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Abstract. Cardiovascular diseases are rapidly becoming one of the major health 

problems in adolescents. With the advancement of deep learning techniques, 

smart ECG diagnostic tools based on these techniques show great potential for 

application in real-world healthcare settings. However, the scarcity of ECG data 

in adolescents compared to older adults is a key challenge for deep learning tech-

niques, the accuracy of which relies on extensive labeled training data. In this 

paper, we propose a Crossage Domain Adaptation Diagnosis (CDAD) approach 

and introduce a domain adaptation network, Squeeze and Excitation Widekernel 

Neural Network (SEWNN), aiming to alleviate the constraints imposed by unla-

beled data and cross-domain diagnosis. Firstly, Largescale labeled ECG data 

from elderly individuals are employed for feature extraction and model training. 

Subsequently, an adversarial learning approach is employed to enhance the 

model’s cross-domain transfer capabilities. In addition, Ensemble learning tech-

niques that consider information from multiple cues to improve prediction accu-

racy are applied. In this study, we validate the effectiveness of the proposed 

method by applying it to three public ECG diagnostic datasets and evaluating its 

applicability from the elderly to adolescents. By comparing the experimental re-

sults with other methods, we demonstrate the validity of the method in adoles-

cents diagnosing ECG, as well as its robustness in cross-dataset diagnosis. 

Keywords: ECG Diagnosis, Domain Adaptation, Adversarial Learning, En-

semble Learning. 

1 Introduction 

According to the Heart Disease and Stroke Statistics 2023 released by The American 

Heart Association and the National Institutes of Health [28]. Cardiovascular diseases 

(CVDs) are among the leading causes of mortality globally [19, 24]. Arrhythmia is a 



frequent cardiac abnormality, which is often linked to sudden cardiac events. Electro-

cardiography (ECG), serving as a simple and non-invasive diagnostic method, assesses 

the cardiac health status by recording around ten seconds of cardiac electrical activity. 

Experienced physicians can usually diagnose heart disease in patients by analyzing the 

ECG.  

With advancements in machine learning [11] and deep learning [14], numerous com-

putational methods for automated ECG diagnosis have been developed, significantly 

enhancing the efficiency of ECG diagnosis [20, 21, 5, 4]. Hou et al. [22] proposed an 

ECG classification method based on Long Short-Term Memory (LSTM). Li et al. [16] 

employed 1-D Convolutional Neural Networks (CNNs) for the classification and diag-

nosis of ECG. Obeidat et al. [23] introduced a hybrid algorithm known as 1-D CNN-

LSTM, which achieves commendable classification performance while maintaining a 

lightweight structure. However, in classification tasks, different age groups often 

demonstrate distinct distributions of symptom labels. Moreover, as age increases, pub-

licly available datasets with age information [1, 30, 36] often lack adequate data on 

arrhythmias in adolescents. Diseases affecting adolescents differ from those impacting 

other age groups, and deep learning models often exhibit poor performance on datasets 

with different label distributions [14, 37]. Hence, research on ECG diagnosis under 

limited data and across diverse age groups becomes particularly significant. This ap-

proach is referred to as cross-domain fewshot learning. The differences between the 

source and target domains, known as domain shifts, significantly negatively impact the 

model’s performance. Transfer learning, as a method for solving cross-domain prob-

lems, aims to transfer a model that performs well on the source domain to the target 

domain at a minimal cost of loss, so that it maintains a good generalization ability. The 

main challenges faced in studies of arrhythmia classification across domains are the 

lack of heartbeat data with labels and the variability in data distribution between do-

mains. The current strategies for addressing these issues primarily include fine-tuning 

techniques and domain adaptation methods. For example, researchers such as Li[17] 

proposed to train patient-specific classifiers by fine-tuning a general-purpose convolu-

tional neural network into a task-specific CNN. Domain adaptation, as an important 

branch of transfer learning, aims to learn shared features between two domains. Wang 

et al. [31] further proposed an ECG heart rate classification model combining CNN and 

unsupervised domain adaptation techniques to reduce distributional bias. Although do-

main adaptation methods have been widely used in the field of computer vision, their 

application in ECG diagnosis is still relatively limited, especially in solving the problem 

of sparse categories in the diagnostic samples of ECGs of adolescents, for which there 

is a lack of specialized solutions. Moreover, a standard ECG usually consists of 12-lead 

ECG signal data. When using deep learning methods for diagnosis, the direct correla-

tion between the 12 leads cannot be ignored. However, existing work directly inputs 

the 12-lead data into a neural network for training, which not only fails to fully capture 

the significant features of each lead, but also consumes a large amount of computational 

resources. 

To address these challenges, we propose a Cross-age Domain Adaptation Diagnosis 

method (CDAD) to alleviate the problem of limited data and labeling in adolescent 

ECG diagnosis. First, we denoise the ECG data and designate the rich elderly ECG data 
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as the source domain while the limited adolescent ECG data as the target domain. We 

propose a new network, Squeeze and Excitation Widekernel Neural Network 

(SEWNN), which integrates a channel attention mechanism and a CNN with a wide 

first-layer kernel as the backbone network. And a multi-adversarial domain adaptation 

approach is used to align the source and target domains, which improves the diagnostic 

performance of adolescent ECG data. In addition, we propose an ensemble method 

based on the self-attention mechanism that groups together multiple cues extracted 

from different body locations, and integrates the predictions of these groups to improve 

the diagnostic performance. The main contributions of this study are as follows: 

• We propose a Cross-age Domain Adaptation Diagnosis (CDAD) method that utilizes 

a multi-adversarial domain adaptation approach to transfer the elderly ECG data 

classifier to the diagnosis of adolescent ECG data, thereby addressing the lack of 

data as well as distributional bias in adolescent ECG diagnosis. 

• We introduce a novel network, Squeeze and Excitation Wide-kernel Neural Network 

(SEWNN), which combines deep neural networks with wide kernels and channel 

attention mechanism to better learn domain invariant features between source and 

target domains. 

• We design an ensemble learning method based on a self-attention mechanism, which 

improves the diagnostic performance by integrating the diagnostic results from dif-

ferent cues to capture the salient features of the leads in each ECG signal. In addition, 

the parallel computing capability of our method greatly reduces the computational 

time overhead, making less computational resources required. 

• Our experiments on three public ECG diagnostic datasets reached the stateof-the-

art, demonstrating the validity of the method in ECG diagnosis of adolescents. 

2 Related works 

2.1 Domain Adaptation 

Domain Adaptation (DA) is an important sub-direction in transfer learning that aims to 

facilitate the seamless transfer of knowledge from the source domain to the target do-

main, especially when the data distributions of the two domains are significantly dif-

ferent [25].  Ganin et al. [6] pioneered the concept of adversarial learning in domain 

adaptation and introduced the Domain Adversarial Neural Network (DANN). This ap-

proach integrates the concept of generative adversarial networks (GAN) [7] into do-

main adaptation, where the feature extractor and the domain discriminator engage in an 

adversarial process.  



 

Fig. 1. Instructions for Domain adaptation. There is an obvious domain shift between the source 

domain and the target domain before adaptation. 

2.2 CNN with wide first-layer kernels 

In general classification tasks, networks with wide first-layer convolutional kernels are 

often considered to compromise computational efficiency. However, in diagnosis and 

classification problems involving longer-time signals, small convolutional kernels may 

not sufficiently capture signal features. In bearing fault diagnosis, networks utilizing 

wide first-layer kernels are already extensively employed in vibration data diagnosis 

[15]. WDCNN[34] is a deep convolutional neural network with wide first-layer kernels. 

Its network structure, depicted in Figure 2, is designed to extract features from signals 

and suppress high-frequency noise using wide kernels in the first convolutional layer. 

Moreover, WDCNN integrates Adaptive Batch Normalization (AdaBN) [18], bolster-

ing the neural network with robust domain adaptation capabilities. In this paper, we 

employ CNN with wide first-layer kernels and implement corresponding enhancements 

to improve model performance. 

Table 1.  Some notation and explanation used throughout this paper. 

Terms Explanation 

Source Domain The domain which is initially trained.  

Target Domain The domain which needs to be transferred. 

Domain Shift 
Refers to the difference in data distributions between the source 

and target domains. 

Unsupervised DA 
Domain adaptation scenario where labeled data is available only 

in the source domain. 

Transferability 
Evaluation metric assessing how well the adapted model per-

forms. 

Feature  Extractor 
Extracts relevant features from input data to facilitate domain ad-

aptation. 

Domain Discriminator  Identifies the source or target domain. 

Adversarial Learning 
The feature extractor and domain discriminator are trained adver-

sarially. 
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2.3 Ensemble Learning and Self-Attention 

Ensemble learning [27] is a technique that integrates the results of multiple learners to 

achieve superior performance compared to any individual learner. By incorporating di-

agnostic results from various leads, ensemble learning can enhance diagnostic accuracy 

while conserving computational resources. Selfattention was initially proposed by Vas-

wani  et al. [29] and was  first utilized in the Transformer model for machine translation 

tasks, yielding state-of-the-art results at that time. 

 

Fig. 2. The Structure of WDCNN. 

3 Proposed arrhythmia diagnosis method 

The structure of our proposed Cross-age Domain Adaptation Diagnosis Method 

(CDAD) is illustrated in Figure 3(a). It primarily comprises three modules: a backbone 

network (SEWNN), adversarial transfer learning blocks, and ensemble learning blocks. 

Pre-processed data are input into CDAD for diagnosis. 

3.1 Data pre-processing 

ECG signals typically consist of 12 leads, representing a 12-dimensional timeseries 

signal. During the acquisition of the ECG signal, it is influenced by various types of 

noise, primarily including baseline drift [2], power line interference[8], and muscle 

contraction[12]. Firstly, a Butterworth low-pass filter is employed to eliminate signals 

above a frequency of 50 Hz (the normal frequency range of ECG signals is between 0.5 

Hz and 50 Hz). Subsequently, the ECG signal undergoes processing using Empirical 

Mode Decomposition (EMD) to eliminate baseline drift. Finally, the residual noise is 

eliminated using the Non-Local Means (NLM) technique. The denoising procedure is 

depicted in Figure 4. 



 

Fig. 3. The Structure of proposed CDAD method. (a) The overall framework of CDAD, including 

processing block, SEWNN, MADA block and ensemble block. (b) The structure of SEWNN, the 

part enclosed by the dotted line is the implementation details of SeNet. (c) The implementation 

procedure of proposed ensemble block. 

 

Fig. 4. The procedure of ECG signals denoising. 

Table 2. The parameters of the convolution module 

Layer Layer type 
Kernel 

size/stride 

Num of ker-

nels 

Output size 

(W*H) 

Zero-pad-

ding 

1 Conv1d 64×1/16×1 16 128×16 √ 

2 MaxPool1d 2×1/2×1 16 64×16  

3 Conv1d 3×1/3×1 32 64×32 √ 

4 MaxPool1d 2×1/2×1 32 32×32  

5 Conv1d 3×1/3×1 64 32×64 √ 

6 MaxPool1d 2×1/2×1 64 16×64  

7 Conv1d 3×1/3×1 64 16×64 √ 

8 MaxPool1d 2×1/2×1 64 8×64  

9 Conv1d 3×1/3×1 64 8×64 √ 

10 MaxPool1d 2×1/2×1 64 6×64  

11 Conv1d 5×1/5×1 128 6×64  

12 MaxPool1d 2×1/2×1 128 3×64  

13 FC 100 1 100  

14 Softmax 4 1 4  
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3.2 SEWNN 

The model architecture of SEWNN (Squeeze and Excitation Wide-Kernel Neural Net-

work) is depicted in Figure 3(b). The network contains six layers in total. Each layer 

contains a convolution module and a channel attention module. The parameters of each 

convolution module are shown in Table 2. The convolutional module utilizes a wide 

convolution kernel (kernel size = 64) in the first layer to extract features from the signal 

and suppress high-frequency noise. Subsequently, it employs multiple small kernels to 

capture low-frequency information from the signal. Batch normalization (BN) layers 

are incorporated after the convolutional layer and fully connected layer to mitigate in-

ternal covariance shift and expedite training. Dropout modules are introduced in the 

first convolutional module to enhance the model’s generalization ability. The channel 

attention module uses SeNet[10], and its structure is showed in the SeNet Block in 

Figure 3(b). The calculation formula is given as follows: 

 ( )
1 1

1
( , )

H W

c sq c c

i j

z F u u i j
H W = =

= =


  (1) 

where 
cz  is the output associated with the c-th channel, and u  is the convolution ker-

nel with a fixed height H  and width W . 

Excitation is similar to the gating mechanism in recurrent neural networks. It gener-

ates weights for each feature channel using parameters, where the parameters are 

learned to explicitly model the correlation between feature channels. The calculation 

formula is as follows: 

 
( )( )

( , ) ( ( , ))

Re

c exs F Sigmoid g

Sigmoid Lu

= =

=
2 1

z W z W

W W z
 (2) 

where g( , ) is the gating network, which learns the weights for each channel through a 

two-layer neural network. The activation functions chosen are ReLU and Sigmoid. 

1

C
C

rW R


=  acts to reduce the dimensionality, and 2

C
C

rW R


=  is used to restore the di-

mensionality. 

Scale considers the weights of the output from Excitation as the importance of each 

feature channel after feature selection, assigning different weights to different channels. 

The calculation formula is as follows: 

 ( ) ,c scalex F= = 
c c c c

u s s u  (3) 

The classification stage comprises two fully connected layers. In the output layer, the 

softmax function is applied to transform the logits of the neurons to comply with the 

probability distribution of various ECG diagnostic results. 



 

Fig. 5. The structure of domain adaptation method. fG  refers to the proposed feature extractor 

SEWNN, yG  refers to the label predictor, and yG  refers to the domain discriminator. yL  rep-

resents yG  ys cross-entropy loss. 

3.3 Domain adaptation method 

Due to the different distributions of extracted electrocardiogram (ECG) signals from 

different age groups, using the same feature extractor may result in features with vary-

ing data distributions, significantly reducing the performance of the classifier. Domain 

adversarial networks address this issue by extracting transferable features that minimize 

the distribution shift between the source and target domains. The structure of the do-

main adaptation method is shown in Figure 5. This involves a trained domain discrim-

inator 
dG , which distinguishes between the source and target domains, and a fine-tuned 

feature extractor fG  , which confuses the domain discriminator. In the process of trans-

ferring from a data-rich older age group to a data-scarce younger age group in ECG 

diagnosis, the data distribution often exhibits multimodal characteristics. To avoid pos-

itive or negative transfer, a multi-adversarial domain adaptation method (MADA) is 

employed. 

First, the domain discriminator 
dG  is decomposed into multiple discriminators 

k

dG . 

The importance of each data point xi to K  domain discriminators 
k

dG , 1,2,...k = , K  

is represented by the probabilities 
iy . Calculate the domain loss as follows: 

 ( )( )( )
1

1
ˆ ,

i f

K
k k k

d d d i i i

k x

L L G y x d
n =  

=    (4) 

where 
k

dG  represents the k-th domain discriminator, 
k

dL  represents its crossentropy 

loss, and di denotes the domain label of point xi. 
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The objective of MADA is: 

 

( ) ( )( )( )

( )( )( )
1

1

1

1
, , ,

ˆ ,

i f

K
k

f y d y y f i ik
xs

K
k k k

d d i f i

k

C L G G x y
n

L G y G d
n

  



=


= 

=

−



 i

x

x

 (5) 

where 
s tn n n= +  is the sum of the number of source domains and target domains, 

t=   represents the intersection of the source and target domains, and   is a 

balancing parameter between the two objectives in the learning process. The optimiza-

tion problem aims to find a solution that satisfies: 

 ( ) ( ), 1
, arg min , ,

f y

K
k

f y f y d k
C     

=
=  (6) 

 ( ) ( )1

1

, , 1
, , arg max , ,K

d d

K
K k

d d f y d k
C

 
     

 =
 =  (7) 

where 1, , , , K

f y d d     represents the learnable parameters in 
1

, ,
K

k

f y d k
G G G

=
. 

3.4 Self-Attention-Based Ensemble Model 

The proposed approach in this paper introduces an ensemble module based on self-

attention, as illustrated in Figure 3(c). Firstly, three lead combinations from the human 

body (Chest leads: V1-V6, Limb leads: I, II, III, Augmented limb leads: avR, avL, avF) 

are selected, and one lead’s data from each combination is extracted to form a group. 

The diagnostic process is then applied to this group of ECG data using the processing 

steps, resulting in the network’s output. Considering the computational time require-

ments for specific tasks, several groups with higher accuracy are selected as the output 

of the base-learners. The multi-head attention module is treated as the meta-learner, 

which integrates the results. 

For any attention head, its output is computed as follows: 

 =H AV  (8) 

where max , , , , , ,

k

Soft Q K
d

 
= = = = 

 
 

T

V Q K

QQ
A V W X Q W X K W X  and V  represent 

the Query, Key, and Value, respectively, while W  denotes the weight matrix. 

Multi-head attention allows the model to jointly attend to information from different 

representations. It linearly projects the query, key, and value h times, with separate 

linear projections for the dimensions qd , 
kd , and dv, respectively. This generates the 

query, keys, and values for each projection, which are then processed in parallel using 



the attention function to produce outputs of dimension 
vd . These values are concate-

nated and projected again to generate the final output. The calculation formula is as 

follows: 

 ( )1 2MultiHead( , , ) head head headh O= + ++Q K V W  (9) 

where ( )  , ,ihead Attention= Q K V

i i i
QW KW VW , ⊕ represents vector concatenation. 

The aforementioned results are fed into the integration module for training. After ap-

plying the Softmax operation, the integrated result is obtained. This result takes into 

account the correlations between multiple leads. Additionally, the integration learning 

strategy helps avoid excessive computational resource consumption associated with 

large-scale training. 

Table 3. Basic information of Chapman University, Shaoxing People’s Hospital, and PTB-XL 

datasets. Abbreviations: AFIB = Atrial Fibrillation, GSVT = General Supraventricular Tachycar-

dia, SB = Sinus Bradycardia, SR = Sinus Rhythm, NORM= Normal, CD = Cardiomyopathy, 

STTC = ST-T changes, HYP = Hypertrophy, MI= Myocardial Infarction. 

Database Total Age Group Number (%) Disease Distribution 

Chapman University 

and Shaoxing Peo-

ple’s Hospital Dataset 

10646 

Adolescent 

(12–19) 
164 (1.5%) 

AFIB (0, 0%), GSVT (52, 31.7%), 

SB (28, 17.1%), SR (84, 51.2%) 

Old (age > 

50) 
7879 (74.0%) 

AFIB (2132, 27.1%), GSVT (1482, 

18.9%), SB (2987, 37.8%), SR 

(1278, 16.2%) 

PTB-XL Dataset 21837 

Adolescent 

(12–19) 
459 (2.1%) 

NORM (404, 87.8%), CD (27, 

5.9%), STTC (14, 3.1%), HYP (7, 

1.6%), MI (7, 1.6%) 

Old (age > 

50) 
16098 (73.7%) 

NORM (5595, 34.7%), CD (2005, 

12.5%), STTC (2459, 15.3%), HYP 

(1100, 6.8%), MI (4939, 30.7%) 

4 Experimental setup 

4.1 Datasets 

To evaluate the performance of the algorithm, we conduct experiments on two public 

datasets containing 12-lead data with age information. These datasets have been widely 

used in arrhythmia classification tasks and are beneficial for comparing the proposed 

method with other methods. The basic information of these two databases, the propor-

tion of young people (12-19 years old) and the elderly (over 50 years old) and the dis-

tribution of diseases are shown in the Table 3. 

Chapman University and Shaoxing People’s Hospital Dataset The Chapman Univer-

sity and Shaoxing People’s Hospital Dataset consists of 10,646 patients’ 12-lead elec-

trocardiograms (ECG) sampled at a rate of 500 Hz. The dataset includes 11 common 

arrhythmias and 67 additional cardiovascular diseases. Based on the recommendations 
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of cardiac experts, several rare cases were grouped together under higher-level arrhyth-

mia types. As a result, the 11 arrhythmias were merged into 4 groups, namely Sinus 

Bradycardia (SB), Atrial Fibrillation (AFIB), General Supraventricular Tachycardia 

(GSVT), and Sinus Rhythm (SR). The image of the above disease in the time and fre-

quency domains is shown in Figure 6. 

PTB-XL Dataset The PTB-XL ECG dataset is a large-scale dataset consisting of 

21,799 clinical 12-lead electrocardiograms (ECG) from 18,869 patients. Each ECG re-

cording has a length of 10 seconds. The dataset’s value lies in its comprehensive col-

lection of various comorbidities and a substantial number of healthy control samples. 

The diagnoses in the dataset are distributed as follows: for simplicity, diagnostic state-

ments have been aggregated into super classes including normal (NORM), myocardial 

infarction (MI), ST-T wave changes (STTC), cardiomyopathy (CD), and hypertrophy 

(HYP). The image of the above disease in the time and frequency domains is shown in 

Figure 7. 

4.2 Experiment procedure 

The CDAD model proposed in this paper primarily comprises three modules, deline-

ated in Sections 3.2, 3.3, and 3.4. Initially, the time-domain vibration signals consisting 

of 5000 data points are denoised and then input into the model, with the output size 

determined by the number of symptom categories in the dataset. 

The feature extractor in the feature extraction module is the SEWNN proposed in 

this paper. Both the classifier and the domain discriminator utilize two fully connected 

(FC) layers, with softmax deployed for multi-class classification in the final layer. 

Dropout after each layer is used to reduce the risk of overfitting. All experiments utilize 

Adam optimizer to train the network structure. The learning rate is set to 0.001, with a 

momentum of 0.9, and a step size of 0.5. The cross-entropy loss function is used as the 

objective function. Each experiment is trained for 100 epochs, with ten repeated exper-

iments conducted. The datasets from each domain are partitioned into training and test-

ing sets at an 8:2 ratio. Lastly, an ensemble learning method based on self-attention is 

employed to integrate the results of various lead combinations. To further assess the 

effectiveness of the proposed CDAD model, six different models are compared using 

two datasets. 



 

Fig. 6. Image of CUSPH dataset in the time and frequency domains. 

 

Fig. 7. Image of PTB-XL dataset in the time and frequency domains. 

 

Fig. 8. The results on CUSPH and PTB-XL datasets. After domain adaptation, the   test accuracy 

and F1 score of the proposed method significantly increased. 
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The experiments are divided into two parts: In the first part, we validate the perfor-

mance of CDAD on a single dataset. In the second part, we evaluate CDAD’s ability to 

diagnose across datasets. Initially, we acquire a pre-trained model, CDAD-Base, trained 

solely on labeled data in the source domain (elderly data), serving as the baseline. Sub-

sequently, we employ the proposed algorithm to transfer the model from labeled source 

data (elderly data) to unlabeled target data (adolescent data), resulting in the transferred 

model, referred to as CDADDA. To assess the transferability of the proposed method, 

we conducted a crossdataset experiment in the second part. Initially, the model is 

trained on the PTB-XL dataset and subsequently transferred to the CPCS 2020 Dataset 

[3]. 

5 Experimental results 

5.1 Experiment I (results on single dataset) 

In this section, we compare our method with other state-of-the-art deep learning models 

for adolescent ECG diagnosis on the CUSPH Dataset and PTB-XL Dataset, including 

references[35],[26],[13], and [32]. References [33] and [9] employ the same domain 

adaptation concept as ours, but they do not propose a diagnosis method specifically for 

adolescents. We assess the accuracy of each method. Since each category is not uni-

form, we consider incorporating the F1 Score. The calculation formula is provided as 

follows: 

 

Fig. 9. t-SNE Plot on CUSPH Dataset and PTB-XL Dataset. 



 

Fig. 10. Confusion Matrix of CDAD-DA on CUSPH Dataset and PTB-XL Dataset. 

Table 4. The test results on CUSPH Dataset and PTB-XL Dataset (including F1 Score). 

Datasets 

CUSPH Dataset PTB-XL Dataset  

Young Old Young Old 

F1 Acc F1 Acc F1 Acc F1 Acc 

WDCNN[43] 0.778 0.782 0.901 0.912 0.722 0.733 0.753 0.774 

LSTM[44] 0.696 0.703 0.788 0.796 0.701 0.713 0.713 0.705 

1D-CNN[45] 0.705 0.756 0.712 0.735 0.665 0.653 0.688 0.653 

DAEAC[46] 0.844 0.891 0.852 0.863 0.754 0.736 0.703 0.716 

TCGAN[47] 0.836 0.825 0.844 0.854 0.722 0.715 0.765 0.754 

MLUDAF[48] 0.856 0.842 0.857 0.873 0.801 0.799 0.763 0.786 

CDAD-Base 0.863 0.876 0.944 0.953 0.776 0.782 0.845 0.851 

CDAD-DA 0.902 0.913 - - 0.809 0.825 - - 

 
 Acc  Recall 

F1 2
 Acc  Recall 


= 

+
 (10) 

The F1 score considers both Precision and Recall indicators, enabling a more compre-

hensive evaluation of the classification model’s performance and mitigating the bias of 

a single indicator. As depicted in Figure 8 and 4, our baseline model CDAD-Base has 

already attained comparable performance across all categories (with better F1 scores 

and overall accuracy). Following adaptation, CDAD-DA achieves substantial perfor-

mance enhancement and attains the highest F1 scores. The representation of CDAD-

DA on various disorders is illustrated as a t-SNE plot in Figure 9. In comparison to two 

specific patient algorithms that train individual models for each patient, our method 

only requires training a global model without necessitating additional storage or com-

puting resources. Additionally, we generated the confusion matrix of CDAD-DA on 

the two datasets, depicted in Figure 10. Observations on the CUSPH dataset reveal that 

CDAD-DA exhibits superior performance in various symptom, demonstrating strong 

diagnostic capabilities. Conversely, on the PTB-XL dataset, CDAD-DA demonstrates 

subpar diagnostic performance for MI diseases. This could be attributed to the limited 

number of MI cases, while exhibiting better performance on other diseases. 
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5.2 Experiment II (results on cross-datasets tests) 

In order to prove that our method still performs well in the face of different data, rather 

than being singularly applicable to a certain dataset, we conducted cross-dataset tests. 

We used the elderly data on CPCS 2020 Dataset (The reason why we don’t use CUSPH 

Dataset is that, CUSPH Dataset contains only the unnormal ECG signals) as the source 

domain and the young people data on PTB-XL Dataset as the target domain for this 

test. Since the disease categories are different in these 2 datasets, we consider only a 

dichotomous problem, i.e., whether this ECG is normal or not, and the test results are 

shown in Figure 11. It shows that the cross-dataset test still performs competitively 

comparing with the single-dataset test conducted on PTB-XL. 

5.3 Ablation experiments and sensitivity analysis 

Since our proposed CDAD method consists of three different parts, it’s essentially im-

portant to verify the validity of each part. Therefore, we conducted ablation experiments 

on CUSPH Dataset, and the experimental results are shown in Table 5. Meanwhile, in 

the transfer learning task, the influence of the parameters cannot be ignored, so we 

performed sensitivity analysis on the parameter λ in Eq. (7), and the results are shown 

in Figure 12 as a way of verifying that our proposed method is insensitive to the param-

eters. 

 

Fig. 11. Results on PTB-XL Dataset (Cross datasets case, where 0 stands for unnormal and 1 

stands for normal). 



 

Fig. 12. Results of ablation experiments on CUSPH Dataset (Block 1: SeNet, Block 2: Domain 

Adaptation, Block 3: Ensemble Learning based on self attetntion). 

6 Conclusion 

An ECG diagnosis method incorporating a wide convolutional kernel backbone net-

work, adversarial transfer learning method, and ensemble learning based on self-atten-

tion is proposed. Among them, the wide convolutional kernel network facilitates the 

extraction of features of ECG signals as well as the suppression of low-frequency noise, 

the strategy of adversarial transfer learning provides a solution strategy for the small 

amount of data and the lack of data labels existing in the ECG diagnosis of adolescents, 

and the method of ensemble learning makes it possible for us to take the features of 

each lead into account fully to improve the efficiency as well as the accuracy of diag-

nosis. In this paper, we conducted single dataset tests on CUSPH dataset and PTB-XL 

dataset, and made crossdataset attempts, and the experimental results show that the 

CDAD method has great potential in solving the problem of diagnosis of adolescent 

cardiac disorders with little data and few labels. We also analyzed and validated the 

validity of each module of the CDAD method and its sensitivity to parameters. 

Table 5. Results of ablation experiments on CUSPH Dataset (Block 1: SeNet, Block 2: Domain 

Adaptation, Block 3: Ensemble Learning based on self attention) 

Method Block1 Block2 Block3 Acc F1 

(a)    0.782  0.778 

(b) √   0.832 0.811 

(c)  √  0.796 0.783 

(d)   √ 0.841 0.839 

(e) √ √  0.876 0.863 

(f) √ √ √ 0.913 0.902 
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