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Abstract. At present, most RGB-D saliency target detection algorithms (SOD) 

are committed to investing a lot of computing power in the encoding and feature 

fusion stages. Admittedly, this strategy brings the performance improvement, but 

it also ignores the feature recovery ability and the fitting ability in the decoding 

stage. Therefore, we designed a dual-modal fusion and KAN decoder network 

(called DMKAN-Net) to better implement the RGB-D SOD task. This network 

structure has only three parts, dual-stream encoder, dual-modal converter and 

KAN decoder. Among them, the dual-stream encoder adopts the Swin Trans-

former encoder, which is mainly used to extract the multilevel and global features 

in the RGB and depth images. In the dual-modal fusion section, we design a dual-

modal feature fusion module to capture the channel information and spatial in-

formation in different modes and fuse it. KAN decoder is the decoder mainly 

composed of KAN module, which uses nonlinear and learnable activation func-

tion to better recover and predict saliency targets. Moreover, experiments per-

formed on five benchmark datasets show that our method achieves competitive 

results. 

Keywords: RGB-D, SOD, Dual-modal, KAN. 

1 Introduction 

The purpose of salient object detection [1] (SOD) is to identify and segment the most 

attractive target or area in the image. It has also been widely used in multiple fields of 

computer vision, such as object detection [2], visual tracking [3], image retrieval [4], 

and instance segmentation [5]. However, RGB images show complex scenes, color dis-

tortion, and messy background phenomena, which poses a challenge for saliency object 

detection in complex scenes. Therefore, thanks to the ability of low-cost depth sensors 

that can easily obtain depth information in the scene, the RGB-D salient object detec-

tion [6] (RGB-D SOD) algorithm has attracted wide attention from researchers. 

The traditional RGB-D SOD algorithm usually detects saliency targets using manual 

features and different prior information, but it cannot be well generalized to all images. 

Due to the rapid development of deep learning algorithms, its efficient feature extrac-

tion ability makes it the mainstream algorithm in the field of computer vision. Qu et al. 

[7] proposed the first deep learning method for RGB-D image saliency object detection 



in 2017, and achieved significant improvement. Since then, RGB-D SOD algorithm 

based on deep learning has become the mainstream of the RGB-D SOD algorithm. 

Dual-Modal information fusion has always been a central issue in RGB-D SOD. 

Compared with other fusion methods, feature-level fusion can often receive good re-

sults. Such as Wu et al. [8] proposed a multiscale multilevel encoder fusion scheme 

with cross-domain supervision and decoder fusion that utilizes channel dependence. 

Cong et al. [9] introduce the progressive attention-guided integration unit and im-

portance-gating fusion, which integrates RGB and depth functions in the encoder and 

decoder stages, respectively. And Zhang et al. [10] propose a bidirectional transmission 

and selection module that enables RGB and depth to correct and optimize each other at 

the encoder stage. 

How to better carry out dual-modal feature fusion is on the one hand, and how to 

better apply the fusion features to the prediction stage, that is, the decoding stage, is on 

the other hand, many RGB-D saliency object detection only use some simple convolu-

tion combination as the decoding stage, this approach ignores the importance of decod-

ing. 

In order to solve the above problems, we innovatively proposed a dual-modal fusion 

and KAN decoding network, making full use of the different information of dual-modal 

for feature fusion to obtain more semantic information, and then introduce the KAN 

module into the SOD task, using the KAN module can be non-linear and learnable ac-

tivation function to have stronger approximation ability, to improve the prediction abil-

ity and interpretability of the network. 

Our main contributions are as follows. 

• We propose a dual-modal fusion and KAN decoder network which both effec-

tively incorporates the features of the dual-modal and considers the interpretability 

and validity of the prediction phase, proposing the KAN decoder. Experiments on 

five publicly available datasets show that our model has this excellent performance. 

• In the feature fusion stage, we propose a two-modal feature fusion module to cap-

ture more spatial and channel information by passing the RGB and Depth features 

through the attention module, respectively, for the final saliency prediction phase. 

• In the decoding stage, we innovatively introduced the KAN decoder, which uses 

the good approximation ability and interpretability of the KAN module to obtain a 

good significance prediction map. 

2 Related works 

2.1 Dual-modal feature fusion method in salient object detection 

RGB-D feature fusion methods are widely used in salient object detection. RGB images 

provide rich color and texture information, while depth images complement the spatial 

structure of objects. By effectively fusing the features of both, the accuracy and robust-

ness of the task can be improved. Common RGB-D feature fusion methods include the 

following. 
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Late Fusion 

Late fusion methods first independently extract features from the RGB and depth 

images, and then fuse the extracted features, typically at higher layers of the network. 

Piao et al. [11] proposed using independent RGB and depth branches to extract features, 

and employing a multi-scale recurrent attention mechanism to adaptively weight and 

fuse the features at the decision stage. Han et al. [12] proposed a multi-view fusion 

strategy, where RGB and depth CNNs are trained separately, and the prediction results 

are fused later to enhance the cross-modal information complementarity. 

Cascade Fusion 

Cascade fusion in RGB-D salient object detection typically refers to the gradual and 

staged fusion of RGB and depth image information, progressively improving the sali-

ency prediction results. AFNet [13], CPNet [14], and HiDANet [8] are some typical 

networks that optimize the fusion of RGB-D information through different cascade fu-

sion strategies. For example, AFNet introduces an attention fusion mechanism to grad-

ually fuse RGB and depth features at different stages, using both global and local at-

tention to selectively weight and fuse important feature information. CPNet performs 

pixel-level cross-modal fusion, progressively fusing RGB and depth maps at multiple 

layers to fine-tune the saliency score of each pixel. The network gradually optimizes 

the prediction results at each layer by learning the pixel-level relationships between the 

two modalities. HiDANet, on the other hand, adopts a high-dimensional attention 

mechanism, which enhances the representation of both RGB and depth information by 

progressively fusing them in the feature space. It dynamically adjusts the contributions 

of the two modalities at multiple stages through the high-dimensional attention mech-

anism. These methods demonstrate that cascade fusion not only integrates features step 

by step but also performs fine-grained optimization at each stage to fully leverage the 

complementary strengths of RGB and depth maps. 

2.2  Kolmogorov–Arnold Networks (KANs) 

Kolmogorov Arnold theorem shows that any continuous function can be expressed as 

a combination of continuous unary functions of finite variables. Hornik et al. [15] fur-

ther proved that the feedforward neural network has the general approximation ability. 

Based on Kolmogorov Arnold theorem, scholars proposed a new neural network archi-

tecture, Kolmogorov Arnold networks (KANs) [16]. KANs consists of a series of Kol-

mogorov Arnold layers in series, and each layer contains a set of one-dimensional ac-

tivation functions that can be learned. This architecture performs well in approaching 

high-dimensional complex functions, and has shown strong performance in many ap-

plications. 

KANs is especially famous for its strong theoretical interpretability and interpreta-

bility. Huang et al. [17] analyzed the optimization characteristics and convergence be-

havior of KANs, and confirmed its excellent approximation ability and generalization 



performance. In addition, Liang et al. [18] introduced the depth KAN model and suc-

cessfully applied it to image classification and other tasks, while Xing et al. [19] ex-

plored the application of KANs in time series prediction and control. 

3 Proposed Method 

3.1 Overall Architecture 

In this work, as illustrated in Fig. 1 we propose a holistic network architecture based 

on a Transformer that integrates dual-modal feature fusion and decoding stages. The 

framework comprises three principal components: (1) a siamese Swin Transformer 

serving as the encoder; (2) four dual-modal feature fusion attention modules 

(DMFAMs); (3) a three-stage decoding cascade primarily constructed using KAN 

Blocks. Initially, the siamese backbone network extracts multi-level features 
/ ,  {1,2,3,4}r d

iF i  from paired RGB and depth images through parallel hierarchical 

processing. These multi-scale features are subsequently fed into four cascaded 

DMFAMs for progressive cross-modal interaction and feature alignment. Finally, the 

fused features ,  {1,2,3,4}iF i  at each hierarchy are decoded through a KAN 

Block-based decoder that systematically aggregates low-level spatial details to enhance 

semantic coherence, ultimately generating refined saliency maps. Detailed architectural 

specifications and implementation particulars of each component will be elaborated in 

subsequent sections. 

3.2 Siamese Swin Transformer Encoder 

High-quality feature extraction constitutes a fundamental challenge in salient object 

detection (SOD). While conventional SOD frameworks predominantly employ Convo-

lutional Neural Networks (CNNs) for feature representation, recent advances have 

demonstrated the superiority of Transformer architectures due to their enhanced feature 

extraction capacity and global contextual modeling. The Swin Transformer [20], in par-

ticular, addresses computational efficiency constraints through its innovative shifted 

window mechanism, which achieves global interaction modeling while maintaining lin-

ear computational complexity relative to input resolution. Motivated by these ad-

vantages, we adopt a siamese Swin Transformer-B backbone (selected for optimal per-

formance-efficiency trade-offs) to extract hierarchical multi-scale features from paired 

RGB and depth modalities. 

As depicted in Fig. 1, our pipeline begins by converting depth maps from single-

channel to three-channel format to ensure dimensional consistency with RGB inputs. 

Subsequently, the dual-modal images are partitioned into non-overlapping patches via 

a patch partitioning operation. These patches are then fed into a series of cascaded Swin 

Transformer blocks to extract hierarchical features across four stages, generating multi-

level representations 
/ ,  {1,2,3,4}r dF i

i
  for both RGB and depth modalities. The en-
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coder comprises four hierarchical stages, each containing a patch merging layer (re-

placed by a patch embedding layer in the first stage) and multiple stacked Swin Trans-

former blocks. This architecture yields complementary multi-scale representations 

from both RGB and depth streams, with stage-wise feature maps progressively captur-

ing semantic granularity from local textures to global context. 

 

Fig. 1. Our proposed DMKAN-Net. 

3.3 Dual-Modal Fusion Attention Module 

Given that RGB features encompass substantial texture information, whereas depth fea-

tures harbor richer spatial positional data, the challenge lies in how to efficiently har-

ness the information embedded within both RGB and depth features to facilitate feature 

fusion, which constitutes a pivotal concern in RGB-D SOD tasks. For this purpose, we 

have designed a Dual-Modal Fusion Attention Module (DMFAM) to effectively inte-

grate RGB features and depth features. Furthermore, we have observed that some SOD 

methods exhibit poor performance when detecting smaller objects. We believe that this 

is attributed to the insufficient contextual information contained within single-level fea-

tures, which makes it difficult to handle objects of various sizes. Therefore, we integrate 

current-level features with enlarged high-level features, leveraging the guidance of 

high-level semantic information to obtain rich multi-scale contextual information and 

enhance the detection capability for targets of different scales. 
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Fig. 2. The proposed Dual-Modal Fusion Attention Module. 

As illustrated in Fig. 2, it concurrently utilizes both spatial attention and channel 

attention mechanisms to identify significant portions within the input features. Further-

more, it performs cross-level fusion and dual-modal fusion to determine the important 

components between features of different levels and modalities. 

We first upsample the high-level features /

1 ,  {1,2,3}r d

iF i+   to match the size of  
/

,  {1, 2,3}
r d

i
F i  and concatenate them with 

/r d

i
F  (when 4i = , we concatenate /

4

r dF  

with itself). Subsequently, the concatenated features are passed through a convolutional 

layer to obtain multi-scale features 
/r d

iF .The specific process and formulation are as 

follows:  

 / / /( ( ( ),  )).
3x3 1

r d r d r dF Conv Cat Up F F
i i i

=
+

 (1) 

where ( )Up  denotes upsampling, ( )Cat  represents concatenation, and 
3x3

( )Conv  stands 

for 3 3  convolution operation. Subsequently, the obtained multi-scale features are 

separately fed into channel branch and spatial branch. In the channel branch, the input 

multi-scale features undergo global pooling across the spatial dimensions to aggregate 

spatial information. The specific process can be formulated as follows: 
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 ( ( ), ( ), ( ), ( )).r r d d

c i i i iS Cat Avg F Max F Avg F Max F=  (2) 

where 
cS  denotes the aggregated spatial features, ( )Avg   and ( )Max   represent the 

operations of global average pooling and global max pooling along the spatial dimen-

sions, respectively. 

The aggregated spatial features are separately passed through two 1D convolutional 

layers to determine the weights for the input dual-modal channels.  Subsequently, the 

obtained dual-modal channel weights are passed through a ( )Softmax   function to en-

sure their weights sum to 1.  This means that by comparing the dual-modal weights, we 

can determine which has a higher value, thereby identifying the important parts be-

tween dual-modal features in the channel dimension.  The specific process can be rep-

resented as follows: 

 
1 2 1 2, ( ( )), ( ( )).c c c cW W Conv S Conv S =  (3) 

where 
1cW , 

2cW  denotes the dual-modal weights,  represents the ( )Softmax   func-

tion and 
1Conv , 

2Conv  stands for the 1D-convolution operation. While the dual-modal 

spatial weights 
1sW , 

2sW  are also determined in a similar manner, with the exception 

that the ( )Avg   and ( )Max   are performed along the channel dimensions instead. By 

summarizing the four weights obtained, we can derive the dual-modal weights, which 

identify the important parts within the dual-modal features. Finally, multiplying and 

summing the dual-modal weights with the dual-modal features effectively fuse the 

dual-modal features. The fused features can be represented as 

 1 1 2 2( ) ( ) .r d

i c s i c s iF W W F W W F= + + +  (4) 

where 
iF  represents the fused features, and  denotes element-wise multiplication. 

When the sum of the dual-modal weights equals 1, the effective parts between the dual-

modal features are preserved, while the useless parts are discarded, thereby achieving 

effective feature fusion. 

3.4 KAN Decoder 

The decoding stage of salient object detection primarily involves using convolutional 

layers and upsampling to restore the image resolution, followed by the application of 

activation functions to generate the saliency map. Inspired by U-KAN [21], we have 

designed the KAN decoder to perform the decoding task in salient object detection. 

The overall structure of the KAN Decoder is shown in Fig. 1. During the decoding 

stage, we use three KAN modules to decode the features 
4F , 

3F  and 
2F , respectively. 

The structure of a single KAN module is illustrated in Fig. 3 where Fig. 3(a) shows the 

serialized KAN module, and figure (b) presents the original implementation of the 

KAN layer. 



 

Fig. 3. The proposed Tokenized KAN Decoder Block, a) means KAN Block b) means KAN 

Layer. 

Similar to MLP, the K-layer KAN Layer can be viewed as a nested structure of K 

individual KAN functions. For a given input Z  the output Z   of the KAN layer can be 

described by the following equation: 

 
1 2 1 0( ) ( ) .K KZ KAN Z Z− −

 = =      (5) 

where 
i  represents the i -th function of the entire KAN layer. Each KAN function 

has an input of dimension inn  and output of dimension outn . Then, it is represented by 

n  learnable functions, which can be expressed as: 

 

,{ }.

1,2, , .

1, 2, , .

p q

in
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p n

q n

 =

=

=

 (6) 

The K -th layer in the KAN Layer can be expressed by the following formula: 
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 
    

 (7) 

Overall, the KAN Layer approximates complex nonlinear functions through a series 

of learnable univariate simple functions. 

In the Tokenized KAN Block, after receiving the input features, the module first 

performs upsampling, then reshapes the features into a flattened 2D patch sequence 

through tokenization for further processing by the KAN Layer. In the final step of the 

KAN Layer, the features are restored to their original 2D form and refined through 
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depthwise separable convolutions to adjust the feature details. Finally, the initial input 

features are added to the current features via a shortcut branch, and the features of the 

current layer are adjusted through Layer Normalization.  

3.5 Loss Function 

In this paper, we adopt a deep supervision strategy to generate saliency prediction maps 

outF  and , {2,3, 4}iP i  from KAN Block features. We employ a hybrid loss con-

sisting of the Binary Cross-Entropy (BCE) loss [22] and the Intersection over Union 

(IoU) loss [23] to supervise these maps. The hybrid loss can accurately supervise at the 

pixel level and distinguish between foreground and background regions. Additionally, 

with the help of the deep supervision strategy, the recognition capability of the network 

can be enhanced, and the convergence speed can be accelerated. 

The BCE loss is defined as: 

 
1 1

[ ( , ) ( ( , )) (1 ( , )) (1 ( , ))].
H W

BCE

x y

L G x y log P x y G x y log P x y
= =

= − + − −  (8) 

where W  and H  represent the width and height of the image, respectively. 

The IoU loss is defined as: 

 
1 1

1 1

( , ) ( , )

1 .

[ ( , ) ( , ) ( , ) ( , )]

H W

x y

IoU H W

x y

P x y G x y

L

P x y G x y P x y G x y

= =

= =

= −

+ −




 (9) 

The total loss L  of the model is defined as: 

 
4

1 1

2

[ ( , ) ( , )] ( , ) ( , ).i i

BCE i IoU i BCE out IoU out

i

L L P G L P G L F G L F G
=

= + + +  (10) 

where iP  represent the feature generated by KAN Block, outF  represent the output of 

the DMKAN-Net. 

4 Experiments 

4.1 Datasets and Evaluation Metrics 

Datasets 

In order to comprehensively evaluate the performance of our proposed network, we 

conducted extensive experiments on five challenging RGB-D SOD datasets. The NLPR 

[24] contains 1,000 images with single or multiple salient objects. The NJU2K [25] 

provides 2,003 stereo image pairs of varying resolutions. The SIP [26] includes 1,000 



high-resolution images of public figures. The LFSD [27] consists of 100 images cap-

tured by a Lytro camera, featuring multiple small objects and complex backgrounds. 

STERE [28] contains 1,000 stereo images with masks highlighting the objects of inter-

est. 

In order to ensure a fair comparison, we adopt the same training dataset as used by 

Ji et al. [29] and Zhao et al. [30], which comprises 1,485 images from the NJU2K da-

taset, 700 images from the NLPR dataset, and 800 images from the DUT Piao et al. 

[11] dataset, totaling 2,985 samples for training our model. 

Evaluation Metrics 

We employ four widely used evaluation metrics to assess our model, namely E-

measure ( E ) [31], S-measure (
mS ) [32], F-measure ( F ) [33], and Mean Absolute 

Error (MAE) [34]. Specifically, E-measure ( E ) is used to measure both local pixel-

level and global image-level matching information. S-measure (
mS ) evaluates the re-

gion-aware and object-aware structural similarity of the spatial layout between the sa-

liency map and the ground truth. F-measure ( F ) is the weighted harmonic mean of 

precision and recall, which can be used to evaluate the overall performance. MAE 

measures the average absolute difference per pixel between the saliency map and the 

ground truth. In our experiments, maximum values are adopted for E-measure and F-

measure. 

Experiment Details 

During both training and test phases, all input RGB and depth images are spatially 

resampled to a uniform resolution of 384 384  pixels. The depth images are duplicated 

into three channels to match the format of RGB images. During the training process, 

we employ data augmentation techniques such as random flipping, rotation, and border 

cropping. We initialize the parameters of the backbone network using a pre-trained 

Swin-B model, while the remaining parameters are initialized to PyTorch's default set-

tings. We use the Adam optimizer [35] to train our network with a batch size of 8, an 

initial learning rate of 5e-5, and the learning rate is divided by 10 every 100 epochs. 

Our model is trained on a machine with a single NVIDIA A40 GPU. The model con-

verges within 200 epochs. 

4.2 Comparisons with the State-of-the-art 

To thoroughly validate the effectiveness of our proposed model, we compared it with 

13 existing deep learning-based RGB-D salient object detection methods, including 

AFNet [13], CFIDNet [36], ICNet [37], DMRA [11], UCNet [38], JLDCF [39], DANet 

[40], BBS-Net [41], BTS-Net [42], CATNet [43], AMINet [44], DCMNet [45], and 

HRTransNet [46]. To ensure a fair comparison, we used the saliency maps provided by 

the authors. If these were not available, we generated the saliency maps using the source 

code and model files provided by the authors. 
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Quantitative experiment 

Table 1 presents the quantitative evaluation results for four evaluation metrics in 

five datasets, clearly showing the exceptional performance of our proposed DMKAN-

Net method. For the metrics maxE and maxF, our method outperformed others on all 

datasets except for LFSD. Overall, our method achieved the best results in most of the 

metrics, which can verifiy the effectiveness and generalization of the proposed algo-

rithm. 

Table 1. Comparison of evaluation results on four evaluation metrics - MAE, max F-measure 

(maxF), max E-measure (maxE), and S-measure (S) - across five datasets. The arrow ↑ indi-

cates that a higher value is better, while ↓ signifies that a lower value is preferable. The best 

two results are shown in red, and blue fonts, respectively. ‘-’ indicates the code or result is not 

available. 

Qualitative experiment 

In the Fig. 4, this chapter provides a visual comparison that highlights the effective-

ness of the DMKAN Net model compared to a series of RGB-D SOD methods. The 

selected results demonstrate the functionality of the model. In the first two lines, it is 

particularly evident that there are scenes with low-quality depth cues; Although the 

depth information is poor, the model in this chapter outperforms other models signifi-

cantly by successfully depicting prominent objects, which poses challenges for other 

methods such as BTS Net, CFIDNet, DANet, DMRA, and ICNet, resulting in compro-

mised object segmentation. 

The JL-DCF results exhibit diffusion in the salient object boundaries shown in row 

3, while AFNet and ICNet only identify a single object of interest in row 4. However, 

the method proposed in this chapter demonstrates precise delineation of all target ob-

jects in such scenarios. 

In lines 5 and 6, complex backgrounds are prevalent, and other techniques often 

struggle to generate precise saliency maps. In contrast, the method proposed in this 

Datasets Metrics 
DA 

Net 
JL- 

DCF 
UC 

Net 
BBS 

Net 
DMRA 

IC 

Net 

CFI

D 

Net 

AF 

Net 
BTS 

Net 
CAT 

Net 
AMI 

Net 
DCM 

Net 
HRTran

sNet 
Ours 

Parameters(M) 106.7  - - 49.77 60.31 - - 258.1 - 262.6 199.1 - 58.9 229.4 

Flops(G) - - - 31.40 126.29 - - 130.0 - 341.8 124.7 - 17.1 124.4 

LFSD 

MAE↓ 0.083 0.081 0.067 0.072 0.074 0.071 0.071 0.056 0.071 0.051 0.056 0.064 - 0.055 

maxF↑ 0.846 0.854 0.863 0.858 0.858 0.870 0.865 0.888 0.873 0.894 0.883 0.867 - 0.885 

maxE↑ 0.886 0.887 0.905 0.900 0.905 0.903 0.903 0.923 0.906 0.908 0.906 0.906 - 0.920 

S↑ 0.845 0.849 0.864 0.864 0.845 0.868 0.869 0.890 0.867 0.894 0.871 - - 0.915 

NJU2K 

MAE↓ 0.047 0.039 0.035 0.035 0.049 0.052 0.038 0.032 0.037 0.025 0.035 0.036 0.026 0.025 

maxF↑ 0.893 0.915 0.910 0.920 0.892 0.891 0.915 0.928 0.902 0.929 0.912 0.899 0.928 0.940 

maxE↑ 0.936 0.951 0.949 0.949 0.937 0.926 0.946 0.958 0.942 0.933 0.928 0.920 0.931 0.963 

S↑ 0.897 0.913 0.911 0.921 0.889 0.894 0.914 0.926 0.910 0.937 0.904 - 0.933 0.933 

NLPR 

MAE↓ 0.029 0.022 0.025 0.023 0.030 0.028 0.026 0.020 0.023 0.018 0.019 0.024 0.016 0.016 

maxF↑ 0.901 0.918 0.903 0.918 0.875 0.908 0.905 0.925 0.923 0.916 0.916 0.883 0.919 0.934 

maxE↑ 0.953 0.965 0.956 0.961 0.942 0.952 0.955 0.968 0.965 0.968 0.963 0.954 0.969 0.972 

S↑ 0.915 0.931 0.920 0.931 0.898 0.923 0.922 0.936 0.934 0.939 0.922 - 0.942 0.940 

SIP 

MAE↓ 0.054 0.049 0.051 0.055 0.082 0.070 0.060 0.043 0.044 0.034 - 0.047 0.035 0.035 

maxF↑ 0.884 0.894 0.879 0.884 0.835 0.857 0.870 0.909 0.901 0.918  0.883 0.916 0.928 

maxE↑ 0.920 0.931 0.919 0.922 0.883 0.903 0.909 0.939 0.933 0.944 - 0.926 0.943 0.948 

S↑ 0.878 0.885 0.875 0.879 0.816 0.854 0.864 0.896 0.896 0.913 - - 0.909 0.908 

STERE 

MAE↓ 0.048 0.044 0.039 0.041 0.064 0.045 0.043 0.034 0.038 0.030 0.036  0.030 0.030 

maxF↑ 0.881 0.895 0.899 0.903 0.852 0.898 0.897 0.918 0.911 0.902 0.895 - 0.904 0.922 

maxE↑ 0.930 0.942 0.944 0.942 0.917 0.942 0.942 0.957 0.949 0.935 0.928 - 0.930 0.958 

S↑ 0.892 0.900 0.903 0.908 0.838 0.903 0.901 0.918 0.915 0.925 0.902 - 0.921 0.920 



chapter renders clear and distinct saliency maps while preserving the structural integrity 

of objects in complex backgrounds. Line 7 demonstrates scenarios with small objects, 

while line 8 showcases examples with fine-grained objects. Even under these challeng-

ing conditions, the method in this chapter maintains robust performance. 

 

Fig. 4. Visual comparison with state-of-the-art RGB-D models. 

Finally, the examples in lines 9 and 10 demonstrate low-contrast scenarios where the 

foreground and background are highly similar. Almost all competing methods fail to 

extract the entire object of interest, while the approach proposed in this chapter suc-

ceeds. This achievement is attributed to the effective fusion of cross-modal data and the 

strong fitting capacity of the KAN network, which helps suppress irrelevant back-

ground information. 

4.3 Ablation Study 

Module Ablation 

As shown in Table 2, we performed an in-depth ablation analysis to verify the ef-

fectiveness of each module. DMFAM stands for dual-mode fusion attention module 

and KAN stands for Tokenized KAN Block. only KAN means removing DMFAM 

from DMKAN-Net and replacing it with simple concatenation and convolution, only 

RGB Depth GT Ours AFNet BBSNet BTSNet CFIDNet DANet DMRA ICNet JL-DCF UCNet
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DMFAM means removing Tokenized KAN Block from DMKAN-Net and replacing it 

with simple upsampling and convolution operations. origin represents a model that re-

moves both DMFAM and Tokenized KAN Block. 

Table 2. Comparison of ablation study results. The best performance in each row is highlighted 

in bold. 

Datasets Metrics Origin Only DMFAM Only KAN DMKAN-Net 

LFSD 

MAE↓ 0.095 0.069 0.058 0.055 

maxF↑ 0.838 0.847 0.853 0.885 

maxE↑ 0.876 0.899 0.908 0.920 

S↑ 0.859 0.878 0.897 0.915 

NJU2K 

MAE↓ 0.041 0.031 0.033 0.025 

maxF↑ 0.919 0.928 0.930 0.940 

maxE↑ 0.944 0.949 0.951 0.963 

S↑ 0.913 0.927 0.922 0.933 

NLPR 

MAE↓ 0.029 0.025 0.024 0.016 

maxF↑ 0.915 0.927 0.930 0.934 

maxE↑ 0.950 0.962 0.964 0.972 

S↑ 0.919 0.929 0.932 0.940 

SIP 

MAE↓ 0.047 0.039 0.041 0.035 

maxF↑ 0.892 0.916 0.923 0.928 

maxE↑ 0.923 0.937 0.935 0.948 

S↑ 0.878 0.893 0.891 0.908 

STERE 

MAE↓ 0.041 0.035 0.037 0.030 

maxF↑ 0.888 0.911 0.905 0.922 

maxE↑ 0.935 0.942 0.943 0.958 

S↑ 0.897 0.907 0.913 0.920 

The original model performed relatively poorly across all datasets, specially on the 

MAE  and S measure. This shows that the original model has some limitations in feature 

extraction and fusion. After the introduction of DMFAM module, the performance of 

the model on all data sets is significantly improved. When only the KAN module was 

used, the model performed better on most datasets than when only the DMFAM module 

was used.  This indicates that KAN module plays an important role in the integration 

of multi-scale context information and can effectively improve the detection ability of 

the model. When both DMFAM and KAN modules are used, the model performs best 

on all datasets. This indicates that the combination of DMFAM and KAN modules can 

give full play to their respective advantages and further improve the overall perfor-

mance of the model. 

Ablation Study of number of KAN Blocks 

In the experiment process of this paper, we directly used 4 KAN blocks to form the 

KAN Decoder module of the model at the beginning, but at this time, the model training 

on A40 can only be conducted normally by setting the batch size to 2. Although this 

setup brings a certain improvement in performance, the time and memory required for 



training are very expensive. In view of this phenomenon, we conducted ablation exper-

iments on the number of KAN blocks in KAN Decoder to find a good trade-off between 

Block and reasoning speed. The final results are shown in Table 3. 

Table 3. Ablation Study of number of KAN Blocks on LFSD . MaxBatchSize means the larg-

est number of trainable Batchsize. Times means the time cost of train phase 

Metrics 1 KANs 2 KANs 3 KANs 4 KANs 

MaxBatchSize↑ 12 8 8 2 

Times(h)↓ 14 18 24 58 

MAE↓ 0.058 0.056 0.055 0.052 

maxF↑ 0.868 0.875 0.885 0.887 

maxE↑ 0.904 0.911 0.920 0.922 

S↑ 0.888 0.893 0.915 0.918 

As can be seen from Table 3, when the number of blocks is 3, the accuracy of the 

model will not be significantly reduced, and the reasoning time will be within the tol-

erable range. Therefore, we set the number of blocks in the proposed model DMKAN-

Net to 3. 

5 Conclusion 

In this paper, we propose a new dual-modal fusion and KAN Decoder model to solve 

the RGB-D salient target detection problem. Our framework consists of three parts: a 

twin Swin Transformer encoder, a dual-modal fusion attention module, and a To-

kenized KAN decoder. These three parts have clear division of labor, each performs its 

own duties, and effectively extracts, merges and fits information. We conducted exten-

sive experiments on our approach on five widely used public datasets. The experimental 

results show that our method outperforms most of the current state-of-the-art methods 

on four evaluation indicators. These experimental results fully demonstrate the superi-

ority of our method in handling salient target detection tasks, and its robustness in han-

dling two-modal feature fusion and prediction phases. 

However, there is room for further improvement in our approach. For example, alt-

hough KAN block can fit features well, due to dimensional compression, shallow fea-

tures will occupy a large amount of video memory when entering KAN block, thus 

making the training time too long. Our next step is to develop more efficient and 

memory-friendly KAN modules, and we hope our approach can be applied to other 

areas as well. 
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