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Abstract. Key frame extraction based on sparse coding can present the entire 

video with a small number of key frames, reducing the redundancy of the video. 

However, existing sparse coding-based methods use raw video frame features, 

which leads to high computational complexity and significant time consumption. 

In this paper, we propose a novel key frame extraction method based on sparse 

coding and deep frame features (KSC-DFF) to address these challenges. First, 

we obtain deep frame features using a deep neural network, which can reduce 

the dimensionality of the input video data and generate deep frame features 

such as the main object features of the frame. To automatically extract deep 

frame features, a YOLO-based deep neural network called YOLO-MLP was de-

signed for video feature extraction. Then, we used sparse coding to extract key 

frames based on deep frame features, which can reduce information redundancy 

and computation time while maintaining high accuracy. Experimental results on 

SumMe demonstrate that the proposed KSC-DFF outperforms the existing meth-

ods with an increase of 49.4% and a time reduction of nearly 98% compared to 

the conventional sparse coding-based method SMRS. 

Keywords: Key frame extraction, Sparse coding, Deep learning, Feature ex-

traction, YOLO-MLP. 

1 Introduction 

Due to improved network designs and more storage capacity, video has been used in-

creasingly in numerous applications in recent years, particularly in cell phones. Over 

500 hours of video are posted on the Internet every minute [19]. The increasing demand 

for video material in the coming decades is predicted to sustain this significant expan-

sion in the number of films on the Internet [7, 8, 29]. With the rapid development of 

video data in many fields, efficient key frame extraction is urgently required for video 

indexing, browsing, and retrieval [31, 30]. 

Inspired by sparse representation, sparse coding, which retains essential content 

from the original video while selecting only a limited number of frames, is a common 

technique used for key frame extraction. Specifically, sparse codingbased methods for 

key frame extraction excel in preserving crucial information while minimizing the 

number of selected frames [27, 12]. The pixel information of the original video  



Fig. 1. Overview of the proposed KSC-DFF. Deep Frame Feature Extraction: YOLO-MLP con-

verts the source video frame into a feature matrix;Sparse Coding: A Key frame index is identified 

by the non-zero rows of the sparse coefficient matrix; Key Frames: the key frames are obtained 

by the index of the key frame. 

frames is used as input in existing sparse coding-based techniques, which have high 

computational complexity and time cost. Tan et al. used convolutional neural networks 

to compress video frames [22]. However, the compressed dimensions of the frame fea-

tures were fixed at 1000. We plan to explore the effects when videos are compressed to 

various sizes. 

In recent years, deep learning-based approaches have also been widely applied to 

key frame extraction, leveraging convolutional neural networks (CNNs)[17,26] to learn 

high-level semantic representations from raw video frames. These methods can capture 

complex spatio-temporal dependencies and have shown promising performance in 

identifying informative frames. However, such deep learning models typically require 

large-scale labeled datasets for training, which are expensive and time-consuming to 

annotate. Moreover, the performance of these models heavily relies on the diversity and 

quality of the training data, and they may not generalize well across different video 

domains without additional fine-tuning. These limitations hinder their practicality in 

scenarios where annotated data is scarce or computational resources are limited. 

This paper proposes a novel framework called KSC-DFF (as shown in Figure 1). We 

use a sparse representation of the video content through sparse coding using these deep 

frame features. We aim to extract key frames that minimize redundancy and efficiently 

summarize video material using a sparse coding technique. We compared the integra-

tion of our proposed method with some current techniques based on the sparse repre-

sentation algorithm SMRS [3]. KSC-DFF can first extract pertinent visual data from 

video frames. Furthermore, intricate and deep information can be collected to produce 

rich video content representations. Our method leverages these properties to enhance 

the effectiveness and efficiency of key frame extraction in video summarizing tasks by 

including them in sparse coding. The main contributions of this study are as follows: 

1. We propose a novel key frame extraction method, KSC-DFF, which replaces the 

raw video frame with the deep frame feature obtained by YOLO-MLP. KSC-DFF 

can reduce the computation time while maintaining high accuracy compared with 

traditional sparse coding-based methods. 
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2. To produce a more thorough and rich representation of video features, we propose 

a complete deep frame feature extraction method (YOLO-MLP) with multi-scale 

fusion and deep feature extraction. 

3. The proposed approach achieved competitive performance compared with the 

state-of-the-art key frame extraction methods on the SumMe dataset. 

2 Related works 

Conventional methods are either shotor segment-based, meaning that the input video is 

split into small shots or segments using change or segment detection algorithms before 

extracting key frames. The location of the shot switch is typically the main focus of 

shot-based key frame extraction techniques, which identify the frame at the switch point 

as the key frame. By comparing each frame in the shot to the reference frame, these 

algorithms first identify the reference frame and then identify and select the key frames 

[9, 21]. Significant visual or content elements and the locations of content or theme 

changes in a video are usually the focus of clip-based key frame extraction techniques. 

Key segments are chosen from the vicinity of each key frame to leverage dynamic pat-

terns over short time intervals, thus enhancing discriminative power [6]. For example, 

uniform sampling (Uni.) often serves as a baseline for assessing key frame extraction 

techniques. Li et al. [11] proposed a method to identify and segment foreground items 

in a movie to extract key frames that are similar or of higher quality. A method for 

reference-based key frame extraction and clustering [16]. The interframe difference 

technique, which is frequently applied in conventional methods, depends on pixel-level 

fluctuations, which may not accurately represent the significance of the video material. 

It is also prone to noise and interference, which leads to less precise key frame extrac-

tion. Conventional techniques can also introduce noise and interference into a video, 

making the recovered key frames less steady and trustworthy. 

Moreover, key frame extraction can be performed using deep neural networks [17, 

26, 13]. To choose the key frames, Deep Semantic Feature Video Summarization (DFS) 

[17] uses the deep characteristics included in video frames. In contrast, deep semantic 

features from the Visual Geometry Group (VGG) are used in VGG-based video sum-

marization [20] to extract key frames based on the extraction of SIFT features and op-

tical flow [25, 4, 10]. An early study [25, 10] described an optical flow video and used 

the similarity between consecutive frames to detect local minimum changes. Subse-

quent studies have enhanced this pipeline by employing key frames detection for fea-

ture extraction [10]. Qu et al. used a knowledge graph to obtain key semantic infor-

mation of video frames for extracting key semantic frames [18]. This method gathers 

key points to obtain key frames from a video, and it uses SIFT descriptors to extract 

local features. The disadvantage of these techniques is that if the  

 

 

 

 



Fig. 2. Overview of the proposed YOLO-MLP. The final deep frame features are produced by 

feeding the extracted feature maps into the MLP-Mixer. 

video contains the same content, they may extract key frames that are similar to one 

another. Ensuring proper key frames and adequate compression for video processing 

remains challenging. 

Recently, numerous key frame extraction methods have been devised based on 

sparse coding [3, 32, 22, 28, 14, 12]. Among these, the SMRS algorithm [3] selects 

essential frames using a reconstruction problem formulation with paradigms as sparse 

constraints, demonstrating efficacy in video categorization and summarization. Other 

techniques, such as the determinantal metrics-based SC-det algorithm [22], first use 

VGG16 to extract features from video frames and then use a microscopic sparse con-

straint to extract video frames. In place of the conventional paradigm, a recent study 

presented DSSC-log [12], which employs a nonconvex group log regularizer and cre-

ates a workable decomposition technique to learn the structured sparse coefficient ma-

trix. To enhance the sparse method, we employed deep frame features for sparse coding 

to achieve better key frame extraction performance. 

3 Proposed Model 

We extract deep frame features to obtain rich and deep video information and then use 

a sparse coding technique to choose key frames, drawing inspiration from [20, 22]. As 

shown in Figure 2, we initially extract deep frame features using YOLO-MLP. The 
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original video frames are compressed using YOLO-MLP, and we evaluate this method 

on three sparse coding-based methods: SMRS [3], SC-det [22], and DSSC-log [12]. 

The average F-measures on the SumMe dataset are 0.242 (SMRS), 0.230 (SC-det), and 

0.241 (DSSC-log), respectively. The combination of YOLO-MLP and SMRS achieves 

the best performance. Thus, SMRS is used as our sparse coding-based key frame ex-

traction mechanism. A detailed description of the proposed KSC-DFF is as follows. 

3.1 Deep Frame Feature Extraction 

Instead of using raw pixel information from video frames, we decided to leverage pic-

ture features to reduce the computational complexity and increase the performance [1]. 

We use a trained YOLO-MLP network to compute the deep features of each frame. 

YOLO-MLP is an improved YOLOv5s network for better handling of the key frame 

extraction task. The network uses a multi-scale fusion technique to detect targets of 

various sizes and scales. Videos frequently contain scenes in which objects shift in size 

from small to large or from distant to near. YOLOv5s performs exceptionally well in 

identifying objects of various sizes, making it a better choice for the early phases of our 

feature extraction process. After one average pooling concat, we use the input compo-

nent of the head in the trained YOLOv5s network [24], as shown in Figure 2. 

A fully connected multilayer perceptron (MLP) structure is used as the fun- damental 

building block for visual tasks. We use MLP-Mixer [23] to integrate Concat features. 

MLP-Mixer, developed by Google Research, can effectively integrate multi-scale in-

formation in the input data by introducing the mechanisms of ”token mixing” 

and ”channel mixing.” This enhances the capacity of the model to adjust to various 

sizes and feature levels. We employ deep frame features rather than raw pixels as the 

input for sparse coding. The proposed YOLO- MLP can be extended to other tasks 

using its plug-and-play functionality. 

 

 

Fig. 3. Illustration of workflow for KSC-DFF. 



3.2 Key Frame Extraction Using Sparse Coding 

The previous sparse coding-based key frame extraction method considers video 

frames as data and creates a dictionary matrix of Y for each video frame. We create 

the following sparse coding cost function for key frame extraction [10], which em-

ploys the dictionary matrix Y as the deep frame features extracted by YOLO-MLP: 

        minλ||C||1,q + 
1

2
 ||Yf  - Yf C||2

f  s.t. 1TC = 1T , (1) 

where C is the sparse representation matrix,  · 2 is the Frobenius norm, C  1,q is 

the sum of the ℓq norms of the rows of C, and λ is the trade-off between the sparse 

measure and approximation error. We set λ = 
𝜆0

𝛼
, where λ0 is analytically com-

puted from the data [10] and α is a hyper-parameter. The selected key frames are 

columns whose indices correspond to the non-zero elements of C. For details of 

equation (1), please refer to equation (20) in SMRS [10]. 

3.3 Key Frame Extraction Using Sparse Coding 

The goal of YOLO-MLP is to vectorize each video frame and stitch them together to 

create a feature matrix Y of the video. Sparse coding is then used to extract key frames. 

Y is regarded as the input signal, and C is the coefficient matrix obtained by sparse 

coding. The key frame indexes we are searching for are the row numbers of non-zero 

rows in the coefficient matrix. To make the proposed algorithm more readable, we il-

lustrate its workflow in Figure 3. 

4 Experiments 

We evaluated our proposed key frame extraction technique (KSC-DFF) on 25 SumMe 

videos [5]. In particular, we compared KSC-DFF with SMRS and other state-of-the-art 

algorithms. In our experiments, we ran the codes on a PC with a 3.2 GHz Inter(R) i7-

8700 CPU and 16 GB of RAM on the Microsoft Windows 10 operating system. 

4.1 Dataset 

SumMe is a video summary dataset covering vacations, events, and campaigns. It con-

sists of 25 videos ranging in length from 30 s to 6 min, each with at least 15 person 

annotations, for a total of 390 annotations. 

4.2 Metrics 

F-measure [15] is used as the first metric to evaluate the key frame extraction. The 

higher the F-measure, the better the result. 

Summary length. We use summary length as the second metric. The shorter the sum-

mary length, the fewer key frames are selected and the better the algorithm perfor-

mance. The summary length is defined as follows: 
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Fig. 4. The various output of YOLO-MLP vectors m representing the F-measure aver-

age overall video frames. 

         pInd = dedup(sInd) , (2) 

        Summary length (S - length) =  
len(pInd)

N
 , (3) 

where dedup(·) refers to a redundancy elimination algorithm based on vector distances, 

designed to remove highly similar samples. sInd denotes the non-zero row index chosen 

by the algorithm and pInd is the index after de-similarization. len(pInd) is the number 

of indices. 

4.3 Implementation Details 

YOLO-MLP is our improved YOLOv5s with MLP-mixer, and the detailed implemen-

tation is as follows: the input size of the image is (640 × 640) after the multi-scale fusion 

part to obtain the feature map (896 × 20 × 20). We convert the deep frame features of 

each frame into a 500-dimensional vector. Following feature extraction for all L frames, 

a feature matrix Y ∈ R500×L is constructed. Each column of this matrix comprises an 

500-dimensional vector that represents the deep frame features. Notably, the optimal 

value for 500, determined by achieving the highest F-measure, as depicted in Figure 4, 

is selected. 

The parameter α serves as a hyperparameter, playing a crucial role in balancing the 

tradeoff between the approximation error and the sparsity measure. During our experi-

ment, α was chosen offline based on the performance evaluation of both summary 

length and F-measure. Figure 5 illustrates the variations in summary length and F-meas-

ure of the proposed KSC-DFF for different values of α. Through rigorous experimen-

tation, we determined the optimal α = 10x (where x = 4), which yielded superior per-

formance in terms of both summary length and F-measure. 

4.4 Performance on SumMe Dataset 

The summary lengths of videos from the SumMe dataset are listed in Table 1. On av-
erage, our proposed algorithm demonstrated superior performance compared to SMRS. 
Specifically, the proposed method excels at extracting more condensed key frames, re-
sulting in reduced summary lengths. 



Fig. 5. F-measure variation of the proposed KSC-DFF approach for summary duration and all 

videos at various α values. 

Fig. 6. Key frames of the “Saving dolphins” video generated by the proposed KSC- DFF. 

Table 3 shows that the proposed KSC-DFF can achieve competitive results 

compared with some outstanding methods. Regarding F-measure, the proposed KSC-

DFF is not a supervised method but still exhibits a good average F- measure, 

ranking second. The proposed algorithm can obtain a higher F-measure with a nearly 

49.4%  increase compared with SMRS on the SumMe dataset. Thus, the pro-

posed KSC-DFF with deep frame features can obtain more accurate key frames 

with a high F-measure than other sparse coding-based methods, such as SMRS 

and SC-det. Although the results obtained by the proposed KSC-DFF are worse 

than DSSC-log in some videos, the running times of KSC-DFF are the lowest 

among the sparse coding methods as shown in Table 2. Note that, “-” in Table 

3 means no results. The related videos, such as “Air Force One”, are too long, 

and DSSC-log cannot obtain results because it is out of memory. 

An analysis of the running time of the SumMe dataset is shown in Table 2. 

We compare the running times of using YOLO-MLP on three sparse coding- 

based methods: SMRS, SC-det, and DSSC-log. “+” indicates the related sparse 

coding-based method with YOLO-MLP added. Three example videos with 

increasing frames from the SumMe dataset are selected. As shown in Table 2, after 

applying YOLO-MLP, the running times are significantly reduced. The input 

for the SMRS method is the original image enlarged to one dimension. One of 

the videos named “Playing ball” is an example, which contains 6096 
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Table 1. Summary length for KSC-DFF and SMRS. 

Video name Frames 
S-length(%) 

SMRS KSC-DFF 

Base jumping 4729 0.59 0.68 

Bearpark climbing 3341 1.98 0.93 

Bike Polo 3064 1.54 1.34 

Bus in Rock Tunnel 5131 0.55 0.62 

Car railcrossing 5075 0.0002 0.73 

Cooking 1286 2.20 2.64 

Excavators river cross 9721 0.77 0.54 

Fire Domino 1612 1.01 1.92 

Jumps 950 2.00 2.53 

Kids playing in leaves 3187 1.20 1.29 

Paintball 6096 0.09 0.34 

Paluma jump 2574 1.18 1.48 

Playing ball 3120 1.15 1.19 

Playing on water slide 3065 1.79 1.11 

Saving dolphins 6683 1.16 0.81 

Scuba 2221 14.82 1.22 

St Maarten Landing 1751 1.31 0.86 

Statue of Liberty 3863 1.12 0.70 

Valparaiso Downhill 5178 1.64 1.18 

Mean  1.90 1.16 

 

frames. It first scales each image frame to (224 × 224) and then expands it to a (1 

× 50176) vector. The input matrix Y : (50176 × 6096) is made up of 6096 video frames. 

In contrast, our proposed approach, KSC-DFF, compresses each video frame 

into a vector of (1 × 500),  allowing us to work at a quicker pace with an input 

matrix of Y : (500 × 6096). Our approach preserves more information while re-

ducing the input matrix. Moreover, the proposed KSC-DFF can achieve better 

results with lower computational time compared to SMRS. The 

running time for video “Jumps” by KSC-DFF is 27 seconds with a reduction of 

98% compared to 1567 seconds by SMRS. 

We use YOLO-MLP to compress the original video frames and evaluate the 

method on three sparse coding-based methods and the results are shown in Ta-

ble 5. As shown in Table 5, following YOLO-MLP compression, SMRS+ 

achieves the highest F-measure among the three sparse coding algorithms. 

To verify the performance of the proposed method, we pick out the “Save 

the Dolphins” (which contains 6683 frames) video from the SumMe dataset 

as the leading example. As shown in Figure 6, blue bars indicate the user's se-

lection results and red bars show the key frames selected by our proposed 

method. The horizontal axis represents the video frame numbers, and the verti-

cal axis represents the sum of the user scores. The key frames contain the sea, 

dolphins, and people. We selected more key frames between 1500 and 5000 

frames, the frames in this interval are rapidly changing, this period is when the 

dolphin is being rescued and is the most important part of this video. At the 

bottom of Figure 6, we can see the whole process of the dolphin stranding to 

being found by humans to the successful rescue. 

 



Table 2. Runtime on three sparse coding approaches before and after YOLO-MLP compres-

sion. 

 

 

 

 

 

 

Table 3. F-measure of various key frame extraction approaches, namely SC-det, SMRS, 

DSSC-log, Uni., VGG, Attn., Intr., and DFS. 

Video name 
F-measure 

SC-det [22] Uni. [17] VGG[20] Attn.  [2] Intr.  [5] DFS [17] SMRS [22] DSSC-log [12] Ours 

Air Force one 0.026 0.060 0.239 0.215 0.318 0.316 0.025 - 0.282 

Base jumping 0.207 0.247 0.062 0.194 0.121 0.077 0.157 0.289 0.194 

Bearpark climbing 0.210 0.225 0.134 0.227 0.118 0.178 0.234 0.289 0.311 

Bike Polo 0.212 0.190 0.069 0.076 0.356 0.235 0.191 0.249 0.246 

Bus in Rock Tunnel 0.204 0.114 0.120 0.112 0.135 0.151 0.198 0.255 0.224 

Car over camera 0.352 0.245 0.048 0.201 0.372 0.132 0.087 0.240 0.292 

Car railcrossing 0.175 0.185 0.139 0.064 0.362 0.328 0.179 - 0.179 

Cockpit Landing 0.127 0.103 0.190 0.116 0.172 0.165 0.127 - 0.247 

Cooking 0.200 0.076 0.285 0.118 0.321 0.329 0.148 0.281 0.261 

Eiffel Tower 0.225 0.142 0.008 0.136 0.295 0.174 0.205 - 0.227 

Excavators river cross 0.254 0.107 0.030 0.041 0.189 0.134 0.223 - 0.223 

Fire Domino 0.205 0.103 0.124 0.252 0.130 0.022 0.102 0.288 0.313 

Jumps 0.274 0.054 0.000 0.243 0.427 0.015 0.304 0.300 0.273 

Kids playing in leaves 0.263 0.051 0.243 0.084 0.089 0.278 0.217 0.274 0.186 

Notre Dame 0.167 0.156 0.136 0.138 0.235 0.093 0.193 - 0.198 

Paintball 0.298 0.071 0.270 0.281 0.320 0.274 0.068 0.225 0.246 

Paluma jump 0.089 0.058 0.056 0.028 0.181 0.428 0.093 0.263 0.225 

Playing ball 0.237 0.123 0.127 0.140 0.174 0.194 0.200 0.277 0.220 

Playing on water slide 0.155 0.075 0.092 0.124 0.200 0.183 0.163 0.252 0.174 

Saving dolphins 0.066 0.146 0.103 0.154 0.145 0.121 0.060 0.281 0.190 

Scuba 0.099 0.070 0.160 0.200 0.184 0.154 0.096 0.264 0.277 

St Maarten Landing 0.434 0.152 0.153 0.419 0.313 0.015 0.245 0.279 0.369 

Statue of Liberty 0.160 0.184 0.098 0.083 0.192 0.143 0.139 0.216 0.174 

Uncut Evening Flight 0.159 0.074 0.168 0.299 0.271 0.168 0.186 - 0.238 

Valparaiso Downhill 0.232 0.083 0.110 0.231 0.242 0.258 0.212 0.275 0.278 

Mean 0.201 0.124 0.127 0.167 0.234 0.183 0.162 - 0.242 

4.5 Ablation experiment 

To comprehensively evaluate the contribution of each component in our proposed 

framework for key frame extraction, we conducted an ablation study using the F1-

measure as the primary evaluation metric. We compared the baseline YOLO-based 

model, a standalone MLP-based approach, and our full YOLO + MLP integration. As 

Video Frames 
Running time/s 

SMRS/+ SC-det/+   DSSC-log/+ 

Jumps 950 1567/27 1648/52 149/58 

Bike Polo 3064 13877/1717 18037/1617 2548/1017 

Paintball 6096 85687/5407 54498/12001 12286/6212 
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shown in Table 4, the YOLO + MLP model consistently outperforms the other config-

urations across all test samples, achieving the highest average F1 score. This notable 

improvement highlights the complementary strengths of the spatial-temporal modeling 

capability of YOLO and the global semantic representation learned by the  identifica-

tion of semantically meaningful and temporally representative key frames. These re-

sults strongly validate the effectiveness of our joint architecture in enhancing the pre-

cision and robustness of key frame extraction. 

Table 4. Ablation results of MLP-based,  YOLO-based, and YOLO + MLP on F1-Measure for 

key frame extraction. 

Video name 
F-measure 

MLP-based YOLO-based KSC-DFF 

Air Force One 0.288  0.225 0.282 

Base jumping 0.203  0.208 0.194 

Bearpark climbing 0.237  0.209 0.311 

Bike Polo 0.230  0.221 0.246 

Bus in Rock Tunnel 0.247  0.187 0.224 

Car railcrossing 0.156  0.158 0.179 

Cockpit Landing 0.245  0.243 0.247 

Cooking 0.292  0.233 0.261 

Eiffel Tower 0.237  0.161 0.227 

Excavators river crossing 0.243  0.225 0.223 

Fire Domino 0.326  0.199 0.313 

Jumps 0.347  0.146 0.273 

Kids playing in leaves 0.136  0.267 0.186 

Notre Dame 0.224  0.206 0.198 

Paintball 0.239  0.298 0.246 

Playing on water slide 0.180  0.188 0.174 

Saving dolphins 0.184  0.257 0.190 

Scuba 0.224  0.199 0.277 

St Maarten Landing 0.314  0.243 0.369 

Statue of Liberty 0.167  0.176 0.174 

Uncut Evening Flight 0.210  0.178 0.237 

Valparaiso Downhill 0.212  0.262 0.278 

Car over camera 0.232  0.226 0.292 

Paluma jump 0.146  0.206 0.225 

Playing ball 0.191  0.212 0.220 

Mean 0.228 0.213 0.242 

5 Conclusion 

In this paper, we proposed a novel key frame extraction approach, KSC-DFF, to con-

sider deep frame features to achieve better results. First, we extract deep frame features 



with richer, deeper information, such as included object features. The deep frame fea-

tures are obtained by YOLO-MLP networks, which employ MLP-Mixer to integrate 

the multi-scale information of the feature fusion networks. Then, we can effectively 

extract the key frames of the video by sparse coding. Key frames can be estimated 

automatically according to the nonzero rows in the learned sparse coefficient ma-

trix.Experimental results show that our proposed KSC-DFF method performs well in 

extracting more accurate key frames from SumMe videos compared to most state-of-

the-art techniques. Our approach not only accelerates sparse representation key frame 

extraction but also ensures high accuracy. Additionally, it is the fastest among sparse 

coding methods. However, our method is not universally suitable for all sparse coding 

techniques. In future work, we will explore different feature extraction methods to im-

prove generalization. 

Table 5. F-measure of three sparse coding methods after YOLO-MLP compression. 

Video name 
F-measure 

SC-det+ DSSC-log+ SMRS+(Ours) 

Air Force One 0.231 0.289 0.282 

Base jumping 0.210 0.210 0.194 

Bearpark climbing 0.239 0.296 0.311 

Bike Polo 0.209 0.247 0.246 

Bus in Rock Tunnel 0.196 0.227 0.224 

Car railcrossing 0.179 0.174 0.179 

Cockpit Landing 0.193 0.248 0.247 

Cooking 0.203 0.237 0.261 

Eiffel Tower 0.226 0.226 0.227 

Excavators river crossing 0.216 0.218 0.223 

Fire Domino 0.236 0.310 0.313 

Jumps 0.274 0.273 0.273 

Kids playing in leaves 0.189 0.170 0.186 

Notre Dame 0.260 0.204 0.198 

Paintball 0.260 0.280 0.246 

Playing on water slide 0.262 0.177 0.174 

Saving dolphins 0.197 0.193 0.190 

Scuba 0.217 0.264 0.277 

St Maarten Landing 0.336 0.345 0.369 

Statue of Liberty 0.190 0.173 0.174 

Uncut Evening Flight 0.257 0.239 0.237 

Valparaiso Downhill 0.242 0.277 0.278 

Car over camera 0.295 0.306 0.292 

Paluma jump 0.209 0.225 0.225 

Playing ball 0.230 0.222 0.220 

Mean 0.230 0.241 0.242 
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