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Abstract. Transcatheter arterial chemoembolization (TACE) is the preferred 

non-surgical treatment for HCC patients, but up to 60% of HCC patients do not 

benefit from TACE treatment. Therefore, accurately and efficiently predicting 

the treatment response after TACE in HCC patients is of great significance for 

treatment planning. To address this, a predictive model based on the integration 

of clinical data and preoperative CT imaging was proposed. This model first used 

a convolutional neural network to extract microscopic structural features from 

CT images, then inputed the extracted features into a Long Short-Term Memory 

network to obtain the global feature vector for each CT slice. Next, a deep neural 

network was used to extract features from the clinical data. Finally, the features 

were fused using an asymmetric cross-attention mechanism, followed by classi-

fication using a feedforward neural network. A retrospective study was con-

ducted on 181 HCC patients who underwent TACE treatment at a hospital in 

Zhejiang Province from January 2018 to April 2022. The AUC, precision, accu-

racy, and recall of the prediction model are 0.85, 0.86, 0.88, and 0.87, respec-

tively. The experimental results demonstrate that the model (Cnn-Lstm-Dnn-

Cross-Attention, CLDCA) outperforms the comparison models, providing an ef-

fective solution for predicting the post-TACE treatment response in HCC pa-

tients. 

Keywords: Multimodal fusion, Transcatheter arterial chemoembolization, 

Cross-attention mechanism, Convolutional neural networks. 

1 Introduction 

Hepatocellular carcinoma (HCC), as a malignant tumor, has become a major global 

health concern due to its persistently high incidence and mortality rates, posing a seri-

ous threat to human health. According to statistics from the World Health Organization 



 

 

(WHO), liver cancer is the sixth most common cancer worldwide and the third leading 

cause of cancer-related deaths [1]. In its early stages, liver cancer often presents no 

specific symptoms. Approximately 80% of patients are diagnosed at an intermediate or 

advanced stage when surgical resection is no longer feasible, thereby missing the opti-

mal window for surgery. This leads to increased treatment difficulty and a poor prog-

nosis [2]. According to the National Cancer Center of China, there were approximately 

367,700 new liver cancer cases in 2022, making it the fourth most commonly diagnosed 

cancer in the country. Liver cancer also caused 316,500 deaths, ranking second among 

all cancer-related causes of death [3]. The high incidence and mortality rates of liver 

cancer are closely associated with several major risk factors, including infection with 

hepatitis B virus (HBV), hepatitis C virus (HCV), alcoholic liver disease, and non-al-

coholic fatty liver disease (NAFLD) [4]. With an aging population, changes in lifestyle, 

and the rising prevalence of metabolic disorders, the disease burden of liver tumors is 

expected to increase further. According to clinical guidelines for the diagnosis and 

treatment of primary liver cancer, current therapeutic approaches include hepatic resec-

tion, liver transplantation, ablation therapy, transcatheter arterial chemoembolization 

(TACE), radiotherapy, and systemic anti-tumor therapies. Selecting the appropriate 

treatment based on cancer staging can help maximize therapeutic efficacy [5]. Accord-

ing to the Barcelona Clinic Liver Cancer (BCLC) staging system, TACE is currently 

the main treatment modality for patients with intermediate-stage HCC [6-7]. TACE 

works by directly delivering a combination of chemotherapeutic agents and embolic 

materials into the arteries supplying the tumor, thereby blocking its blood supply and 

locally releasing high concentrations of chemotherapy to inhibit tumor growth. The ad-

vantages of TACE include its minimally invasive nature, repeatability, and relatively 

limited impact on liver function, making it particularly suitable for patients with unre-

sectable intermediate or advanced liver cancer. However, the therapeutic response to 

TACE varies significantly among individuals; some patients may experience tumor re-

currence or metastasis after treatment, and complications such as hepatic function de-

terioration may also occur [8]. Therefore, optimizing TACE treatment strategies and 

accurately predicting patient outcomes and prognosis have become key research prior-

ities in the field of liver cancer treatment. Studies have shown that therapeutic response 

following TACE is an independent prognostic factor for clinical outcomes in HCC pa-

tients, and it provides critical guidance for the development of individualized treatment 

strategies [9-10]. 

Against the backdrop of rapid advancements in imaging and artificial intelligence 

technologies, researchers are increasingly focusing on integrating multi-source data to 

improve the accuracy of prognosis prediction. Kim et al. [11] demonstrated that prog-

nostic models combining radiomic features from preoperative CT scans with clinical 

variables outperform models based on a single data source in predicting survival out-

comes. Morshid et al. [12] developed a machine learning algorithm that significantly 

improved the prediction accuracy of TACE treatment response by integrating quantita-

tive CT features with clinical factors. Guo et al. [13] conducted a systematic review of 

multimodal representation learning, offering an in-depth analysis of fusion strategies 

across various data modalities and their recent developments.In the integration of pa-

thology and imaging studies, Saillard et al. [14] used deep learning to analyze whole-
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slide digitized tissue images, achieving superior performance in predicting postopera-

tive survival in HCC patients compared to conventional methods. Liu et al. [15] em-

ployed machine learning to extract CT imaging features and integrated them with a 

multi-task deep learning algorithm to jointly predict microvascular invasion, tumor 

grading, and long-term survival. Han et al. [16] developed a prognostic model based on 

large-scale multicenter data that enables risk stratification based on patient characteris-

tics and treatment response, providing valuable guidance for personalized therapy. The 

study by Peng et al. [17] further confirmed the advantage of combining deep learning 

with radiomics in predicting initial response to TACE. From a technological innovation 

perspective, Wang Yuqi et al. [18] developed a Vision Transformer-based model that 

achieved excellent performance in predicting post-TACE recurrence risk by integrating 

preoperative clinical and imaging data. The HCC dataset established by Moawad et al. 

[19] has provided crucial support for developing algorithms for treatment response pre-

diction and tumor segmentation. Chang et al. [20] showed that models based on multi-

phasic CT imaging significantly outperformed traditional methods in predicting re-

sponse to TACE. Sun et al. [21] proposed the DLOPCombin model, which extracts 

imaging features using an improved residual network and integrates clinical variables 

to successfully predict overall survival in TACE patients. Zhou et al. [22] developed 

the IRENE model, which enables unified processing of medical imaging, textual, and 

structured data, demonstrating outstanding performance in disease identification and 

prognosis prediction. Pino et al. [23] introduced the TwinLiverNet model, which com-

bines 3D convolutional networks with capsule networks and achieved an 82% predic-

tion accuracy in multiphasic CT image analysis. Xi Zihan et al. [24] highlighted that 

combining functional MRI imaging with multimodal data significantly enhances the 

predictive performance for TACE treatment efficacy. These studies provide essential 

technological support for the precision treatment of HCC. 

Building on previous research, this paper proposed a multimodal data fusion model 

(Cnn-Lstm-Dnn-Cross-Attention, CLDCA) for predicting TACE treatment response. 

This predictive model enhanced the ability to forecast TACE treatment outcomes for 

HCC patients by integrating the sequential features of CT images with clinical data. 

2 Database and Methods 

2.1 Database 

This study conducted a retrospective analysis of 181 HCC patients who underwent 

TACE treatment at a hospital in Zhejiang Province from January 2018 to April 2022. 

The inclusion criteria were: (1) HCC diagnosed by preoperative biopsy or surgical pa-

thology and clinical diagnostic standards; (2) patients with HCC who underwent 

TACE; (3) availability of mRECIST [25] post-TACE evaluation data. The exclusion 

criteria were: (1) patients with concomitant other malignant tumors; (2) patients with 

missing or incomplete clinical data; (3) patients who received other treatments such as 

radiotherapy, chemotherapy, or liver transplantation before or during follow-up. The 

flowchart for the screening of the study population is detailed as Fig. 1. 



 

 

 

Fig. 1. Flowchart for the screening of research subjects. 

Collection of detailed clinical information included past liver disease history (HBV, 

HCV, cirrhosis, fatty liver), family history of liver cancer, history of liver transplanta-

tion, ascites, total bilirubin, albumin, prothrombin time, BCLC staging, number of liver 

tumors, largest liver lesion diameter, presence of vascular invasion, presence of extra-

hepatic metastasis, presence of portal vein tumor thrombus, white blood cell count, he-

moglobin, platelet count, alanine aminotransferase (ALT), aspartate aminotransferase 

(AST), alkaline phosphatase, total bilirubin, indirect bilirubin, direct bilirubin, urea, 

creatinine, albumin, triglycerides, cholesterol, low-density lipoprotein, potassium, so-

dium, prothrombin time, international normalized ratio, partial thromboplastin time, fi-

brinogen, height, weight, heart rate, respiratory rate, high and low blood pressure val-

ues, pulse rate, temperature, and 43 other laboratory test results. 

All imaging examinations of liver-enhanced CT in this study were performed in the 

imaging department of the hospital, and patients were examined preoperatively on a CT 

scanner (Somatom Sensation 64, Simens Healthcare, Erlangen, Germany). The scan-

ning parameters were as follows: tube voltage: 120 KV, tube current: 308 mA, layer 

thickness: 5 mm, and layer spacing: 3.5 mm. 80 to 90 mL of iodinated contrast agent 

(lopromide, Ultravist 370; Bayer, Germany) was injected from the back of the hand or 

elbow via a power syringe at a rate of 2.5 mL/sec. Unenhanced CT images were ob-

tained first, followed by contrast injection, and images were acquired during the arterial 

phase for 30 seconds, the portal venous phase for 60 seconds, and the delayed phase for 

90 seconds. Each image was resized to 600×450 pixels at a dpi of 96. Image pre-pro-

cessing was performed prior to the experiment, including normalisation of the image 

pixel values to the range of [0,1] and resizing of the image using nearest interpolation. 

All patients were assessed by mRECIST within 6-9 weeks after TACE treatment and 

were categorised into complete remission (CR), partial remission (PR), stable disease 

(SD) and progressive disease (PD). In this paper, the disease control rate (CR+PR+SD) 

[26] was used to decide whether the patients should continue TACE treatment subse-

quently according to the actual situation in the hospital. 
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2.2 Methods 

The model designed primarily consists of three modules (as Fig. 2): the feature extrac-

tion module, multimodal fusion module, and classification module. The feature extrac-

tion module mainly extracted features from different modules, including image features 

and clinical data features. In the multimodal fusion module, an asymmetric cross-atten-

tion mechanism was used to fuse and interact the feature representations of the two 

modalities, outputting the fused multimodal features. These fused multimodal features 

were not directly used for the classification task but were input into a self-attention 

mechanism for deep feature extraction. This aggregated multimodal information al-

lowed the model to learn the deep relationships between different modalities, leading 

to more reliable classification. 

 

Fig. 2. CLDCA model framework. 

CT image feature extraction. To address the dynamic variation in the number of CT 

slices in medical imaging data, this study proposes an innovative multi-input channel 

network architecture. The core design philosophy of this module is to transform three-

dimensional CT data into a hybrid processing paradigm that integrates two-dimensional 

convolution and temporal sequence modeling. Prior to feeding the CT images into the 

ResNet50 network for feature extraction, we performed preprocessing on the raw CT 

images. As CT images typically have high resolution and are susceptible to noise, we 

applied normalization to map pixel values from their original range to the [0, 1] interval, 

mitigating the impact of scale differences on model training.Since the ResNet50 archi-

tecture requires input images of fixed dimensions, all CT images were resized to 

224×224 pixels. This size was experimentally validated to preserve essential image de-

tails while avoiding excessive computational overhead. During the feature extraction 

stage, a modified ResNet-50 architecture was employed as the backbone encoder, as 

Fig. 3. 



 

 

 

Fig. 3. ResNet50 module structure diagram. 

ResNet50 is composed of multiple residual blocks stacked together, containing a total 

of 50 convolutional layers and 5 stages. Stage 0 is a 7×7 convolutional layer with 64 

filters and a stride of 2, followed by a 3×3 max pooling layer, which is responsible for 

the initial feature extraction and reduction of the feature map size. The remaining four 

stages each contain multiple residual blocks. Each residual block consists of three con-

volutional layers, with the first and third convolutional layers having a kernel size of 

1×1, and the second convolutional layer having a kernel size of 3×3. This design re-

duces the computational complexity of the network while maintaining a high level of 

feature representation capability. Stage 1 contains 4 residual blocks (input channels: 

64, output channels: 256), Stage 2 contains 4 residual blocks (input channels: 128, out-

put channels: 512), Stage 3 contains 6 residual blocks (input channels: 256, output 

channels: 1024), and Stage 4 contains 3 residual blocks (input channels: 512, output 

channels: 2048). 

After feature extraction, the output layer outputs tensors with shapes (num-slices, 

224,224,3). The TimeDistributed wrapper is applied to the GlobalAveragePooling2D 

layer to obtain the global feature vector for each CT slice. The processed output layer 

outputs tensors with shapes(num-slices, 2048), representing the deep features of each 

CT slice. Finally, an LSTM layer is applied to the pooled feature vectors to capture the 

temporal information of image features across the slice sequence. The internal structure 

of the LSTM is shown as Fig. 4. 
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Fig. 4. LSTM module structure diagram 

In the figure, 𝑓𝑡 represents the forget gate, 𝑖𝑡 represents the input gate, and 𝑜𝑡 represents 

the output gate. 𝑐′ is the candidate cell state. 𝑐𝑡−1 represents the memory information 

from the previous time step, 𝑐𝑡 represents the current memory state, ℎ𝑡 is the output of 

the LSTM unit, and ℎ𝑡−1 is the output from the previous time step. The formulas for 

LSTM are as follows: 

 𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

 𝑐𝑡
′ = 𝑡𝑎𝑛ℎ⁡(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

 𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

 𝑐𝑡 = 𝑓𝑡⨀𝑐𝑡−1 + 𝑖𝑡⨀𝑐𝑡
′ (4) 

 𝑜𝑡 = 𝜎(𝑊𝑜 + 𝑏𝑜) (5) 

 ℎ𝑡=𝑜𝑡⨀𝑡𝑎𝑛ℎ⁡(𝑐𝑡) (6) 

In the equation, 𝑊𝑓, 𝑊𝑐, 𝑊𝑖, 𝑊𝑜 are the weight matrices, 𝑏𝑓, 𝑏𝑓, 𝑏𝑖, 𝑏𝑜 are the bias vec-

tors, and [ℎ𝑡−1, 𝑥𝑡] is the vector that connects the previous hidden state ℎ𝑡−1 and the 

current input 𝑥𝑡. 𝜎 is the Sigmoid function, which compresses the output values into 

the range [0,1]The forget gate controls which information should be forgotten from the 

cell state, while the candidate memory cell state 𝑐𝑡
′ represents the information that can 

be added to the cell state at the current time step. The input gate controls which parts 

of the candidate memory cell state 𝑐𝑡
′ will be added to the current cell state 𝑐𝑡

′ . The 

forget and input gates are used to update the cell state. 𝑓𝑡⨀𝑐𝑡−1 represents the infor-

mation retained in the old cell state by the forget gate, while 𝑖𝑡⨀𝑐𝑡
′ represents the new 

information added to the cell state. The output gate determines the hidden state ℎ𝑡 at 



 

 

the current time step, which is based on the current cell state and decides which parts 

will be output. 

Clinical Data Extraction. Clinical data contains both discrete and continuous data. 

Discrete data, usually exist in the form of categorical variables. In this paper, One-Hot 

Encoding is used to preprocess such data. One-Hot Encoding maps each category to a 

unique binary vector, thus avoiding the influence of numerical magnitude relationships 

between categories on the model. For example, in gender data, males and females are 

coded as [1,0] and [0,1], respectively, and this coding allows the model to correctly 

handle categorical variables without introducing unwanted bias. Continuous data usu-

ally have a large range of values and are not uniformly distributed. In order for the 

model to better handle these data, Normalisation [27] is used in this paper. Normalisa-

tion scales the data into the interval [0,1] with the formula: 

 𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑚𝑖𝑛⁡(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛⁡(𝑥)
 (7) 

In this study, a deep neural network (DNN) is employed to extract features from the 

encoded clinical data. As Fig. 5, the network consists of an input layer, multiple hidden 

layers, and an output layer. The input layer contains 43 neurons, each corresponding to 

one laboratory feature. The three hidden layers comprise 128, 256, and 128 neurons, 

respectively, with each layer employing the ReLU activation function for non-linear 

transformation. The input layer contains 43 neurons, each corresponding to one labor-

atory feature. The three hidden layers comprise 128, 256, and 128 neurons, respec-

tively, with each layer employing the ReLU activation function for non-linear transfor-

mation. The output layer consists of 128 neurons and generates a 128-dimensional vec-

tor, representing the high-dimensional feature representation of the clinical data, 

aligned in dimensionality with the CT image features. By projecting clinical and imag-

ing features into the same dimensional space, the model is encouraged to learn similar 

representations across modalities, facilitating more effective understanding and pro-

cessing of the heterogeneous data. This approach enhances the efficiency of multimodal 

data fusion and joint learning. 
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Fig. 5. DNN module structure diagram. 

Multimodal Feature Fusion. In multimodal learning that combines medical image 

analysis and clinical data, effectively integrating features from different modalities is 

one of the key factors in improving model performance. Effectively integrating these 

heterogeneous features can leverage the complementarity of both to enhance the mod-

el's ability to comprehensively assess the patient's condition. Given that clinical data, 

as structured data, has strong heterogeneity compared to medical imaging data, we be-

lieve that the fusion process should focus more on the relationships between data with 

significant differences. Therefore, we introduce an asymmetric cross-attention mecha-

nism [28] to capture the cross-modal information interaction between clinical data and 

imaging data, as shown as Fig. 6. The cross-modal cross-attention mechanism maps 

features from different modalities into Query, Key, and Value vectors through posi-

tional encoding.Then, by calculating the similarity between the Query and Key, the 

relationships between different positions are determined. Finally, by performing a 

weighted sum of the Value vectors, the representation vector for each position is ob-

tained, which contains the attention information between different modalities. 



 

 

 

Fig. 6. Asymmetric cross-attention mechanis. 

In the fusion of the clinical data modality and the CT image modality, clinical data 

features are used as Query vectors, as shown in  Formula 8, while CT features are 

mapped into Key and Value vectors, as shown in Formula 9. For each Query vector, 

the dot product between it and all Key vectors is calculated, then divided by the square 

root of its dimension, and the Softmax function is applied to convert the result into a 

probability vector, obtaining the correlation matrix between features at different posi-

tions. Finally, the correlation matrix is used with the Value vectors to obtain the image 

representation processed by the attention mechanism, as shown in Formula 10. 

 𝑄𝑐 = 𝑊𝑞𝑐𝐶 (8) 

 𝐾𝑖 = 𝑊𝑘𝑖𝐼，𝑉𝑖 = 𝑊𝑣𝑖𝐼 (9) 

 𝐹𝑖𝑐 = 𝐶𝑀𝐴(𝑄𝑐 , 𝐾𝑖 , 𝑉𝑖) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑐𝐾𝑖

𝑇

√𝑑𝑘
)𝑉𝑖 (10) 

𝐶 represents the clinical data features output from the clinical data feature extraction 

module, I represents the CT image features, with both 𝐶 and 𝐼 having a feature dimen-

sion of 128. 𝑊 is an iteratively optimized transformation matrix used for linear trans-

formation of the features. 𝑄 is the query vector obtained by transforming the clinical 

data features, while the CT image features are transformed into key vectors 𝐾𝑖 and 𝑉𝑖. 
𝐹𝑖𝑐 represents the fused features of the CT image features and the clinical data features. 

The final output of the fusion module is as shown in Formula 11. 

 𝑐𝑜𝑛𝑐𝑎𝑡(𝐹𝑖𝑐 , 𝐶) (11) 

This fusion method using asymmetric cross-attention allows the model to focus on 

learning the alignment relationship between medical images and clinical data, thus ef-

fectively understanding the association between the imaging blocks and clinical data. 

The fused features will be fed to the self-attention mechanism [29] module. 
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In the attention mechanism, the multimodal features are mapped into three vectors: 

Query, key and value. The similarity is calculated by taking the dot product of the query 

and the key, which generates the attention weights. The similarity is then normalized 

using the softmax function, and the value vector V is weighted and summed according 

to the attention weights to form the feature representation. The specific formula is as 

follows: 

 𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉 (12) 

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (13) 

𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are learnable weight matrices, and 𝑑𝑘 is the dimension of the key 

vector. Through these steps, the model can compute the attention weights of each ele-

ment with respect to the other elements in the sequence, generate the output accord-

ingly, and obtain the final fused features. 

Classification model. The final fused features will be fed to the classification module. 

The classification module consists of a two-layer multi-layer perceptron(MLP) . Spe-

cifically, the deep multimodal features are first linearly transformed by a fully con-

nected layer, followed by the introduction of nonlinearity using the ReLU activation 

function. Finally, the module outputs two classification results: effective control 

(CR+PR+SD) and ineffective control (PD). 

3 Results 

This section introduces the description ofthe evaluation metrics used. It then provides 

a detailed introduction to the hyperparameters and experimental setup used in the 

model. Finally, the section presents the experimental results. 

3.1 Experimental Environment and Performance Indicators 

The multimodal fusion model proposed in this paper utilizes the TensorFlow deep 

learning framework for parameter training and is implemented using Python program-

ming. The hardware environment for this experiment includes the Ubuntu 18.04 oper-

ating system, an AMD 5800X CPU, an RTX 3090 GPU, and 64GB of RAM. Hyperpa-

rameters play a crucial role in determining the training effectiveness and speed of deep 

learning model. After several rounds of experimentation and adjustments, we selected 

the parameters listed as Table 1 for the experiments conducted in this chapter. 

Table 1. Hyperparameter setting. 

Parameter name Parameter value 

learning_rate 1e-4 

batch_size 32 

dropout 0.1 

optmizer Adam 



 

 

Based on the actual situation in the hospital, this study determines whether the patient 

should continue TACE treatment based on the disease control rate (CR+PR+SD). The 

post-TACE outcomes are categorized as either continuation or termination of TACE 

treatment. This study evaluates the performance of the predictive model through re-

ceiver operating characteristic (ROC) curve analysis, obtaining the area under the curve 

(AUC), precision , accuracy, and recall. The specific calculation methods are shown in 

equations (14) to (18): 

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (14) 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (15) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (16) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (17) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (18) 

The Area Under the Curve (AUC) is the area under the ROC curve and is used to 

measure the overall performance of the model. The AUC ranges from 0 to 1, with a 

higher AUC indicating better classification performance of the model.An AUC of 0.5 

indicates that the model has no classification ability, which is equivalent to random 

guessing. 

3.2 Performance 

The dataset used in this experiment is derived from the dataset mentioned in Chapter 2. 

We performed experiments using 5-fold cross-validation (K=5) and took the average 

of the evaluation metrics across the k folds as the final evaluation metric. We had cho-

sen to compare the multimodal fusion models of recent years with the multimodal 

model of this paper. The selected comparison models are briefly described below: 

Mode1 [30]: J Venugopalan et al. stitched together the extracted imaging and non-

imaging features and then directly used a random forest classifier for the classification 

task. 

Mode2 [31]: J Zhang et al. used a cross-attention mechanism to fuse imaging and 

non-imaging features, the fused imaging and non-imaging features were downscaled, 

and the network was optimised using cross-entropy loss and modal alignment loss. 

Mode3 [32]: H Chen et al. input the imaging features and non-imaging features suc-

cessively at the same time through the channel attention and spatial attention for modal 

fusion, and the fused features are fed to the convolution module for further feature ex-

traction, and finally sent to the classification. 

Mode4 [33]: M Golovanevsky et al. pass three different modal features through a 

multi-head self-attention module, the self-attention processed features are then cross-

attended two by two, and finally the fused features are spliced together for the classifi-

cation task. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

The AUC, Precision, Accuracy, and Recall for each model in the dataset are shown 

as Table 2. 

Table 2. Comparative experiments. 

Models AUC Accuracy Precision Recall 

Mode1 0.70 0.73 0.75 0.74 

Mode2 0.79 0.84 0.81 0.84 

Mode3 0.78 0.79 0.83 0.85 

Mode4 0.82 0.83 0.84 0.82 

CLDCL(OURS) 0.85 0.86 0.88 0.87 

Analysis of the tabular data shows that the CLDCA model achieved an AUC value of 

0.85, an accuracy of 0.86, a Precision of 0.88, and a Recall of 0.87 on the dataset, sur-

passing all the comparison models. This indicates that the CLDCA model has superior 

performance in predicting post-TACE outcomes for liver cancer patients. 

To demonstrate the effectiveness of each substructure of the model, this section 

compared the performance of the proposed model with three ablation models on the 

same dataset for the classification task.The ablation results are shown as Table 3: 

Mode5: The proposed model removed the cross-attention module and directly con-

catenated the imaging features and non-imaging features before inputting them into 

the self-attention mechanism module. 

Mode6: The proposed model concatenated the features output by the asymmetric 

cross-attention fusion module, masked the self-attention mechanism module, and di-

rectly performed the classification task. 

Mode7: The proposed model masked the LSTM module, while keeping the other 

modules unchanged. 

Table 3. Ablation experiments. 

Models AUC Accuracy Precision Recall 

CLDCL(OURS) 0.85 0.86 0.88 0.87 

Mode5 0.75 0.74 0.76 0.73 

Mode6 0.80 0.82 0.79 0.81 

Mode7 0.77 0.80 0.75 0.79 

The ablation experiment results showed that after masking the cross-attention mecha-

nism, the AUC value decreased by 0.1, indicating that the asymmetric cross-attention 

module helped the model better understand the relationship between different modali-

ties, thus improving classification performance. After masking the self-attention mech-

anism, the AUC decreased by 0.05, indicating that deep feature extraction through the 

self-attention mechanism is necessary for the fused features. After masking the LSTM 

module, the AUC decreased by 0.08, suggesting that LSTM effectively captured the 

temporal relationships between CT slices and integrated information to extract global 

features. 



 

 

Table 4. Comparison experiment between multimodal and unimodal. 

Datasets AUC Accuracy Precision Recall 

CT+clinic 0.85 0.86 0.88 0.87 

Only CT 0.70 0.72 0.69 0.68 

Only clinic 0.65 0.68 0.69 0.71 

By comparing the performance of multimodal and unimodal prediction models on the 

dataset, the significant advantage of the multimodal approach in this prediction task 

was validated. The experimental results show that the multimodal model outperforms 

the unimodal model in terms of AUC, precision, accuracy, and recall. 

4 Discussion 

In the experimental evaluation, the CLDCA model demonstrated significant superiority 

over traditional unimodal models, especially excelling in key metrics such as AUC and 

accuracy. This advantage arises from the multimodal model's ability to simultaneously 

integrate various perceptual modalities (e.g., images and text), thereby obtaining infor-

mation from different perspectives. This multimodal integration not only enriches the 

dimensions of the data but also provides a more comprehensive and accurate represen-

tation of information, significantly improving the overall performance of the model. 

Through ablation experiments, we validated the contribution of each component in the 

CLDCA model. The multimodal fusion module, self-attention mechanism module, and 

LSTM module all significantly contribute to the model's overall performance. These 

modules work in synergy, resulting in the CLDCA model excelling in key metrics such 

as AUC and accuracy. Therefore, each component is an indispensable part of the 

CLDCA model, providing strong support for the model's high performance. 

Moreover, compared to the contrast models, the attention mechanism can effectively 

improve the model's classification performance.Model 1 proposed by J. Venugopalan 

et al. only performs a simple concatenation of features from different modalities, which 

is insufficient to capture the underlying relationships between modalities. Models 3 and 

4 by MADDi and H. Chen, as well as the CLDCA model in this paper, use the attention 

mechanism to process features from different modalities. Compared to the results of 

Model 1, the AUC was improved by 0.08, 0.12, and 0.15, respectively, indicating that 

the use of attention mechanisms for modality fusion helps the model understand the 

relationships between multimodal data.J. Zhang et al. also recognized the strong heter-

ogeneity between imaging and non-imaging features. In Model 2, they first concatenate 

the imaging features and then apply symmetric cross-attention processing between the 

concatenated imaging features and non-imaging features. When we replaced the asym-

metric cross-attention in this paper's model with the same approach, the classification 

performance decreased. This demonstrates that the asymmetric cross-attention fusion 

mechanism performs better on this dataset. Through the asymmetric cross-attention 

mechanism, the model can flexibly allocate attention weights, thus better capturing 

complementary information between different modalities, which enhances prediction 

ability. 
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Future work will focus on two areas. First, more imaging and clinical data will be 

collected to further improve the model's robustness and generalizability. Integrating 

multicenter data can effectively reduce the model's dependence on specific datasets and 

enhance its applicability in different clinical environments. Second, data augmentation 

techniques will be considered to expand the training set, thereby improving the model's 

performance in small sample scenarios and reducing the occurrence of overfitting. 

5 Conclusions 

This study developed a multimodal data fusion-based model for predicting TACE treat-

ment response, combining CT imaging features with clinical data, significantly improv-

ing the prediction accuracy of postoperative treatment response in liver cancer patients. 

The introduction of the cross-attention mechanism, by focusing on the interaction be-

tween the two features, helps the model extract visual information from CT images 

while incorporating the correlations from clinical data, thus achieving a more compre-

hensive disease representation and enhancing the depth and precision of the analysis. 

The use of the self-attention mechanism enables the model to dynamically adjust the 

weights of different modalities based on the importance of the features, which not only 

increases the model's attention to key features but also effectively suppresses the impact 

of noise, preventing redundant information from interfering with the prediction results. 

Through multimodal fusion, the model demonstrates greater flexibility and adaptability 

in handling complex data, thereby enhancing the accuracy of the predictions. The model 

performs exceptionally well on the dataset with AUC, precision, accuracy and recall of 

0.85, 0.86, 0.88 and 0.87 respectively. 
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