

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

 The Task Scheduling of IMA based on The Multi-stage

Q-learning Differential Evolution

Shuying Feng1[0009-0006-5315-4814], Lisong Wang1()[0000-0001-6482-3717], Shaohan Liu1[0000-

0003-4290-6591], Fengtao Xu2[0009-0009-6308-4946], Yizhuo Sun2[0009-0000-7755-8561]

1 Nanjing University of Aeronautics and Astronautics, Nanjing, China
2 China Academy of Launch Vehicle Technology, Beijing 100076, China

fengshuying@nuaa.edu.cn

Abstract. With the increasing complexity of the integrated modular avionics

(IMA) and the growing demand for efficient operation in multi-task environ-

ments, IMA systems must not only utilize various resources efficiently but also

consider communication latency, system safety and real-time responsiveness dur-

ing task execution. Because of the number and complexity of tasks increasing,

the system faces dual challenges: real-time task scheduling and resource utiliza-

tion optimization. Therefore, we propose a task scheduling method based on a

multi-stage Q-learning differential evolution algorithm. First, a bilevel schedul-

ing model for IMA systems is constructed, which comprehensively considering

key factors such as resource utilization, communication latency and safety. Sec-

ond, an enhanced differential evolution algorithm is employed to optimize the

model. Specifically, in the population initialization stage, the proposed algorithm

uses a chaotic logistic map to ensure a uniform distribution of the initial popula-

tion in the solution space. During the population evolution process, the fitness of

each infeasible individual is corrected through the penalty function. Meanwhile,

the proposed algorithm utilizes a Q-learning mechanism to dynamically adjust

the evolutionary operators to improve their adaptability and employs a multi-

stage constraint addition strategy to expand the search space of the algorithm.

Finally, experimental results comparing the proposed algorithm with other algo-

rithms demonstrate its superior performance, which indicates its effectiveness in

solving task scheduling problems in integrated avionics systems.

Keywords: IMA Task Scheduling, Constraint Handling, Differential Evolution

(DE), Q-learning Algorithm, Adaptive Operator.

1 Introduction

With the rapid development of aviation technology, traditional avionics system archi-

tectures can't meet the complex requirements of modernization. To enhance system op-

erational efficiency and ensure flight safety and reliability, IMA system has emerged

[1]. Currently, several advanced aircraft have adopted the IMA architecture, for in-

stance, the Boeing 787, Airbus A350, and COMAC C919 [1,2]. In IMA system, task

scheduling follows the bilevel scheduling model defined by the ARINC 653 standard.

This model includes both inter-partition scheduling and intra-partition scheduling and

ensures that all applications execute within spatially and temporally separated partitions

[3]. By this partitioning mechanism, the IMA architecture guarantees that tasks running

in different partitions do not interfere with each other [4]. Compared to traditional fed-

erated and integrated avionics systems, the IMA architecture has the advantages of

time-partitioning and resource sharing, which effectively enhance the operational effi-

ciency and fault tolerance of the system. However, these advantages also make the sys-

tem more complex and present new challenges for system design. In the design process

of IMA architecture, the core challenge is how to effectively allocate tasks while en-

suring system schedulability [5]. Kim et al. [6] solved the maximum task load bounda-

ries for each IMA partition using linear programming. Davis et al. [7] used both greedy

algorithms and exhaustive search algorithms to explore the entire solution space, ob-

taining a globally optimal set of parameters. Al-Sheikh et al. [8] proposed an optimal

response algorithm based on game theory to obtain the optimal solution. Considering

the optimization of the IMA task scheduling system is a complex non-linear and non-

convex optimization problem [9], the traditional optimization algorithms used in the

above studies are difficult to meet these multi-objective requirements at the same time.

The complexity of task scheduling in IMA system requires balancing multiple con-

flicting objectives and constraints. Single-objective optimization algorithms struggle

with this challenge, so an appropriate multi-objective optimization algorithm is key to

solving the IMA task scheduling problem. CHEN [10] improved the decomposition-

based multi-objective evolutionary algorithm (MOEA/D) by introducing the con-

strained dominance principle to solve the IMA partition parameter configuration prob-

lem. However, this method relies on too many parameters. Chu [11] solved the IMA

resource parameter configuration problem using a forward-checking algorithm and an

NSGAII with an elite retention strategy. However, this approach is prone to uneven

solution distribution and premature convergence. Aminifar et al. [12] addressed real-

time system task allocation using a simulated annealing algorithm, but the model is

easy to getting trapped in local optima. Shojafar et al. [13, 14] optimized job allocation

in cloud computing using fuzzy theory and genetic algorithms, but their study did not

address constraints. The DE algorithm [15] is widely used in multi-objective optimiza-

tion because of its strong global search capability, fast convergence speed, ease of im-

plementation and simple parameter settings. However, traditional DE algorithms have

some limitations. For instance, they initialize populations randomly, which may cause

the initial population to be concentrated in certain regions of the solution space. Addi-

tionally, they use fixed evolutionary operators, which can lead to slow and unstable

convergence.

To address this, this paper proposes an improved DE-based solution for the task

scheduling problem in IMA systems. The main contributions of this paper are summa-

rized as follows:

─ A bilevel scheduling model is constructed, including task scheduling and partition

scheduling, which considers resource constraints, communication delays, and sys-

tem safety.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

─ A multi-stage Q-learning DE algorithm is designed, which optimizes aspects such

as population initialization, constraint handling, and adaptive adjustment of crosso-

ver and mutation operators.

─ Simulation experiments validate the proposed algorithm's superiority in optimization

performance, demonstrating its potential for solving complex system task scheduling

problems.

2 System Model and Problem Formulation

2.1 The Bilevel Scheduling Model

The IMA system typically employs a distributed processing framework. It consists of

multiple embedded processing nodes interconnected via the AFDX network. Each pro-

cessing node can host multiple partitions, and each partition allocated one or more pre-

defined real-time tasks, as illustrated in Fig. 1.

Fig. 1. IMA system framework.

We define a bilevel scheduling model as shown in Fig. 2. The first level scheduling

divides tasks into task groups, and each group resides in a partition. The second level

scheduling assigns partitions to nodes and establishes a scheduling model to optimize

and obtain the final allocation results. We define a set of tasks as 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛𝑇}.

Each task can be represented as a triple 𝑡1 = (𝑇𝑀𝑖 , 𝐶𝑖, 𝐷𝑖), where 𝑇𝑀𝑖 is the memory

requirement, 𝐶𝑖 is the maximum execution time, and 𝐷𝑖 is the deadline. Task priorities

are determined using the Earliest Deadline First (EDF) algorithm. The set of 𝑛𝑃 parti-

tions is defined as {𝑝1, 𝑝2, … , 𝑝𝑛𝑃}. Each partition is characterized by 𝑝𝑗 = (𝑃𝑀𝑗 , 𝑃𝑇𝑗),

where 𝑃𝑀𝑗 is the partition’s memory size and 𝑃𝑇𝑗 is the partition frame time. A set of

𝑛𝑁 nodes is represented as {𝑛1, 𝑛2, … , 𝑛𝑛𝑁}. Each node is defined as 𝑛𝑘 = (𝑁𝑀𝑘 , 𝑁𝑇𝑘),

where 𝑁𝑀𝑘 is the memory capacity and 𝑁𝑇𝑘 represents the main frame time.

Fig. 2. The bilevel scheduling model.

2.2 Task Scheduling Problem Modeling

Task-to-Partition Scheduling. In this scheduling level, 𝐴𝑇is defined as an allocation

matrix, where 𝐴𝑖𝑗
𝑇 represents the allocation of task 𝑡𝑖 to partition 𝑝𝑗. Considering safety

factors in the scheduling process, some tasks cannot be assigned to the same partition.

To address this, we define 𝑀𝑇as the task mutual exclusion matrix, where 𝑀𝑖𝑗
𝑇 indicates

that task 𝑡𝑖 and task 𝑡𝑗 are mutually exclusive.

To meet the different resource requirements of tasks, some constraints must be sat-

isfied during the allocation process.

The schedulability constraint requires that the completion time of each task does not

exceed its deadline, which can be expressed as:

 𝑇𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

= ∑  𝑚∈ℎ𝑝(𝑖) 𝐴𝑚𝑗
𝑇 ⋅ 𝐴𝑖𝑗

𝑇 ⋅ 𝐶𝑚 + 𝐶𝑖 ≤ 𝐷𝑖 (1)

where ℎ𝑝(𝑖) denotes the set of tasks with higher priority than task 𝑡𝑖.

The memory constraint requires that the total memory occupied in the same partition

does not exceed the partition's available memory, which can be expressed as:

 ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝑇𝑀𝑖 ≤ 𝑃𝑀𝑗 (2)

The CPU utilization constraint requires the total execution time of tasks assigned to

the same partition does not exceed the partition's frame time. It can be expressed as:

 ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝐶𝑖 ≤ 𝑃𝑇𝑗 (3)

 For safety reasons, two mutually exclusive tasks cannot be assigned to the same par-

tition. This constraint can be expressed as:

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

 ∑  𝑛𝑇

𝑖=1 ∑  𝑛𝑇

𝑗=1 ∑  𝑛𝑃

𝑘=1 𝐴𝑖𝑘
𝑇 ⋅ 𝐴𝑗𝑘

𝑇 ⋅ 𝑀𝑖𝑗
𝑇 = 0 (4)

To evaluate the quality of the task scheduling results, this paper employs two opti-

mization objectives. The maximum partition utilization is used to measure the load bal-

ancing between partitions. It consists of the partition memory utilization and partition

CPU utilization, and can be expressed as:

 𝑃𝑢𝑠𝑒 = 𝑚𝑎𝑥
1≤𝑗≤𝑛𝑃

 (𝜆1 ⋅
∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅𝐶𝑖

𝑃𝑇𝑗
+ 𝜆2 ⋅

∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅𝑇𝑀𝑖

𝑃𝑀𝑗
) (5)

where 𝜆1 and 𝜆2 represent the weights and the sum equal to 1.

The average completion time is defined as the mean of the completion times of all

tasks. This objective can be expressed as:

 𝐹𝑇𝑎𝑣𝑔 =
1

𝑛𝑇
∑  𝑛𝑇

𝑖=1 𝑇𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

 (6)

In summary, the optimization objectives for task-to-partition scheduling can be ex-

pressed as:

 𝑚𝑖𝑛{𝑃𝑢𝑠𝑒 , 𝐹𝑇𝑎𝑣𝑔} (7)

Partition-to-Node Scheduling. In this scheduling level, the matrix 𝐴𝑃 is used to rep-

resent the allocation of partitions on nodes. 𝐴𝑗𝑘
𝑃 = 1 represents that 𝑝𝑗 is allocated to

𝑛𝑘. Matrix 𝑀𝑃 represents the partition mutual exclusion matrix, where 𝑀𝑖𝑗
𝑇 = 1 indi-

cates that 𝑝𝑖 and 𝑝𝑗 are mutually exclusive. In addition, a matrix 𝐸 of size 𝑛𝑃 × 𝑛𝑃 rep-

resents the communication delay between partitions, where 𝐸𝑗𝑘 represents the commu-

nication delay caused by 𝑝𝑗 and 𝑝𝑘 on different processing nodes.

We also define the memory constraint, the CPU utilization constraint and the parti-

tion mutual exclusion constraint, which are similar to the task-to-partition scheduling.

 ∑  𝑛𝑃

𝑗=1 𝐴𝑗𝑘
𝑃 ⋅ 𝑃𝑀𝑗 ≤ 𝑁𝑀𝑘 (8)

 ∑  𝑛𝑃

𝑗=1 𝐴𝑗𝑘
𝑃 ⋅ 𝑃𝑇𝑗 ≤ 𝑁𝑇𝑘 (9)

 ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 ∑  𝑛𝑁

𝑘=1 𝐴𝑖𝑘
𝑃 ⋅ 𝐴𝑗𝑘

𝑃 ⋅ 𝑀𝑖𝑗
𝑃 = 0 (10)

The optimization goal of partition-node scheduling comprises two parts. The maxi-

mum node usage consists of node memory usage and node CPU usage.

 𝑁𝑢𝑠𝑒 = 𝑚𝑎𝑥
1≤𝑗≤𝑛𝑁

 (𝜇1 ⋅
∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅𝑃𝑇𝑖

𝑁𝑇𝑗
+ 𝜇2 ⋅

∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅𝑃𝑀𝑖

𝑁𝑀𝑗
) (11)

In the formula, 𝜇1 and 𝜇2 represent the weights and their sum is 1.

The communication delay refers to the time delay caused by data exchange between

partitions located on different processing nodes in a multi-processor system or a multi-

partition system.

 𝐶𝑜𝑠𝑡 = ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 𝐸𝑖𝑗 − ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 ∑  𝑛𝑁

𝑘=1 𝐴𝑖𝑘
𝑃 ⋅ 𝐴𝑗𝑘

𝑃 ⋅ 𝐸𝑖𝑗 (12)

In summary, the optimization goal of partition-to-node scheduling can be expressed

as:

 𝑚𝑖𝑛{𝑁𝑢𝑠𝑒 , 𝐶𝑜𝑠𝑡} (13)

3 Proposed Algorithm

3.1 Overall Framework of MSQ-MODE

Algorithm 1: Procedure of the proposed MSQ-MODE

Input: population size: 𝑁𝑃; maximum number of iterations: 𝐺; set of constraints: 𝐶.

Output: population: 𝑃.

1. Initialize the current constraint set 𝑐𝑢𝑟𝐶 ← ∅ and external archive 𝐴 ← ∅;

2. for 𝑖 ← 1 to 𝑁𝑃 do

3. 𝐹(𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1); 𝐶𝑅(𝑖) = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1);

4. 𝑃1 ← Evolve 𝑃 using DE for 𝐺 generations;

5. for 𝑖 ← 1 to 𝑙𝑒𝑛(𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) do

6. 𝑖𝑓𝑟(𝑖) ← Calculate the infeasibility rate 𝑖𝑓𝑟 of constraint 𝑖 on 𝑃;

7. 𝑝𝑟𝑖𝑜𝑟𝐶 ← Sort constraints in descending order according to 𝑖𝑓𝑟;

8. while 𝑐𝑢𝑟𝐶 is not equal to 𝐶 do

9. if |𝐴| ≥ 𝑁𝑃 then

10. 𝑃 ← Select 𝑁 individuals from 𝐴 based on the SPEA2 strategy;

11. if |𝐴| < 𝑁𝑃 then

12. 𝑟𝑒𝑚𝑎𝑖𝑛𝑃 ← Generate 𝑁𝑃 − |𝐴| individuals according to (𝑥𝑖 = ⌊𝑧𝑖 ⋅ 𝑛⌋

 (15);

13. 𝑃 ← 𝐴 ∪ 𝑟𝑒𝑚𝑎𝑖𝑛𝑃;

14. 𝑐𝑜𝑛𝑠 ← Select from 𝑝𝑟𝑖𝑜𝑟𝐶 based on the priority order;

15. 𝑐𝑢𝑟𝐶 = 𝑐𝑢𝑟𝐶 ∪ 𝑐𝑜𝑛𝑠;

16. while the transformation conditions are not satisfied do

17. Calculate 𝑟𝑘, 𝑟𝑧𝑘 and 𝑟𝑛𝑘 according to (𝑟𝑘 ≡ 𝑚𝑎𝑥{𝑟𝑧𝑘 , 𝑟𝑛𝑘} ≤ 𝜖 (20),

(𝑟𝑧𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑧𝑖

𝑘−𝑧𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑧𝑖
𝑘−𝑙|,Δ}

} (21) and (𝑟𝑛𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑛𝑖

𝑘−𝑛𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑛𝑖
𝑘−𝑙|,Δ}

} (22);

18. for 𝑖 ← 1 to 𝑁𝑃 do

19. Calculate 𝐹(𝑖) and 𝐶𝑅(𝑖);

20. 𝑜 ← Generate offspring based on the DE/rand/1 strategy and binary

crossover strategy;

21. Calculate the fitness of 𝑜 based on (𝐹𝑖
𝑇 = {𝑃𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑇 , 𝐹𝑇𝑖

𝑎𝑣𝑔
+ 𝑃𝑖

𝑇} (18)

or (𝐹𝑖
𝑃 = {𝑁𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑃, 𝐶𝑜𝑠𝑡𝑖 + 𝑃𝑖

𝑃} (19);

22. Update 𝑃 based on the dominance relationship between 𝑥 and 𝑜, and

update the rewards and actions;

23. Update the Q-table;

24. 𝐴 ← Add non-dominated feasible solutions in 𝑃;
25. return 𝑃;

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Algorithm 1 provides the pseudocode for MSQ-MODE, and the steps are as follows:

In lines 1-3, the relevant parameters are initialized. In lines 4-7, the priority of con-

straints is determined. In lines 9-13, the initial population for each stage is initialized.

In lines 14-15, constraints are added based on priority and the stage is determined. In

line 17, the maximum rate of change between the ideal and worst points over the past 𝑙
generations is calculated. In lines 18-23, the population evolves. In line 24, the external

archive is updated based on the non-dominated feasible solutions of the population.

Finally, the final P is output.

3.2 Population Initialization based on Chaotic Logistic Mapping

The chaotic logistic map [16] can enable the generated initial population to cover the

solution space more extensively and improve the global search ability. The chaotic lo-

gistic map is generally described by the following mathematical formulation:

 𝑧𝑖+1 = 𝜃 ⋅ 𝑧𝑖 ⋅ (1 − 𝑧𝑖) (14)

where 𝜃 ∈ [1,4].
Each individual represents a scheduling scheme, which is encoded using the real

coded method shown in Fig. 3.

Fig. 3. Real coded.

The population initialization combined with the chaotic logistic map can be repre-

sented as:

 𝑥𝑖 = ⌊𝑧𝑖 ⋅ 𝑛⌋ (15)

where 𝑥𝑖 represents the value of the 𝑖-th position of individual 𝑥, 𝑖 is the number of

tasks or partitions to be scheduled, and 𝑛 represents the number of partitions or nodes.

3.3 Fitness Handling Mechanism based on Penalty Function

In this section, a penalty function is used to adjust the fitness of individuals failing to

satisfy the constraints. This adjustment puts them at a disadvantage during the selection

process, and prevents them from negatively affecting the optimization. In the task-to-

partition scheduling, the penalty value of the 𝑖-th individual’s fitness can be defined as:

𝑃𝑖
𝑇 = 10 ⋅ (∑  𝑛𝑇

𝑖=1 𝑚𝑎𝑥(0, 𝑇𝑖
𝑓𝑖𝑛𝑖𝑠ℎ

− 𝐷𝑖)

 + ∑  𝑛𝑃

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝑇𝑀𝑖 − 𝑃𝑀𝑗)

 + ∑  𝑛𝑃

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑇

𝑖=1 𝐴𝑖𝑗
𝑇 ⋅ 𝐶𝑖 − 𝑃𝑇𝑗)

 + ∑  𝑛𝑇

𝑖=1 ∑  𝑛𝑇

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑃

𝑘=1 𝐴𝑖𝑘
𝑇 ⋅ 𝐴𝑗𝑘

𝑇 ⋅ 𝑀𝑖𝑗
𝑇))

 (16)

Similarly, the penalty function for partition-to-node scheduling is defined as:

𝑃𝑖
𝑃 = 10 ⋅ (∑  𝑛𝑁

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅ 𝑃𝑀𝑖 − 𝑁𝑀𝑗)

 + ∑  𝑛𝑁

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑃

𝑖=1 𝐴𝑖𝑗
𝑃 ⋅ 𝑃𝑇𝑖 − 𝑁𝑇𝑗)

 + ∑  𝑛𝑃

𝑖=1 ∑  𝑛𝑃

𝑗=1 𝑚𝑎𝑥(0, ∑  𝑛𝑁

𝑘=1 𝐴𝑖𝑘
𝑃 ⋅ 𝐴𝑗𝑘

𝑃 ⋅ 𝑀𝑖𝑗
𝑃))

 (17)

Based on the penalty function, the fitness value of individual 𝑖 can be modified as:

 𝐹𝑖
𝑇 = {𝑃𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑇 , 𝐹𝑇𝑖

𝑎𝑣𝑔
+ 𝑃𝑖

𝑇} (18)

 𝐹𝑖
𝑃 = {𝑁𝑖

𝑢𝑠𝑒 + 𝑃𝑖
𝑃, 𝐶𝑜𝑠𝑡𝑖 + 𝑃𝑖

𝑃} (19)

3.4 The Adaptive Operators based on Q-learning Algorithm

In this paper, each individual independently maintains and updates the operators using

the Q-learning algorithm. We define an individual as an agent. Similar to [17], the states

are set according to the dominance relationship between offspring and parents: the off-

spring dominates the parent; the parent dominates the offspring; the offspring and the

parent do not dominate each other. Here, different adjustment schemes of the operators

are set as actions, mainly including：𝑓 = −0.1, 𝑐𝑟 = 0.1；𝑓 = 0.1, 𝑐𝑟 = 0.1; 𝑓 = 0,

𝑐𝑟 = 0. These actions are transformed into a feedback mechanism to update the opera-

tors: 𝐹 = 𝐹 + 𝑓 , 𝐶𝑅 = 𝐶𝑅 + 𝑐𝑟. If the offspring dominates the parent, it indicates that

the current local search direction is effective, so the reward is 1. If the parent dominates

the offspring, it suggests that the current local search direction may be ineffective, thus

the reward is −1. For other situations, the reward is 0. The update of the Q-table uses

the Bellman equation. The agent uses the 𝜖-greedy strategy to select the action and re-

ceives the corresponding reward to update the Q-table.

3.5 Constraint-handling based on Multi-stage Constraint Addition

In multi-objective optimization problems, there are usually multiple constraints, impos-

ing constraints too early may limit the exploration of the solution space. To ensure that

the algorithm has good global search ability and convergence, we propose a multi-stage

constraint addition method, which enables the algorithm to smoothly transition from

the initial stage with loose constraints to the later stage with strict constraints, thereby

improving the quality of the final solution. The specific steps are as follows:

Determining the priority of constraints. Firstly, we randomly generate an initial

population. Then let the population evolve to the approximate unconstrained Pareto

Front. Next, we calculate the infeasibility rate of the population on each constraint and

sort the constraints in descending order based on the infeasibility rates.

Adding constraints stage by stage. To increase the diversity of solutions and find

potential effective solution regions, we do not add any constraints in the initial stage.

In the subsequent stages, one constraint will be gradually added in each round according

to the priority level. As the number of constraints gradually increases, the search scope

gradually narrows, and finally focuses on a solution space that satisfies all constraints.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

To improve the stability and diversity of the constraint addition process, we use an

external archive to store the non-dominated feasible solutions from each stage. At each

stage, the initial solution set is obtained from the external archive.

Stage transition conditions. We introduce the switching strategy of PPS [18] to

dynamically determine whether to add new constraints based on the optimization status

of the population. The strategy is as follows:

 𝑟𝑘 ≡ 𝑚𝑎𝑥{𝑟𝑧𝑘 , 𝑟𝑛𝑘} ≤ 𝜖 (20)

 𝑟𝑧𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑧𝑖

𝑘−𝑧𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑧𝑖
𝑘−𝑙|,Δ}

} (21)

 𝑟𝑛𝑘 = 𝑚𝑎𝑥
𝑖=1,…,𝑚

 {
|𝑛𝑖

𝑘−𝑛𝑖
𝑘−𝑙|

𝑚𝑎𝑥{|𝑛𝑖
𝑘−𝑙|,Δ}

} (22)

where 𝑟𝑘 denotes the maximum rate of change between the ideal and nadir points over

the past 𝑙 generations. 𝑧𝑖
𝑘 and 𝑛𝑖

𝑘 represent the ideal point and the nadir point in the 𝑘-

th generation, respectively. 𝜖 is set to 1𝑒 − 3 and Δ is set to 1𝑒 − 6.

4 Experimental Results

4.1 Experiment Settings

The basic configuration information of the IMA system in the experiment is shown in

Table 1 and Table 2. In the task-to-partition scheduling, we set that 𝑡2 and 𝑡5, 𝑡3 and

𝑡10 , 𝑡9 and 𝑡16 , 𝑡1 and 𝑡11 , 𝑡7 and 𝑡10 are mutually exclusive (i.e., the corresponding

positions in 𝑀𝑇 are set to 1, and all other positions set to 0). Similarly, in the partition-

to-node scheduling, we set that 𝑝1 and 𝑝4, 𝑝3 and 𝑝7 are mutually exclusive. The com-

munication delays between partitions are shown in Table 3.

Table 1. Task parameters.

Task 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9

TM 13 8 13 10 19 26 26 44 24

C 2 2 4 1 3 2 4 7 2

D 32 30 40 25 35 34 42 55 36

Task 𝑡10 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15 𝑡16 𝑡17 𝑡18

TM 48 56 26 48 50 59 43 46 49

C 3 4 1 4 5 2 4 2 3

D 39 44 26 43 45 38 41 37 50

Table 2. Partition parameters and node parameters.

Partition 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 Node 𝑛1 𝑛2 𝑛3

PM 200 120 250 190 130 110 140 NM 1000 900 500

PT 50 35 65 30 98 32 41 NT 300 200 100

Table 3. Partition Communication Delay.

Partition 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

𝑝1 0 45 23 67 12 9 34

𝑝2 45 0 12 43 56 78 90

𝑝3 23 12 0 34 67 21 89

𝑝4 67 43 65 0 65 32 54

𝑝5 12 56 67 65 0 56 87

𝑝6 89 78 21 32 56 0 43

𝑝7 34 90 89 54 87 43 0

NSGAII [19], CMOEA/D [20], CCMO [21] and PPS [18] are selected as the com-

parison algorithms for MSQ-MODE. NSGAII and CMOEA/D are very representative

algorithms, and CCMO and PPS are multi-stage constrained MOEAs. We set the cross-

over and mutation operators for NSGAII, CMOEA/D and CCMO to 0.9 and 0.1, re-

spectively. The population size is set to 100 and the maximum number of iterations set

to 150. In CMOEA/D, the number of neighbors is set to 5, and the evolutionary process

uses the DE component (DE/rand/1 and binary crossover). The remaining parameters

of these algorithms align with those specified in the original papers. To account for the

randomness of the algorithms, each algorithm is run 30 times.

Since the true Pareto front of the IMA task scheduling problem is difficult to obtain

directly, the IGD index cannot be used for this problem. We adopt the hypervolume

(HV) as the performance index. The larger the HV value, the better the comprehensive

performance of the algorithm.

4.2 Result Analysis

Effectiveness test. Table 4 lists the max, min, mean and std HV values for each algo-

rithm obtained in the bilevel scheduling model. From Table 4, MSQ-MODE achieves

the best mean HV values in both task-to-partition scheduling and partition-to-node

scheduling. This indicates that the algorithm is capable of consistently producing high-

quality solution sets over multiple runs, demonstrating strong global search ability and

consistency. Additionally, MSQ-MODE also performs best in terms of both the max

and min HV values, indicating that the algorithm can find high quality solutions and

reflect its strong ability to explore the potential solution space. In contrast, in the task-

partition scheduling, the minimum HV values of CCMO and PPS are 0, and in the par-

tition-node scheduling, the minimum HV values of CMOEA/D and PPS are 0, which

indicates that they failed to find any feasible solutions during the evolutionary process.

As we can see from Fig. 4 and Table 4, our algorithm has the smallest std for HV,

indicating that it is more stable compared to other algorithms. This is because our algo-

rithm introduces a penalty function in the fitness evaluation, reducing ineffective

searches within the population and guiding the evolution direction towards the feasible

solution set, ensuring convergence stability. Moreover, our algorithm uses the Q-learn-

ing mechanism to ensure that individuals evolve in favorable directions, which not only

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

improves the average HV value but also reduces the variance in convergence paths

across different experiments, thereby lowering the standard deviation. In addition, our

algorithm employs a multi-stage constraint-handling strategy, and through gradual con-

vergence, it reduces fluctuations caused by randomness, leading to more consistent so-

lution quality across different experiments and ultimately resulting in a smaller standard

deviation.

Significance test. Table 4 lists the P-values and test results of the Wilcoxon signed-

rank test comparing MSQ-MODE with NSGAII, CMOEA/D, CCMO and PPS at a sig-

nificance level of 0.05. In the table, the symbols "+", "≈", and "−" represent that the

performance of MSQ-MODE is significantly better than that of the competitors, similar

to that of the competitors, and significantly worse than that of the competitors, respec-

tively. Table 4 shows that, from a statistical perspective, the MSQ-MODE algorithm

significantly outperforms other comparison algorithms. Notably, the Wilcoxon signed-

rank test, which is specifically designed to compare median differences between two

related samples, furnishes robust and incontrovertible evidence. This evidence strongly

supports the assertion that MSQ-MODE not only attains an exceptionally high optimi-

zation quality in the task scheduling problem but also exhibits strikingly significant

differences in its optimization outcomes. Therefore, the test results further confirm that

the MSQ-MODE algorithm has superior performance and higher stability compared to

other comparison algorithms in solving this problem. This strongly validates its ap-

plicability and reliability in practical applications.

Table 4. The min, max, mean, std of the HV values for different algorithms and the P-values

and test results of the Wilcoxon signed-rank test comparing different algorithms at a signifi-

cance level of 0.05.

Scheduling model Algorithm Min Max Mean Std P-value R

Task-to-partition

MSQ-MODE 1.1123 1.2057 1.1598 0.0221 - -

NSGAII 0.7386 1.1928 0.9329 0.0828 3.72529E-09 +

CMOEA/D 1.0109 1.1807 1.0925 0.0491 1.30385E-07 +

CCMO 0.0000 1.1807 0.8579 0.4768 1.21836E-05 +

PPS 0.0000 0.8935 0.3617 0.3472 1.86265E-09 +

Partition-to-node

MSQ-MODE 0.1865 0.1882 0.1879 0.0004 - -

NSGAII 0.1784 0.1874 0.1847 0.0026 1.86265E-09 +

CMOEA/D 0.0000 0.0122 0.0076 0.0047 1.86265E-09 +

CCMO 0.1241 0.1807 0.1544 0.0136 1.73255E-09 +

PPS 0.0000 0.0122 0.0065 0.0054 1.86265E-09 +

Fig. 4. HV values distribution of the bilevel scheduling model.

5 Conclusion

In this article, the task scheduling problem in integrated electronic systems is studied.

The core of this problem is to optimize the task scheduling scheme while satisfying the

constraints of resources, communication delays, and safety. This paper proposes a two-

layer scheduling model based on task scheduling, which is used to optimize task-parti-

tion scheduling and partition-node scheduling. Subsequently, a multi-stage Q-learning

differential evolution algorithm (MSQ-MODE) is proposed. This algorithm combines

chaotic initialization, an adaptive penalty function, a dynamic adjustment mechanism

based on Q-learning, and a multi-stage constraint addition strategy. Compared with

other heuristic algorithms, MSQ-MODE has stronger adaptability and better optimiza-

tion performance. In the future, combining machine learning techniques to automati-

cally learn and optimize task scheduling strategies will become an important research

direction.

References

1. Gaska T, Watkin C, Chen Y: Integrated modular avionics-past, present, and future. IEEE

Aerospace and Electronic Systems Magazine. 2015 Sep;30(9):12-23.

2. RTCA (Firm). SC-200: Integrated Modular Avionics (IMA) Development: Guidance and

Certification Considerations. RTCA; 2005.

3. Kim D, Lee YH, Younis M: Software architecture supporting integrated real-time systems.

Journal of Systems and Software. 2003 Jan 15;65(1):71-86.

4. Watkins CB, Walter R: Transitioning from federated avionics architectures to integrated

modular avionics. In 2007 IEEE/AIAA 26th Digital Avionics Systems Conference. In IEEE,

Oct. 2007.

5. Annighoefer B, Nil C, Sebald J, Thielecke F. Structured and symmetric IMA architecture

optimization: Use case ariane launcher. In2015 IEEE/AIAA 34th Digital Avionics Systems

Conference (DASC) 2015 Sep 13 (pp. 6B3-1). IEEE.

6. Kim JE, Abdelzaher T, Sha L: Schedulability bound for integrated modular avionics parti-

tions. In2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 2015

Mar 9, pp. 37-42. IEEE.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

7. Davis R, Burns A. An investigation into server parameter selection for hierarchical fixed

priority pre-emptive systems. In16th International Conference on Real-Time and Network

Systems (RTNS 2008) 2008 Oct 16.

8. Al Sheikh A, Brun O, Hladik PE, Prabhu BJ. A best-response algorithm for multiprocessor

periodic scheduling. In 2011 23rd Euromicro conference on real-time systems. IEEE, 2011,

pp. 228–237.

9. Yoon MK, Kim JE, Bradford R, Sha L. Holistic design parameter optimization of multiple

periodic resources in hierarchical scheduling. In 2013 Design, Automation & Test in Europe

Conference & Exhibition (DATE). IEEE, 2013, pp. 1313–1318.

10. Chen H, Zhang W, Lyu Y. Research on partition parameter design method for integrated

modular avionics based on MOEA/D-ADV. IEEE Access, vol. 8, pp. 117 278–117 297,

2020.

11. Chu J, Zhao T, Jiao J, Chen Z. Optimal design of configuration scheme for integrated mod-

ular avionics systems with functional redundancy requirements. EEE Systems Journal, vol.

15, no. 2, pp. 2665–2676, 2020.

12. Aminifar A, Eles P, Peng Z. Jfair: A scheduling algorithm to stabilize control applications.

In21st IEEE Real-Time and Embedded Technology and Applications Symposium. IEEE,

2015, pp. 63–72.

13. Shojafar M, Javanmardi S, Abolfazli S, Cordeschi N. FUGE: A joint meta-heuristic ap-

proach to cloud job scheduling algorithm using fuzzy theory and a genetic method. Cluster

Computing, vol. 18, pp. 829–844, 2015.

14. Javanmardi S, Shojafar M, Amendola D, Cordeschi N, Liu H, Abraham A. Hybrid job sched-

uling algorithm for cloud computing environment. In Proceedings of the fifth international

conference on innovations in bio-inspired computing and applications IBICA 2014.

Springer, pp. 43–52.

15. Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimi-

zation over continuous spaces. Journal of global optimization, vol. 11, pp. 341–359, 1997.

16. Yu Y, Gao S, Cheng S, Wang Y, Song S, Yuan F. CBSO: a memetic brain storm optimiza-

tion with chaotic local search. Memetic Computing, vol. 10, pp. 353–367, 2018.

17. Yu X, Xu P, Wang F, Wang X. Reinforcement learning-based differential evolution algo-

rithm for constrained multi-objective optimization problems. Engineering Applications of

Artificial Intelligence, vol. 131, p.107817, 2024.

18. Fan Z, Li W, Cai X, Li H, Wei C, Zhang Q, Deb K, Goodman E. Push and pull search for

solving constrained multi-objective optimization problems. Swarm and evolutionary com-

putation, vol. 44, pp. 665–679, 2019.

19. Deb K, Pratap A, Agarwal S, Meyarivan TA. A fast and elitist multi-objective genetic algo-

rithm: NSGA-II. EEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–

197, 2002.

20. Jain H, Deb K. An evolutionary many-objective optimization algorithm using reference-

point based nondominated sorting approach, part II: Handling constraints and extending to

an adaptive approach. IEEE Transactions on Evolutionary Computation, vol. 18, pp. 602–

622, 2014.

21. Tian Y, Zhang T, Xiao J, Zhang X, Jin Y. A coevolutionary framework for constrained multi

objective optimization problems. IEEE Transactions on Evolutionary Computation, vol. 25,

no. 1, pp. 102–116, 2020.

