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Abstract. Clinical lab tests are essential for disease diagnosis, medical treatment 

and predictive modeling tasks within healthcare. Traditional learning methods 

often struggle with lab test data that include imprecision ranges. In this paper, we 

tackle the challenge of improving prediction stability without generating addi-

tional training samples nor compromising accuracy. We reformulate the learning 

problem as a multi-objective optimization task, where accuracy and stability are 

both key objectives. To accomplish this, we develop a novel approach for calcu-

lating stability loss, by decomposing stability loss into a cumulative process, 

propagated layer by layer. We then formulate a stability-enhanced loss (SELoss) 

function to control the layer-wise output errors and maintain prediction precision. 

In addition, we design a multi-stage learning mechanism to control instability in 

each layer, especially in the initial layers. These components regulate the learning 

process, achieving a much-improved balance between accuracy and stability. Us-

ing three real-world datasets, experimental results demonstrate that SELoss 

achieves more accurate and stable predictions across various tasks by reducing 

the instability of each layer. Also, as input perturbation increases, the rise in out-

put instability slows down. 
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1 Introduction 

In healthcare, it is highly desirable to evaluate the current situation of a patient and 

accurately predict his/her disease development. This evaluation and prediction provide 

a foundation for treatments such as the medication strategy, unconventional inspection, 

or other early active interventions. Deep neural networks (DNNs) have been increas-

ingly applied to the prediction, prevention, diagnosis, and prognosis of diseases, show-

ing significant potential to aid in better decision making [1,2]. Although DNNs exhibit 

their merits in various tasks, the performance in noise, disturbance, and imprecise data 

remain a challenge [3,4]. Developing accurate and stable deep learning models is an 

urgent problem. 

Clinical lab tests play an important role in today’s healthcare. From early detection 

of diseases to diagnosis to personalized treatment programs, lab tests guide more than 

70% of medical decisions and personalized medications [5]. However, due to limita-

tions of equipment, instruments, materials, test methods, etc., data inaccuracy always 



 

occurs. Clinical laboratories adhere to specified quality control and process control pro-

tocols to ensure that test results fall within tolerable ranges or imprecision ranges, where 

values are acceptable despite being imprecise [6]. Since the values in this range are 

deemed acceptable, predictions should ideally remain consistent or stable within this 

imprecision range. However, due to the inherent vulnerability of deep learning models 

[7], achieving this stability is challenging. 

One naive approach to address this problem is to identify all unstable samples within 

the imprecision range space, add them to the training dataset, and enhance training us-

ing a method similar to adversarial training [8-10]. However, identifying all unstable 

samples is both costly and challenging. More importantly, existing work indicates that 

introducing additional samples could negatively impact the prediction accuracy of the 

current samples [11,12]. 

Is it possible to enhance prediction stability without generating additional training 

samples nor compromising accuracy? This paper addresses this challenge by reframing 

the learning problem as a multi-objective optimization problem, where both accuracy 

and stability are key objectives. We further explore how to define and elevate stability 

loss. In the past, stability has been considered in relation to the final decision boundary 

[13,14]. However, we argue that stability is fundamentally connected to the learning 

process. Even with a well-learned decision boundary, instability can arise if two classes 

are close to each other in any layer during training. 

To address this, we develop a novel approach for calculating stability loss. We begin 

by decomposing the stability loss into a cumulative process propagated layer by layer. 

Through evaluating the initial perturbation intensity and tracking its through each layer, 

we then derive the final perturbation output. Consequently, we design a stability-en-

hanced loss (SELoss) function, in which the stability loss increases stability by control-

ling the output errors in each layer of the DNN caused by the input. Meanwhile, accu-

racy loss controls the precision of the predictions. It is evident that initial instability 

tends to propagate and amplify layer by layer, making it crucial to control instability in 

each layer, especially in the initial layers. Building on this observation, we further de-

sign a multi-stage learning mechanism to focus more on the initial layers. These com-

ponents collectively regulate the learning process of the model, achieve a much-im-

proved balance between accuracy and stability. 

The main contributions of this paper are as follows: 

A novel SELoss function   to improve stability and accuracy through a multi-objec-

tive optimization learning process. 

A stability metric that relates to the learning process of the model through a cumu-

lative process propagated layer by layer rather than the final decision boundary. 

Experimental evaluation on multiple real-world medical datasets confirms that our 

SELoss-based approach achieves more accurate and stable predictions across various 

tasks. Additionally, as input perturbation increases, the rise in output instability is 

slower. 

The paper is organized as follows. Section 2 introduces the motivations. Section 3 

introduces the proposed SELoss. Section 4 presents experimental results. Section 5 dis-

cusses the related work. Section 6 concludes the paper. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

2 Motivations 

In this section, we first present an application example to illustrate how data impreci-

sion could cause wrong prediction results. We then describe some of the follow-up 

work to improve model quality and review the notion of stability formulated to address 

quality of models concerning sensitivity of prediction results within allowed input data 

imprecision range. These discussions finally lead to the main problem in this paper: 

correlation of stability and precision, the two important aspects of models. 

We now illustrate the impact of imprecision on deep learning models using a simple 

and intuitive example. In this example, a deep learning model predicts the risk of dia-

betes based on eight patient features, including age, DPF (the output of diabetes pedi-

gree function), body mass, insulin level, skin thickness, blood pressure, glucose con-

centration, and number of pregnancies. The model's output is a binary label indicating 

whether the patient has diabetes. 

Consider a patient X from the dataset. The top table in Fig.1 displays her 8 features, 

including 5 lab test results. Using these original data, the prediction result is shown in 

the second row of the bottom table in Fig.1 with the predicted label 0, indicating a low 

risk. To find out how data imprecision would impact prediction results we introduce a 

small margin of ±1% to the original lab test data. The middle table of Fig.1 lists the 

slightly shifted data with the imprecision interval. Using this shifted data, the prediction 

model would forecast the risk label 1, which means ``high risk''. Had this prediction 

result is used, the suggested diagnosis and treatment would be different. 

The last row of the bottom table in Fig.1 provides the number of samples with label 

changes in the 400 test samples within ±10% imprecision range. We can see that the 

labels of 74 patients or 18.5% have changed, which is unacceptable for safety-critical 

applications. Note that our example only has 5-dimensional lab test data. As the number 

of dimensions increases and the prediction difficulty grows, the uncertainty caused by 

imprecision could rise higher, making this issue more crucial. 

This negative impact of imprecise data on learned models led to subsequent studies. 

In [3,4], an alternative loss function named (IRloss) was developed, in an attempt to 

capture the essence of data imprecision range; Experimental results show improved 

precision for a few prediction problems. 

A need from applications arises in our discussions with management of SHDC. 

SHDC serves the city government of Shanghai, China through collecting and managing 

all patient data from all 38 top tier hospitals. SHDC routinely evaluates learned models 

and make adoption recommendations to the city agency. The impact of imprecise data 

on models was presented to SHDC, which is then interested in objectively measuring 

such impact. As a preliminary study, the notion of stability was developed and reported 

in [13]: a stable model is less impacted by the data fluctuation (within the acceptable 

imprecision range). Experimental evaluation demonstrated that this measure reflects 

the impact fairly well. 

However, at a fundamental level there are many questions left unanswered. This 

paper addresses an important one: Is it possible to tweak learning methods to correlate 

stability and (prediction) precision? The main result of this paper is a positive answer: 



 

Enhancing the learning capability of the intermediate layers, especially the initial lay-

ers, in the model will improve both the stability and accuracy of the predictions. 

 

Fig. 1. Test data, shifted data, and prediction results 

3 Stability Enhanced Loss 

In this section, we first introduce a prediction model served as the basis in our study. 

We then formulate the correlation between model stability and inter-layer learning. 

Based on this, we develop a new loss function named SELoss, aiming to achieve com-

bined optimization of accuracy and stability. 

3.1 The Prediction Model 

In this paper, the prediction model is implemented by the deep neural network. 

Let 𝑓: 𝑅𝑑 → 𝑅𝑐 represent a deep neural network, where 𝑑 denotes the number of input 

features, and 𝑐 represents the number of outputs. For an input instance 𝑥 ∈ 𝑅𝑑, 𝑓 can 

be written in the following form: 

𝑓(𝑥) = 𝑊ℎ𝑛 (ℎ𝑛−1(⋯ ℎ2(ℎ1(𝑥)) ⋯ )) + 𝑏 (1) 

where 𝑓 consists of a series of fully connected layers ℎ𝑖(𝑖 = 1, … , 𝑛) 𝑛 is the num-

ber of layers in the model, 𝑊 and 𝑏 are the weight matrix and the bias vector of the 

output layer. Note that each layer includes a linear transformation followed by a non-

linear activation function. 

Let 𝑎𝑖 be the input to the 𝑖-th layer, ℎ𝑖(𝑎𝑖) the output of the 𝑖-th layer and simulta-

neously as the input for the (𝑖 + 1)-th layer. 

𝑎𝑖+1 = ℎ𝑖(𝑎𝑖) = σ(𝑤𝑖𝑎𝑖 + 𝑏𝑖),  𝑖 = 1, … , 𝑛 (2) 

where 𝑤𝑖
′s and 𝑏𝑖 's are the weight matrix and bias vector of the 𝑖-th layer, and 𝜎 is 

the nonlinear activation function. We use 𝜃 to denote the parameter set of model 𝑓 is 

always learned by minimize the following loss: 

𝐿(𝑥, 𝑦, θ) = 𝑙𝑎𝑐𝑐(𝑦, 𝑓θ(𝑥)) (3) 
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where 𝑙𝑎𝑐𝑐  is the loss function to determine how close between the model output 

𝑓θ(𝑥) and the true output 𝑦.  or regression task, 𝐿(𝑥, 𝑦, θ) could be the mean-squared-

error (MSE) loss or mean-absolute-error (MAE) loss. For classification, 𝐿(𝑥, 𝑦, θ) 

could be the cross-entropy loss. 

In practical applications, 𝑥 is often measurement data. For example, for disease pro-

gress prediction models in medical applications, 𝑥 may consist of laboratory test results 

from the patient. Due to the limitations of equipment, instruments, materials, test meth-

ods, etc., imprecision of data always occurs. 

Let 𝐼𝑃𝑅(𝑥) denote the imprecision range spacefor a given data value 𝑥. We say the 

model is stable if 𝑓(𝑥) and 𝑓(𝑥′) have the same value whenever 𝑥′ ∈ 𝐼𝑃𝑅(𝑥). It is ev-

ident that our goal is for the model to be not only close to the ground truth but also as 

stable as possible, meaning that 𝑓(𝑥) and 𝑓(𝑥′) should be as close as possible. Here we 

use 𝑙𝑠𝑡𝑎𝑏  to measure the difference or loss between 𝑓(𝑥)and 𝑓(𝑥′). Consequently, our 

learning process can be transformed into a multiple objective optimization problem. 

This means that we can formulate a new loss function as follows: 

𝐿(𝑥, 𝑦, θ) = 𝛼 𝑙𝑎𝑐𝑐 + 𝛽 𝑙𝑠𝑡𝑎𝑏 (4) 

The loss function 𝐿(𝑥, 𝑦, θ) incorporates stability as a learning objective, similar to 

accuracy, to improve the model learning process, in order for the resulting model to 

achieve high accuracy and stability simultaneously. 

According to Equation (4), this loss function should find an optimal set of parameters 

that optimizes both accuracy and stability. To make our idea feasible, an important issue 

needs to be addressed: for each training sample, how to calculate the model's prediction 

stability? A naive use of 𝑓(𝑥′) − 𝑓(𝑥) is not feasible, as it requires computing 𝑓(𝑥′) 

individually for each sample, and 𝑥′ needs to be involved in the training process. Pre-

vious work [11,12] has widely demonstrated that introducing additional samples could 

potentially compromise the accuracy of the current sample. To address this issue, we 

performed layer-by-layer decomposition modeling of the perturbation caused by the 

input. The perturbation caused by each layer is used to determine the final output per-

turbation. By employing a first-order Taylor expansion to approximate instability, the 

final stability loss is calculable and quantifiable. The total loss is composed of accuracy 

loss (traditional loss) and the instability loss. These two components of the loss jointly 

control the learning process of the model, thereby achieving the combined optimization 

of accuracy and stability. 

3.2 Correlation between stability and inter-layer learning of the model 

Commencing from a foundation of theoretical derivation, we would like to establish 

the correlation between model stability and the learning dynamics across its layers. 

Through rigorous mathematical derivations, we can characterize more precisely how 

imprecision navigate through neural network layers, elucidating the relationship be-

tween output perturbation at each layer and the initial input imprecision. The goal is to 

leverage this theoretical groundwork to engineer more efficacious loss functions, 

thereby enhancing the model's stability when confronted with ambiguous input data. 



 

This refined methodology demonstrates how imprecision propagation can be man-

aged during model training. It paves the way for achieving more consistent performance 

in practical applications, further validating and ensuring the effectiveness and broad 

applicability of our novel approach. 

For a given input instance 𝑥, the instance 𝑥′ is derived from 𝐼𝑃𝑅(𝑥). The magnitude 

of their discrepancy is given by |𝑥 − 𝑥′| = 𝑟0. Both 𝑥 and 𝑥′ are fed into the same pre-

diction model 𝑓. The discrepancy for the pair of instance 𝑥 and 𝑥′ observed in the out-

puts after the forward pass through the 𝑖-th layer of this network is labeled as 𝑟𝑖 , and 

𝑟𝑖−1 for the 𝑖 − 1 layer. 𝑟𝑖  can be expressed as: 

  𝑟𝑖 =  | ℎ𝑖(𝑎𝑖 +  𝑟𝑖−1 ) −  ℎ𝑖(𝑎𝑖)| (5) 

By leveraging the first-order Taylor expansion at 𝑎𝑖, we approximate ℎ𝑖(𝑎𝑖 + 𝑟𝑖−1) as: 

ℎ𝑖(𝑎𝑖 + 𝑟𝑖−1) ≈ ℎ𝑖(𝑎𝑖) +
𝑑ℎ𝑖(𝑎𝑖)

𝑑𝑎𝑖

⋅ 𝑟𝑖−1 (6) 

Combining Equations (5) and (6), we have: 

 

𝑟𝑖 = |
𝑑ℎ𝑖(𝑎𝑖)

𝑑𝑎𝑖
⋅ 𝑟𝑖−1| (7) 

Letting 𝐽𝑖(𝑎𝑖) =
𝑑ℎ𝑖(𝑎𝑖)

𝑑𝑎𝑖
,  Equation (7) becomes: 

𝑟𝑖 = |𝐽𝑖(𝑎𝑖) ⋅ 𝑟𝑖−1| (8) 

Similarly, we can obtain: 

𝑟𝑖−1 = |𝐽𝑖−1(𝑎𝑖−1) ∗ 𝑟𝑖−2| = |𝐽𝑖−1(𝑎𝑖−1) ∗ 𝐽𝑖−2(𝑎𝑖−2) … 𝐽1(𝑎1) ∗ 𝑟0| (9) 

Therefore, 𝑟𝑖 can be approximated as: 

𝑟𝑖 = |𝐽𝑖(𝑎𝑖) ⋅ 𝐽𝑖−1(𝑎𝑖−1) ⋯ 𝐽1(𝑎1) ⋅ 𝑟0| = |∏ 𝐽𝑗(𝑎𝑗)

𝑖

𝑗=1

⋅ 𝑟0| (10) 

Let ‖⋅‖ represent the Euclidean norm f the vector, then we can obtain that: 

‖𝑟𝑖‖ = ‖∏ 𝐽𝑗(𝑎𝑗)

𝑖

𝑗=1

⋅ 𝑟0‖ (11) 

Considering the sub-multiplicative nature of norms, 

we obtain an upper-bound for ‖𝑟𝑖‖: 

‖𝑟𝑖‖ ≤ ‖𝐽𝑖(𝑎𝑖)‖ ⋅ ‖𝐽𝑖−1(𝑎𝑖−1)‖ ⋅ … ⋅ ‖𝐽1(𝑎1)‖ ⋅ ‖𝑟0‖ (12) 

Let 𝑆𝑖 = ∏ ‖𝐽𝑖(𝑎𝑖)‖𝑖
𝑗=1 ⋅ ‖𝑟0‖, we obtain the upper bound of the output error for layer 

𝑖 as follows: 

‖𝑟𝑖‖ ≤ ∏‖𝐽𝑖(𝑎𝑖)‖

𝑖

𝑗=1

⋅ ‖𝑟0‖ = 𝑆𝑖 (13) 

In summary, the analysis presented in the above investigates the propagation of small 

perturbations in input instances through a deep neural network and their impact on out-

put errors. Commencing from a small difference 𝑟0 between closely related input in-

stances 𝑥 and 𝑥′, this error is incrementally analyzed and accumulated through forward 

propagation at each layer of the network. By utilizing first-order Taylor expansion to 

approximate the behavior of each network layer and integrating the norm for each layer, 

we establish the relationship between the output error 𝑟𝑖 of each layer and the error 𝑟𝑖−1 
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of the preceding layer. According to this theoretical analysis, if earlier layers experience 

significant perturbations or if the decision boundaries of two classes are close on an 

intermediate layer, even expanding the final decision boundary through subsequent 

learning may not prevent the original imprecise samples from projecting onto different 

classes at this intermediate layer. This can cause increasing divergence in class assign-

ments as samples propagate through layers. Therefore, regularizing intermediate layers 

and enhancing their stability and learning capability, especially in the initial layers, is 

crucial. Based on this idea, we define the output error of the entire model as: 

𝐽 = ∑ 𝑆𝑖

𝑛

𝑖=1

(14) 

3.3 Stability enhanced loss function 

According to Equation (14), we have determined that the upper bound on the model's 

output error in all of the layers is 𝐽. Thus, 𝐽 can be considered the stability loss 𝑙𝑠𝑡𝑎𝑏 . 

By substituting 𝐽 into Equation (4) and letting 𝐷 denote the training set, the overall loss 

( 𝐿 ) which accounts for both accuracy and stability, can be expressed as: 

𝐿 = ∑ 𝛼 𝑙𝑎𝑐𝑐(𝑦, 𝑓𝜃(𝑥)) + 𝛽 𝐽𝜃,𝑥

𝑥∈𝐷

(15) 

where 𝛼 and 𝛽 are weights that balance the importance of accuracy and stability in the 

loss function.  𝑙𝑎𝑐𝑐  is the traditional loss function which measures the difference be-

tween the model output 𝑓𝜃(𝑥) and the true output 𝑦. Equation (15) could be trans-

formed into: 

𝐿 = ∑ 𝛼(𝑙acc(𝑦, 𝑓𝜃(𝑥)) + 𝛾 𝐽𝜃,𝑥)

𝑥∈𝐷

(16) 

where 𝛾 =
𝛽

𝛼
. Since 𝛼 is a scaling factor, we can absorb it into the overall learning pro-

cess. For simplicity, we often normalize it to 1. In this way, our stability enhanced loss 

(SELoss) function is defined as follows: 

𝐿 = ∑ 𝑙acc(𝑦, 𝑓𝜃(𝑥)) + 𝛾 𝐽𝜃,𝑥

𝑥∈𝐷

(17) 

In the Equation (17), the first term represents the traditional loss function, which is used 

to control the accuracy of the model. The second term is designed to manage the stabil-

ity of the model. The parameter 𝛾 controls the relative importance of stability loss com-

pared to the accuracy loss. 

To solve the loss function defined in Equation (17), we need to compute the value 

of 𝐽. Recall that 𝐽 = ∑ 𝑆𝑖
𝑛
𝑖=1 = ∑ ∏ ‖𝐽𝑖(𝑎𝑖)‖𝑖

𝑗=1
𝑛
𝑖=1 ⋅ ‖𝑟0‖. Therefore, we need to calcu-

late two components. The first component is 𝐽𝑖(𝑎𝑖), and the second component is 𝑟0. 

For the first component, recall that 𝐽𝑖(𝑎𝑖) =
𝑑ℎ𝑖(𝑎𝑖)

𝑑𝑎𝑖
, which is the Jacobian matrix of the 

𝑖-th layer of 𝑓. Here we leverage the parallel processing function such as vmap to speed 

up computations of the Jacobian matrix for batched inputs. 



 

To determine the value of 𝑟0, we set it proportionally to the input data dimensions as 

follows: 𝑟0 = noi ⋅ (δ ⊙ 𝑥). Here noi represents a scalar noise factor, δ is a tensor of 

the same shape as 𝑥 with elements -1 or 1, and ⊙ denotes element-wise multiplication. 

This method allows the perturbation magnitude to vary with the dimensions of the input 

data, providing a more realistic simulation of imprecision in practical scenarios. 

3.4 Multi-stage Learning 

After calculating the values of 𝐽𝑖(𝑎𝑖) and 𝑟0, we obtain the total loss. However, during 

model training, we observe that due to 𝑆𝑖 = 𝑆𝑖−1 ∗ ‖𝐽𝑖(𝑎𝑖)‖, when ‖𝐽𝑖(𝑎𝑖)‖ is greater 

than 1, 𝑆𝑛 tends to dominate the entire 𝐽, which limits the effectiveness of constraining 

each layer individually. To address this, we designed a multi-stage learning mechanism. 

First, we divide the layers in the DNN into different groups in sequence. For example, 

Group 1 includes the input layer and the first layer. While Group 2 includes the subse-

quent layers starting from the third layer. In the initial training stage, we train Group 1 

using SELoss as defined in Equation 17. After training Group 1, we obtain and save the 

parameter values of these layers. These saved parameters are then used as initialization 

values for training Group 2. We then proceed to train Group 2 in the following stage. 

The detailed training process is illustrated in Algorithm1. 

In Algorithm 1, steps 1 and 2 involve initialization, including dividing the network 

layers into groups and initializing parameters. Starting from step 3, multi-stage training 

is conducted. In each stage, a portion of the layers is trained using SELoss, allowing 

SELoss to more effectively regulate each layer of the network. This strategy helps re-

duce the impact of imprecision from the initial layers, leading to more stable final pre-

diction results. 

Algorithm 1：Multi-stage SELoss Training 

Input: Initial model 𝑓0, training dataset 𝐷  

Output: model 𝑓 

1：𝑔𝑙𝑖𝑠𝑡=initialize_group(𝑓0)； 

2：Initialize para0 

3：for stage 𝑖=1 to size of(𝑔𝑙𝑖𝑠𝑡) 

4：    initialize 𝑓𝑖 with [𝑔𝑙𝑖𝑠𝑡[1:𝑖], params𝑖−1]; 

5:       params𝑖=train(𝑓𝑖,𝐷, 𝑆𝐸𝐿𝑜𝑠𝑠); 

6:   end for 

7:   Return the final model as 𝑓 

4 Evaluations 

In this section, we demonstrate the effectiveness of the proposed SELoss method from 

the following aspects: a) Comparison with other methods that enhance model stability; 

b) Testing how the stability of the model trained using the new loss function varies with 

different levels of input perturbations; c) Comparing the changes in stability across dif-

ferent layers of the model trained with and without SELoss function; d) Conducting an 

experimental analysis of the training time for the model using the new loss function. 
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4.1 Datasets 

In this study, we used three medical datasets for evaluation: a) MIMIC-III (Medical 

Information Mart for Intensive Care) dataset: This dataset, provided by Johnson et al. 

[17], includes data on 53,423 adult ICU patients (2001-2012) and 7,870 neonates 

(2001-2008) from a large tertiary hospital. It covers vital signs, medications, lab results, 

physician orders, and more. Following Harutyunyan et al. [18], we built a model to 

predict in-hospital mortality using the first 48 hours of ICU data. b) Diabetes dataset 

[19]: This dataset helps researchers analyze and predict the risk of diabetes. It includes 

eight features: age, diabetes pedigree function, body mass index, insulin level, skin 

thickness, blood pressure, glucose concentration, and number of pregnancies, with a 

binary label indicating whether the individual has diabetes. The dataset contains indi-

cator data for 2768 patients. c) Blood_samples dataset [20]: This dataset includes 2837 

patients. Each patient has 24 features for predicting whether an individual has specific 

diseases or other health conditions. It classifies patients into six categories: diabetes, 

thrombocytopenia, anemia, heart disease, thalassemia and healthy. 

4.2 Instability Metrics 

To evaluate accuracy, well-established metrics such as Precision, Recall, AUROC, and 

Accuracy are used to assess prediction accuracy. However, when it comes to evaluating 

stability, there is no standard metric for evaluating stability. 

We adopt the idea in [13] to assess model instability. For a given input sample, if the 

model is stable, there will be no inconsistent predictions, that is, all labels in data im-

precision space are the same. Let 𝑃𝑚𝑎𝑗𝑜𝑟  to represent the proportion of samples with 

the majority label in the imprecision space. It can be seen that the larger 𝑃𝑚𝑎𝑗𝑜𝑟  is, the 

more stable the model is. Let (𝐾) denotes the number of classes, the instability measure 

𝑠(𝑥)for given sample 𝑥 is obtained as: 

𝑠(𝑥) = − log𝐾(𝑃major) (18) 

For a model, more samples with lower stability 𝑠(𝑥) indicats a less stable model. 

The values of 𝑠(𝑥) are divided into fixed-size intervals from low to high, and the num-

ber of samples in each interval forms a distribution. Clearly, the stability of different 

models can be measured by the variation in the distribution. The overall instability 

measure 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of the model based on the distribution is defined as: 

𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑇
∑ 𝑠𝑖𝑥

𝑀

𝑖=0

⋅ 𝑛𝑚 (19) 

where 𝑚 is the number of intervals. 𝑠𝑖𝑥 is the lower bound of 𝑖 −th interval, 𝑛𝑚 is the 

number of samples within that interval. 𝑇 is the number of all samples. The value 

𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 as well as the distribution analysis, enables a more detailed observation, 

understanding, and comparison of a model’s predictive stability at a finer granularity. 



 

4.3 Experimental Setting 

For the MIMIC dataset, we constructed MLP and LSTM deep learning models to per-

form the prediction tasks. For the other two datasets, MLP models were used. The base 

MLP model is implemented with five layers, uses ReLU as the activation function, and 

adopts the cross-entropy loss function. 

In the proposed new loss method, there is a parameter γ that balances accuracy and 

stability. For the MIMIC-III dataset, γ is set to 5e-3; for the blood_samples dataset, it 

is set to 2e-7; and for the diabetes dataset, it is set to 1e-5.  

We compare the proposed method with IRloss [3]. The implementation of the IRloss 

model specifically considers two key parameters: the width of the uncertainty range Δ 

and the discretization parameter (𝑠). These parameters are fine-tuned in the different 

datasets. On the MIMIC-III dataset, Δ and 𝑠 are set to 0.1 and 0.02, respectively. In 

the diabetes and blood_samples datasets, a more refined setting of 0.01 for Δ and 0.001 

for 𝑠. 

We also compared SELoss with the randomized smoothing method [15], which in-

volves three key parameters: the standard deviation σ of Gaussian noise, the number of 

samples 𝑛, and the confidence level α. For all three datasets, 𝑛 and α were set to 100 

and 0.01, respectively σ was set to 0.02 for the blood_samples dataset and the diabetes 

dataset, and to 0.05 for the MIMIC-III dataset. For brevity, we abbreviate 'randomized 

smoothing' as 'RS'. 

Our software environment contains Ubuntu 20.04, PyTorch v1.13.0, and python 

3.9.15. All experiments were conducted on a machine equipped with two GPUs 

(NVIDIA GeForce GTX 4090) and 64GB of memory with a batch size of 500 for 

MIMIC-III dataset, and a batch size of 100 for another two datasets. For the learning 

rate, we set the learning rate to 1e-3 for both the MIMIC-III and diabetes datasets, and 

to 1e-2 for the blood samples dataset. In the multi-stage training process, each of the 

three models is divided into two groups. The first group contains the first layer, and the 

second group includes the remaining layers. Training is conducted in two stages. Each 

experiment was repeated three times, and the average value was taken to ensure the 

robustness of the results. 

4.4 Experimental findings 

We now present four key findings in the following. 

SELoss Provides more Accurate and Stable Predictions across Various Tasks We 

compare our proposed SELoss and SELoss with multi-stage training strat-

egy (𝑆𝐸𝐿𝑜𝑠𝑠𝑚) methods with the base model and several previous approaches known 

to enhance model robustness or stability. These include IRloss [3], PGD adversarial 

training [10], and randomized smoothing [15]. 

The comparison results based on three datasets are illustrated in Table 1. From Table 

1, we can observe that traditional methods designed to improve model robustness such 

as PGD adversarial training and randomized smoothing may lead to a decrease in model 
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accuracy. For instance, in the diabetes prediction task, the base method achieves an 

Accuracy of 0.9175, which decreases to 0.8975, 0.9125, and 0.915 with PGD, IRloss, 

and randomized smoothing methods respectively. For PGD and IRloss method, the 

AUROC declines from 0.9180 to 0.9070, 0.8978 respectively. However, the SELoss 

method proposed in this paper improves both model instability and all accuracy metrics. 

Especially, the 𝑆𝐸𝐿𝑜𝑠𝑠𝑚 achieves the best performance. In Table 1, the randomized 

smoothing method does not have an AUROC value. This is because calculating 

AUROC requires the model to output the probability distribution for each class, 

whereas randomized smoothing directly returns the most frequently predicted class as 

the final result after running the base model multiple times. In the blood_samples da-

taset, the SELoss method decreases instability from 0.1077 to 0.0682 and increases 

Accuracy from 0.9027 to 0.9329. The 𝑆𝐸𝐿𝑜𝑠𝑠𝑚 method furthered decreases instability 

to 0.0436. Similarly, in the diabetes dataset, the 𝑆𝐸𝐿𝑜𝑠𝑠𝑚  method lowers instability 

from 0.0059 to 0.0016 and boosts Accuracy from 0.9175 to 0.9375. Precision, Recall, 

and AUROC have not decreased, and even Precision has shown a noticeable improve-

ment. In the MIMIC-III dataset, 𝑆𝐸𝐿𝑜𝑠𝑠𝑚 method reduces the instability of the base 

model from 0.0104 to 0.0038. In terms of the accuracy evaluation metric, although Re-

call has shown a certain degree of decline, Precision, Accuracy, and AUROC have 

slightly improved compared to the baseline model. It can be seen from the table that the 

auroc and accuracy of the improved model have not declined, and its instability is 

lower. 

Table 1. Comparison of MLP-based methods on different datasets. 

dataset method instability accuracy precision recall AUROC 

blood_sample 

Base 0.1077 0.9027 0.7575 0.7661 0.9180 

PGD 0.0679 0.9094 0.7525 0.7673 0.9070 

RS 0.0809 0.9121 0.7560 0.7786 -- 

IRloss 0.0877 0.8859 0.7062 0.7678 0.8978 

SELoss 0.0682 0.9329 0.7906 0.7832 0.9207 

𝑆𝐸𝐿𝑜𝑠𝑠𝑚 0.0436 0.9295 0.7773 0.7849 0.9189 

diabetes 

Base 0.0059 0.9175 0.9052 0.9233 0.9595 

PGD 0.0002 0.8975 0.8845 0.9078 0.9539 

RS 0.0059 0.9150 0.9034 0.9167 -- 

IRloss 0.0042 0.9125 0.9005 0.9148 0.9465 

SELoss 0.0020 0.9350 0.9272 0.9323 0.9569 

𝑆𝐸𝐿𝑜𝑠𝑠𝑚 0.0016 0.9375 0.9268 0.9420 0.9647 

MIMIC III 

Base 0.0104 0.8878 0.724 0.6751 0.8399 

PGD 0.0052 0.8891 0.7246 0.6595 0.8466 

RS 0.0088 0.8841 0.7109 0.6910 -- 

IRloss 0.0070 0.8804 0.6908 0.6178 0.7944 

SELoss 0.0061 0.8974 0.7574 0.6595 0.8437 

𝑆𝐸𝐿𝑜𝑠𝑠𝑚 0.0014 0.8977 0.7705 0.6295 0.8549 



 

In addition to MLPs, our method can be generalized to other types of deep neural 

networks. Table 2 presents the experimental results comparing the traditional LSTM 

method with the enhanced version using SELoss on the MIMIC dataset. As shown in 

the table, the accuracy and AUROC of the improved method remain largely unchanged, 

while precision and recall have seen modest improvements, and instability has been 

significantly reduced. Furthermore, both Table 1 and Table 2 demonstrate that our 

method consistently performs well across various deep neural networks and multiple 

datasets, highlighting its robustness and generalizability. 

Table 2. Comparison of LSTM-based methods on MIMIC III. 

method instability accuracy precision recall AUROC 

LSTM 0.0127 0.8921 0.7418 0.6171 0.8441 

SELoss 0.0063 0.8967 0.7649 0.6291 0.8403 

As Input Perturbation Increases, SELoss Slows Down the Rise in Output Instabil-

ity To thoroughly analyze the stability of the models, we designed a rigorous perturba-

tion test scheme for the base model and SELoss models. Specifically, we evenly divide 

the input perturbation range from 0.02 to 0.2 into 10 levels. Through this series of dis-

turbance experiments, we not only quantified the instability and accuracy of the model 

under different disturbance intensities, but also investigated the trend of instability 

change of each model with increasing disturbance amplitude, so as to comprehensively 

evaluate and compare the performance of the model in the face of data imprecise. 

Fig.2 compares the performance of the baseline model and the model using the 

SELoss method under gradually increasing noise factors. As depicted, with higher noise 

factors, all models show increased instability. However, the model employing the 

SELoss methods consistently exhibits lower instability and a slower growth rate com-

pared to the baseline model. 

 

Fig. 2. Comparison of SELoss method performance with base method as noise level increases: 

x-axis represents the noise level (noi), while the y-axis represents the magnitude of model insta-

bility. 

SELoss reduces the instability of each layer The proposed method reduces predic-

tion instability by constraining the layer-by-layer propagation of input perturba-

tions. To verify the effectiveness of the new loss in suppressing propagation, we 

present the 𝑟𝑖  values of the predictive model for each layer across three datasets, 

with and without using the SELoss function in Fig.3. According to the figure, it is 

evident that for the base model and the model using SELoss training, 𝑟𝑖  increases 

as the depth of layers increases. This is reasonable because the perturbations accu-

mulate as the depth of the layer increases. With the SELoss, the 𝑟𝑖 values for each 
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layer are smaller than those in the base model, which is particularly pronounced in 

the final layer. Notably, on the MIMIC-III dataset, the percentage reduction in 𝑟𝑖 is 

the greatest, with an average reduction of 150% across all layers. Based on the 

results of three datasets, SELoss mainly reduces the value of 𝑟𝑖 at the final layer. 

Compared to SELoss, 𝑆𝐸𝐿𝑜𝑠𝑠𝑚 reduces the value of 𝑟𝑖 at each layer. This indicates 

that the multi-stage learning strategy effectively reduces instability at each layer, 

starting from the initial layers, thereby mitigating the propagation of imprecision. 

As a result, the improvement in prediction stability is significant. 

 

Fig. 3. Error 𝑟𝑖 of each layer: the x-axis represents each layer of the model, and the y-axis repre-

sents 𝑟𝑖. 

SELoss increases training time, but the increase is limited for low dimensions Due 

to the requirement of calculating 𝐽𝑖(𝑎𝑖) in each layer, our method incurs additional 

training time. Therefore, we analyzed the time overhead of the algorithm in this exper-

iment. We first provide the training time comparison between the base model and the 

model with SELoss across three datasets. Since the convergence rounds of the models 

may be different on different datasets. In order to see the effect of the number of nodes 

of the models and the size of the model on the time, we uniformly set the number of 

training epochs to 100 for the time comparison for every model, which reduces the 

effect of the training time caused by the different number of epochs. Table 3 illustrates 

the comparison results. 

Table 3. Training and testing times for different methods. 

dataset method Train(s) Test(s) 

blood_samples 

base 19.31 0.0019 

SELoss 24.24 0.0021 

Randomized Smoothing 19.41 7.1500 

diabetes 

base 14.35 0.0024 

SELoss 16.77 0.0024 

Randomized Smoothing 14.38 4.6267 

MIMIC III 

base 29.82 0.0186 

SELoss 266.58 1.4295 

Randomized Smoothing 29.65 37.3910 

From the Table 3, we can see that on blood_samples and diabetes datasets, the 

training time increase is not significant. On the MIMIC-III dataset, the time increase is 

relatively larger, mainly because the input dimension of the MIMIC dataset is much 

higher. We used the same way as previous work to process the input data, which has 

706 dimensions. Accordingly, the number of nodes in the hidden layer is higher, with 



 

500 nodes. While on blood_samples and diabetes datasets, the number of nodes is 128 

and 64. It can be seen that the method proposed in this paper adds limited time when 

the input dimension and the number of hidden layer nodes are within a certain range. 

We also compared the time overhead with the current effective method of randomized 

smoothing. The time for one sample inference is also provided in Table 3. From the 

table, we can see that different from the proposed method, randomized smoothing in-

creases the inference time, since it requires sampling each sample within its neighbor-

hood, resulting in much greater time overhead across all three datasets. As the input 

dimension increases, the number of samples in the neighborhood increases signifi-

cantly, leading to greater time consumption. So, the time cost increases are particularly 

notable on the MIMIC dataset. 

4.5 Parameter sensitivity experiment 

This section explores the relationship between the parameter 𝛾  and both instability and 

accuracy, as well as the trend of their changes. Specifically, we analyze how variations 

in the 𝛾   value influence the stability of the model and its predictive performance. 

Through this analysis, the goal is to identify optimal settings for 𝛾  that balance the 

minimization of instability and the maximization of accuracy, providing valuable in-

sights into the role of this parameter in model tuning and its impact on overall perfor-

mance. 

As shown in the Fig.4, increasing 𝛾   leads to a reduction in instability; however, 

when 𝛾  becomes too large, accuracy also significantly declines. Therefore, an appro-

priate 𝛾  value is crucial for achieving a balance between accuracy and instability. It can 

be observed that the optimal 𝛾  varies considerably across different datasets and predic-

tion tasks. 

 

Fig. 4. The variation of instability and accuracy with different parameter settings. 

5 Related Work 

Deep neural networks are known for their sensitivity to input variations. Previous meth-

ods to mitigate input sensitivity can be divided into two data augmentation and model 

augmentation methods.  

Data augmentation methods enhance the training dataset by introducing variations 

or adversarial samples into training process [10], thereby helping the model generalize 

better. Much of the research in this area focuses on generating this kind of samples. 

FGSM [9,][21] or PGD [10] employed min-max optimization to generate adversarial 

samples. In healthcare field, adversarial patients are defined and examined in [22]. 
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Different methods [16] were provided to generate adversarial examples in medical deep 

learning classifiers. Although numerous adversarial example generation methods have 

been developed, they are known to hurt test accuracy on many datasets [11,12]. Both 

FGSM and PGD methods have observed a decrease in accuracy despite improving the 

robustness of the model. 

Model augmented methods modify the model itself, by designing special neurons or 

learning mechanism to improve stability and robustness. Among them, certifiable mod-

els design classifiers whose prediction at any point is verifiably constant within some 

set around the point [23]. As well-known that the robustness of a neural network is 

closely related to the lipschitz continuity, Lipschitz ReLU Networks [24] use ReLU 

activations but enforce lipschitz continuity through constraints on the weights. Zhang 

et al. [25] studied the expressive power of lipschitz neural networks and then develop 

the SorNet by leveraging order statistic functions. Despite these advancements, neural 

networks that satisfy the certified properties often have limited expressive power and 

generalizability. Randomized Smoothing [15] is another certified method that starts 

with a standard classifier and then creates a smoothed classifier, which determines the 

final class prediction based on a majority vote among predictions made on noisy inputs. 

However, stochastic smoothing methods have high computational costs in prediction 

process and are primarily suitable for perturbations with 𝑙2 norm. 

It has been demonstrated that robustness often comes at a cost [26]. Specifically, 

training robust models can be more resource-intensive and may result in decreased 

standard accuracy. A growing body of research explores the relationship between ac-

curacy and robustness. Some studies [12] suggest that why robustness may lead to lower 

accuracy is that different classes are very close together or they may even overlap. In 

[14], the key role of the decision boundary in the robustness of the model is emphasized, 

and the location and characteristics of the decision boundary are crucial to the anti-

perturbation ability of the model. The TRADES training [8] is proposed to improve the 

robustness of the model by pushing away the decision boundary. DeepDIG [27] frame-

work generates samples close to the decision boundary, which verifies the idea that data 

points near the decision boundary are vulnerable to attacks. Recent work [28] suggests 

that smoothing the sensitivity of features and the decision boundary can enhance ro-

bustness. However, it is easy to see that output perturbations are closely related to the 

learning ability of the intermediate layers. Therefore, regularizing these layers and en-

hancing their stability and learning capability, especially in the initial layers, is crucial. 

6 Conclusions 

In this paper, we focus on improving prediction stability without generating additional 

training samples nor compromising accuracy. The key idea is to reformulate the learn-

ing problem as a multi-objective optimization task with a new stability-enhanced loss 

function. With a multi-step training strategy to control instability in each layer, the ex-

perimental evaluation on three real-world datasets shows that the new method provides 

both accurate and stable predictions across various tasks. However, the stability prob-

lem, clearly very relevant and important to many applications including healthcare, is 



 

far from solved. One cluster of problems concerns extension of the multi-objective op-

timization approach to other learning methods and models. In particular, it isn't clear if 

the SELoss function needs to be further adjusted, nor how the learning algorithms 

should be adapted. Another group of questions concerns the stability metric itself; ques-

tions such as how effective and accurate in its assessment on arbitrary models, and how 

efficient to determine stability deserve further exploration. 
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