          𝐴 ← Add non-dominated feasible solutions in 𝑃; 
25. return 𝑃; 
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Algorithm 1 provides the pseudocode for MSQ-MODE, and the steps are as follows: 

In lines 1-3, the relevant parameters are initialized. In lines 4-7, the priority of con-

straints is determined. In lines 9-13, the initial population for each stage is initialized. 

In lines 14-15, constraints are added based on priority and the stage is determined. In 

line 17, the maximum rate of change between the ideal and worst points over the past 𝑙 
generations is calculated. In lines 18-23, the population evolves. In line 24, the external 

archive is updated based on the non-dominated feasible solutions of the population. 

Finally, the final P is output. 

3.2 Population Initialization based on Chaotic Logistic Mapping 

The chaotic logistic map [16] can enable the generated initial population to cover the 

solution space more extensively and improve the global search ability. The chaotic lo-

gistic map is generally described by the following mathematical formulation:  

 𝑧𝑖+1 = 𝜃 ⋅ 𝑧𝑖 ⋅ (1 − 𝑧𝑖) (14) 

where 𝜃 ∈ [1,4].  
Each individual represents a scheduling scheme, which is encoded using the real 

coded method shown in Fig. 3.  

 

Fig. 3. Real coded.  

The population initialization combined with the chaotic logistic map can be repre-

sented as:  

 𝑥𝑖 = ⌊𝑧𝑖 ⋅ 𝑛⌋ (15) 

where 𝑥𝑖  represents the value of the 𝑖-th position of individual 𝑥, 𝑖 is the number of 

tasks or partitions to be scheduled, and 𝑛 represents the number of partitions or nodes. 

3.3 Fitness Handling Mechanism based on Penalty Function 

In this section, a penalty function is used to adjust the fitness of individuals failing to 

satisfy the constraints. This adjustment puts them at a disadvantage during the selection 

process, and prevents them from negatively affecting the optimization. In the task-to-

partition scheduling, the penalty value of the 𝑖-th individual’s fitness can be defined as:  

 

𝑃𝑖
𝑇 =     10 ⋅ (∑  𝑛𝑇

𝑖=1 𝑚𝑎𝑥(0, 𝑇𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

− 𝐷𝑖)

    + ∑  𝑛𝑃

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝑇𝑀𝑖 − 𝑃𝑀𝑗)

    + ∑  𝑛𝑃

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝐶𝑖 − 𝑃𝑇𝑗)

    + ∑  𝑛𝑇

𝑖=1 ∑  𝑛𝑇

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑃

𝑘=1 𝐴𝑖𝑘
𝑇 ⋅ 𝐴𝑗𝑘

𝑇 ⋅ 𝑀𝑖𝑗
𝑇 ))

 (16) 



 

Similarly, the penalty function for partition-to-node scheduling is defined as:  

 

𝑃𝑖
𝑃 =     10 ⋅ (∑  𝑛𝑁

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅ 𝑃𝑀𝑖 − 𝑁𝑀𝑗)

    + ∑  𝑛𝑁

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅ 𝑃𝑇𝑖 − 𝑁𝑇𝑗)

    + ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑁

𝑘=1 𝐴𝑖𝑘
𝑃 ⋅ 𝐴𝑗𝑘

𝑃 ⋅ 𝑀𝑖𝑗
𝑃 ))

 (17) 

Based on the penalty function, the fitness value of individual 𝑖 can be modified as:  

 𝐹𝑖
𝑇 = {𝑃𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑇 , 𝐹𝑇𝑖

𝑎𝑣𝑔
+ 𝑃𝑖

𝑇} (18) 

 𝐹𝑖
𝑃 = {𝑁𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑃, 𝐶𝑜𝑠𝑡𝑖 + 𝑃𝑖

𝑃} (19) 

3.4 The Adaptive Operators based on Q-learning Algorithm 

In this paper, each individual independently maintains and updates the operators using 

the Q-learning algorithm. We define an individual as an agent. Similar to [17], the states 

are set according to the dominance relationship between offspring and parents: the off-

spring dominates the parent; the parent dominates the offspring; the offspring and the 

parent do not dominate each other. Here, different adjustment schemes of the operators 

are set as actions, mainly including：𝑓 = −0.1, 𝑐𝑟 = 0.1；𝑓 = 0.1, 𝑐𝑟 = 0.1; 𝑓 = 0, 

𝑐𝑟 = 0. These actions are transformed into a feedback mechanism to update the opera-

tors: 𝐹 = 𝐹 + 𝑓 , 𝐶𝑅 = 𝐶𝑅 + 𝑐𝑟. If the offspring dominates the parent, it indicates that 

the current local search direction is effective, so the reward is 1. If the parent dominates 

the offspring, it suggests that the current local search direction may be ineffective, thus 

the reward is −1. For other situations, the reward is 0. The update of the Q-table uses 

the Bellman equation. The agent uses the 𝜖-greedy strategy to select the action and re-

ceives the corresponding reward to update the Q-table. 

3.5 Constraint-handling based on Multi-stage Constraint Addition 

In multi-objective optimization problems, there are usually multiple constraints, impos-

ing constraints too early may limit the exploration of the solution space. To ensure that 

the algorithm has good global search ability and convergence, we propose a multi-stage 

constraint addition method, which enables the algorithm to smoothly transition from 

the initial stage with loose constraints to the later stage with strict constraints, thereby 

improving the quality of the final solution. The specific steps are as follows: 

Determining the priority of constraints. Firstly, we randomly generate an initial 

population. Then let the population evolve to the approximate unconstrained Pareto 

Front. Next, we calculate the infeasibility rate of the population on each constraint and 

sort the constraints in descending order based on the infeasibility rates. 

Adding constraints stage by stage. To increase the diversity of solutions and find 

potential effective solution regions, we do not add any constraints in the initial stage. 

In the subsequent stages, one constraint will be gradually added in each round according 

to the priority level. As the number of constraints gradually increases, the search scope 

gradually narrows, and finally focuses on a solution space that satisfies all constraints. 
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To improve the stability and diversity of the constraint addition process, we use an 

external archive to store the non-dominated feasible solutions from each stage. At each 

stage, the initial solution set is obtained from the external archive.  

Stage transition conditions. We introduce the switching strategy of PPS [18] to 

dynamically determine whether to add new constraints based on the optimization status 

of the population. The strategy is as follows: 

 𝑟𝑘 ≡ 𝑚𝑎𝑥{𝑟𝑧𝑘 , 𝑟𝑛𝑘} ≤ 𝜖 (20) 

 𝑟𝑧𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑧𝑖

𝑘−𝑧𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑧𝑖
𝑘−𝑙|,Δ}

} (21) 

 𝑟𝑛𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑛𝑖

𝑘−𝑛𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑛𝑖
𝑘−𝑙|,Δ}

} (22) 

where 𝑟𝑘 denotes the maximum rate of change between the ideal and nadir points over 

the past 𝑙 generations. 𝑧𝑖
𝑘 and 𝑛𝑖

𝑘 represent the ideal point and the nadir point in the 𝑘-

th generation, respectively. 𝜖 is set to 1𝑒 − 3 and Δ is set to 1𝑒 − 6. 

4 Experimental Results 

4.1 Experiment Settings 

The basic configuration information of the IMA system in the experiment is shown in 

Table 1 and Table 2. In the task-to-partition scheduling, we set that 𝑡2 and 𝑡5, 𝑡3 and 

𝑡10 , 𝑡9 and 𝑡16 , 𝑡1  and 𝑡11 , 𝑡7  and 𝑡10  are mutually exclusive (i.e., the corresponding 

positions in 𝑀𝑇 are set to 1, and all other positions set to 0). Similarly, in the partition-

to-node scheduling, we set that 𝑝1 and 𝑝4, 𝑝3 and 𝑝7 are mutually exclusive. The com-

munication delays between partitions are shown in Table 3. 

Table 1. Task parameters. 

Task 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 

TM 13 8 13 10 19 26 26 44 24 

C 2 2 4 1 3 2 4 7 2 

D 32 30 40 25 35 34 42 55 36 

Task 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15 𝑡16 𝑡17 𝑡18 

TM 48 56 26 48 50 59 43 46 49 

C 3 4 1 4 5 2 4 2 3 

D 39 44 26 43 45 38 41 37 50 

Table 2. Partition parameters and node parameters. 

Partition 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 Node 𝑛1 𝑛2 𝑛3 

PM 200 120 250 190 130 110 140 NM 1000 900 500 

PT 50 35 65 30 98 32 41 NT 300 200 100 



 

Table 3. Partition Communication Delay. 

Partition 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 

𝑝1 0 45 23 67 12 9 34 

𝑝2 45 0 12 43 56 78 90 

𝑝3 23 12 0 34 67 21 89 

𝑝4 67 43 65 0 65 32 54 

𝑝5 12 56 67 65 0 56 87 

𝑝6 89 78 21 32 56 0 43 

𝑝7 34 90 89 54 87 43 0 

NSGAII [19], CMOEA/D [20],  CCMO [21] and PPS [18] are selected as the com-

parison algorithms for MSQ-MODE. NSGAII and CMOEA/D are very representative 

algorithms, and CCMO and PPS are multi-stage constrained MOEAs. We set the cross-

over and mutation operators for NSGAII, CMOEA/D and CCMO to 0.9 and 0.1, re-

spectively. The population size is set to 100 and the maximum number of iterations set 

to 150. In CMOEA/D, the number of neighbors is set to 5, and the evolutionary process 

uses the DE component (DE/rand/1 and binary crossover). The remaining parameters 

of these algorithms align with those specified in the original papers. To account for the 

randomness of the algorithms, each algorithm is run 30 times. 

Since the true Pareto front of the IMA task scheduling problem is difficult to obtain 

directly, the IGD index cannot be used for this problem. We adopt the hypervolume 

(HV) as the performance index. The larger the HV value, the better the comprehensive 

performance of the algorithm. 

4.2 Result Analysis 

Effectiveness test. Table 4 lists the max, min, mean and std HV values for each algo-

rithm obtained in the bilevel scheduling model. From Table 4, MSQ-MODE achieves 

the best mean HV values in both task-to-partition scheduling and partition-to-node 

scheduling. This indicates that the algorithm is capable of consistently producing high-

quality solution sets over multiple runs, demonstrating strong global search ability and 

consistency. Additionally, MSQ-MODE also performs best in terms of both the max 

and min HV values, indicating that the algorithm can find high quality solutions and 

reflect its strong ability to explore the potential solution space. In contrast, in the task-

partition scheduling, the minimum HV values of CCMO and PPS are 0, and in the par-

tition-node scheduling, the minimum HV values of CMOEA/D and PPS are 0, which 

indicates that they failed to find any feasible solutions during the evolutionary process. 

As we can see from Fig. 4 and Table 4, our algorithm has the smallest std for HV, 

indicating that it is more stable compared to other algorithms. This is because our algo-

rithm introduces a penalty function in the fitness evaluation, reducing ineffective 

searches within the population and guiding the evolution direction towards the feasible 

solution set, ensuring convergence stability. Moreover, our algorithm uses the Q-learn-

ing mechanism to ensure that individuals evolve in favorable directions, which not only 
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improves the average HV value but also reduces the variance in convergence paths 

across different experiments, thereby lowering the standard deviation. In addition, our 

algorithm employs a multi-stage constraint-handling strategy, and through gradual con-

vergence, it reduces fluctuations caused by randomness, leading to more consistent so-

lution quality across different experiments and ultimately resulting in a smaller standard 

deviation. 

Significance test. Table 4 lists the P-values and test results of the Wilcoxon signed-

rank test comparing MSQ-MODE with NSGAII, CMOEA/D, CCMO and PPS at a sig-

nificance level of 0.05. In the table, the symbols "+", "≈", and "−" represent that the 

performance of MSQ-MODE is significantly better than that of the competitors, similar 

to that of the competitors, and significantly worse than that of the competitors, respec-

tively. Table 4 shows that, from a statistical perspective, the MSQ-MODE algorithm 

significantly outperforms other comparison algorithms. Notably, the Wilcoxon signed-

rank test, which is specifically designed to compare median differences between two 

related samples, furnishes robust and incontrovertible evidence. This evidence strongly 

supports the assertion that MSQ-MODE not only attains an exceptionally high optimi-

zation quality in the task scheduling problem but also exhibits strikingly significant 

differences in its optimization outcomes. Therefore, the test results further confirm that 

the MSQ-MODE algorithm has superior performance and higher stability compared to 

other comparison algorithms in solving this problem. This strongly validates its ap-

plicability and reliability in practical applications. 

Table 4. The min, max, mean, std of the HV values for different algorithms and the P-values 

and test results of the Wilcoxon signed-rank test comparing different algorithms at a signifi-

cance level of 0.05. 

Scheduling model Algorithm Min Max Mean Std P-value R 

Task-to-partition 

MSQ-MODE 1.1123 1.2057 1.1598 0.0221 - - 

NSGAII 0.7386 1.1928 0.9329 0.0828 3.72529E-09 + 

CMOEA/D 1.0109 1.1807 1.0925 0.0491 1.30385E-07 + 

CCMO 0.0000 1.1807 0.8579 0.4768 1.21836E-05 + 

PPS 0.0000 0.8935 0.3617 0.3472 1.86265E-09 + 

Partition-to-node 

MSQ-MODE 0.1865 0.1882 0.1879 0.0004 - - 

NSGAII 0.1784 0.1874 0.1847 0.0026 1.86265E-09 + 

CMOEA/D 0.0000 0.0122 0.0076 0.0047 1.86265E-09 + 

CCMO 0.1241 0.1807 0.1544 0.0136 1.73255E-09 + 

PPS 0.0000 0.0122 0.0065 0.0054 1.86265E-09 + 



 

 

Fig. 4. HV values distribution of the bilevel scheduling model. 

5 Conclusion 

In this article, the task scheduling problem in integrated electronic systems is studied. 

The core of this problem is to optimize the task scheduling scheme while satisfying the 

constraints of resources, communication delays, and safety. This paper proposes a two-

layer scheduling model based on task scheduling, which is used to optimize task-parti-

tion scheduling and partition-node scheduling. Subsequently, a multi-stage Q-learning 

differential evolution algorithm (MSQ-MODE) is proposed. This algorithm combines 

chaotic initialization, an adaptive penalty function, a dynamic adjustment mechanism 

based on Q-learning, and a multi-stage constraint addition strategy. Compared with 

other heuristic algorithms, MSQ-MODE has stronger adaptability and better optimiza-

tion performance. In the future, combining machine learning techniques to automati-

cally learn and optimize task scheduling strategies will become an important research 

direction. 
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