

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Enhancing the Identification of Related-Key Neural

Differential Distinguishers for SPECK32/64

Wanqing Wu1,2, and Mengxuan Cheng1

1 School of Cyber Security and computer, Hebei University, Baoding, Hebei 071002
2 Key Laboratory on High Trusted Information System in Hebei Province(Hebei University),

Baoding, Hebei 071002

cmxuan117@163.com

Abstract. Lightweight encryption algorithms play a vital role in securing com-

munications for resource-constrained devices. As a prominent lightweight cipher,

SPECK has attracted extensive security analyses. At ASIACRYPT 2023, Bao

et al. introduced a related-key neural-network differential distinguisher capable

of effectively distinguishing 9-round SPECK32/64 ciphertexts and integrated it

into a (1+s+r+1) key-recovery framework to attack 14-round SPECK32/64. In-

spired by their work, this paper presents a new related-key neural differential

distinguisher for SPECK32/64, built upon a novel related-key processing method

and an alternative network architecture, which significantly boosts the accuracy

of distinguishing 10-round ciphertexts. Within the same (1+s+r+1) key-recovery

framework, we employed our trained distinguisher to recover the key of 15-round

SPECK32/64. The specific contributions are as follows: First, this paper intro-

duces a novel related-key processing method, generating correlated subkey pairs

for encrypting samples containing 64 plaintext pairs. Second, a related-key neural

differential distinguisher was constructed based on the Inception module from

GoogleNet and the DenseNet architecture. Experimental results demonstrate that

the trained distinguisher achieves a recognition accuracy of 97.24% for 10-round

ciphertexts, surpassing Bao et al.'s results by extending the recognizable rounds

by one. Finally, leveraging the 10-round neural distinguisher, this paper success-

fully executed a key recovery attack on 15-round SPECK32/64. Analysis of er-

ror-bit distributions revealed a correct key recovery success rate of 98.67%.

Keywords: SPECK, Key Recovery Attack, Neural Differential Distinguisher,

Related Key.

1 Introduction

With the rapid development of the Internet of Things (IoT) and embedded systems,

traditional encryption algorithms such as DES and AES struggle to function effectively

under constrained storage and computational resources. Consequently, lightweight en-

cryption algorithms have emerged. The SPECK cipher, designed by the U.S. National

Security Agency (NSA) [1], is a lightweight block cipher that exhibits strong perfor-

mance in both hardware and software implementations. However, as modern

cryptographic attack techniques continue to evolve, evaluating the security of the

SPECK algorithm has become critically important. In block cipher research, differen-

tial cryptanalysis remains one of the most effective analytical methods.

Differential cryptanalysis, proposed by Biham and Shamir [2] in 1991 to crack the

DES cipher [3], is a primary method for attacking symmetric encryption algorithms. It

infers key information by analyzing the relationship between input and output differ-

ences. Subsequent studies have explored SPECK variants and SPECK differential trails

[4-6]. At CRYPTO 2019, Gohr [7] introduced neural differential distinguishers, com-

bining neural networks (ResNet [8]) with differential cryptanalysis. For reduced-round

SPECK32/64, neural distinguishers were successfully trained for 5–7 rounds. Com-

pared to classical differential distinguishers, neural distinguishers capture richer feature

information and achieve higher key recognition accuracy. The 7-round distinguisher

achieved 61.6% accuracy, a 2.5% improvement over the classical distinguisher’s

59.1%. This advancement propelled research on neural network-based cryptanalysis.

In 2021, Chen et al. [9] extended the input plaintext pairs from one pair to multiple

pairs, organizing them into input matrices based on bit positions. This approach im-

proved Gohr’s [7] 7-round neural distinguisher accuracy by 3.3%, reaching 64.9%. In

2022, Zhang et al. [10] proposed an extended data format (𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′, 𝑌𝑟−1
 , 𝑌𝑟−1

′),

incorporating information from the previous round into the neural network input. This

modification increased the 7-round distinguisher’s accuracy to 89.58%, with the 8-

round distinguisher achieving 58.53%. In 2023, Yue et al. [11] introduced a new data

structure (𝑌𝑟−1
 , 𝑌𝑟−1

′ , Z, 𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′) , further boosting the 7-round neural distin-

guisher’s accuracy to 97.13%. The same year, Liu et al. [12] proposed a novel input

data generation method and two specialized input models, constructing distinguishers

capable of identifying 8-round SPECK32/64 ciphertext differential features, achieving

65.02% accuracy for the 8-round distinguisher.

Subsequently, researchers integrated related-key differential attacks with neural net-

works to develop related-key neural differential distinguishers. Tcydenova et al. [13]

utilized key differences to build related-key neural distinguishers, improving 8-round

distinguisher accuracy to 84.84% and achieving 59.32% accuracy for a 9-round distin-

guisher. Bao et al. [14] analyzed high-probability differential characteristics of related

keys, encrypting plaintext pairs with related keys conforming to specific differences,

and using the resulting ciphertexts as inputs for neural distinguishers. Their work en-

hanced the 9-round distinguisher’s accuracy to 77.26% and successfully trained a 10-

round neural distinguisher with 56.43% accuracy.

Inspired by these advancements, this paper proposes a novel key processing method

that integrates features of related-key and single-key scenarios to generate correlated

subkey pairs for encrypting plaintext samples. For the neural network architecture, we

design a new model based on DenseNet [15] and Inception modules [16]. The core

module employs three parallel convolutional layers with varying kernel sizes, enabling

the neural differential distinguisher to capture richer feature information from cipher-

text samples, thereby achieving higher accuracy. Experimental results demonstrate re-

lated-key neural distinguishers for 9-round and 10-round SPECK with accuracies of

99.99% and 97.24%, respectively. Finally, we validate the correctness of the 10-round

SPECK neural distinguisher by performing a key recovery attack on 15-round SPECK.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

2 Preliminaries

2.1 SPECK Algorithm

SPECK is a lightweight block cipher designed by the U.S. National Security Agency

(NSA) in 2013. SPECK employs a Feistel structure and utilizes four core operations:

modular addition (⊞), XOR (⊕), right rotation (⋙), and left rotation (⋘).This paper

primarily focuses on SPECK32/64, which consists of 22 round functions, with a block

size of 32 bits, a key size of 64 bits, and a word length of 16 bits.

For the round function, given the i-th round input (𝑋𝑖
 , 𝑌𝑖

) and subkey 𝑘𝑖
 , the corre-

sponding output is (𝑋𝑖+1
 , 𝑌𝑖+1

), where 0 ≤ i ≤ 21. The detailed process is as follows:

{
𝑋𝑖+1

 = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

) ⊕ 𝑘𝑖

𝑌𝑖+1
 = (𝑌𝑖

 ⋘ 2) ⊕ 𝑋𝑖+1

The subkey generation algorithm aligns closely with the SPECK round function. The

round function is illustrated in Fig. 1.

Fig. 1. Round function for SPECK cipher.

2.2 DenseNet

Deep neural networks face challenges such as vanishing gradients, inefficient feature

reuse, and parameter redundancy. To address these issues, Huang et al. [15] proposed

DenseNet, which introduces dense connectivity: each layer connects directly to all sub-

sequent layers. This mechanism enhances gradient flow, maximizes feature reuse, and

improves parameter efficiency and training stability.

DenseNet's dense connectivity mechanism can be divided into feature concatenation

and feature reuse. Feature concatenation can be expressed mathematically. If the output

formula of a traditional neural network at layer i is represented as:

 𝐿𝑖
 = 𝐻(𝐿𝑖−1

)

, then the output formula of DenseNet at layer i can be expressed as:

𝐿𝑖
 = 𝐻([𝐿0

 , 𝐿1
 , … , 𝐿𝑖−1

])

where H(⋅) denotes a nonlinear transformation function, comprising a series of opera-

tions including Batch Normalization (BN), ReLU activation, Pooling, and Convolution

(Conv). The symbol [⋅] represents concatenation along the channel dimension, and 𝐿𝑖

denotes the output of the i-th H function mapping from all preceding layers.

Feature reuse refers to the direct access of feature maps from all previous layers by

each subsequent layer, facilitating the fusion of low-level and high-level features and

thereby reducing redundant computations.

The core components of DenseNet’s architecture are the Dense Block and Transition

Layer. The workflow of a Dense Block is illustrated in Fig. 2.

Fig. 2. Dense Block

Within a Dense Block, multiple densely connected layers are included. Each layer can

directly access the feature maps from all preceding layers. The spatial dimensions of

the feature maps remain unchanged, while the number of channels increases incremen-

tally at a predefined growth rate.

The Transition Layer, positioned between two Dense Blocks, compresses the feature

map dimensions and reduces the number of channels to prevent parameter explosion.

2.3 Inception Module

The Inception module first appeared in GoogleNet and serves as its core component,

proposed by Christian Szegedy [16]. By introducing multi-scale convolution and pool-

ing operations, this module enables the network to perform feature extraction across

varying receptive fields, thereby enhancing the model’s recognition capability and ef-

ficiency. The Inception module executes parallel convolutional operations with kernels

of different sizes (e.g.,1×1, 3×3, and 5×5). The 1×1 convolution is used for dimension-

ality reduction to minimize parameters and computational costs, while

the 3×3 and 5×5 convolutions capture features at different scales. These features are

concatenated to form the input for the subsequent layer.

3 A New Method for Generating Related Keys

3.1 Analysis of Single-Key and Related-Key Encryption

Single-Key Encryption.

When encrypting plaintext pairs with a single key, the diffusion of differential charac-

teristics in ciphertext pairs arises solely from the modular addition operations during

encryption. The differential value calculations are shown in Equations (1) and (2). The

differential value after the i-th round of encryption is:

𝑋𝑖+1
 ⊕ 𝑋𝑖+1

′ = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

) ⊕ 𝑘𝑖
 ⊕ ((𝑋𝑖

′ ⋙ 7) ⊞ 𝑌𝑖
′) ⊕ 𝑘𝑖

 = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

) ⊕ ((𝑋𝑖
′ ⋙ 7) ⊞ 𝑌𝑖

′)
 (1)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

𝑌𝑖+1
 ⊕ 𝑌𝑖+1

′ = (𝑌𝑖
 ⋘ 2) ⊕ 𝑋𝑖+1

 ⊕ (𝑌𝑖
′ ⋘ 2) ⊕ 𝑋𝑖+1

′

 = ((𝑌𝑖
 ⊕ 𝑌𝑖

′) ⋘ 2) ⊕ (𝑋𝑖+1
 ⊕ 𝑋𝑖+1

′)

 = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

) ⊕ ((𝑋𝑖
′ ⋙ 7) ⊞ 𝑌𝑖

′) ⊕ ((𝑌𝑖
 ⊕ 𝑌𝑖

′) ⋘ 2)

(2)

As the number of rounds increases, the diffusion of differential characteristics intensi-

fies, making it progressively harder for neural networks to recognize ciphertext differ-

entials. A schematic of ciphertext feature diffusion in single-key encryption is shown

in Fig. 3.

Fig. 3. Thumbnail of Ciphertext Feature Diffusion in Single-Key Encryption

Related-Key Encryption

Encrypting identical plaintexts with related subkeys (with a non-zero differential) pro-

duces ciphertext pairs whose differential values are influenced solely by the key differ-

ences. The differential value after the first round is calculated as follows:

𝑋𝑖+1
 ⊕ 𝑋𝑖+1

′ = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

) ⊕ 𝑘𝑖
 ⊕ ((𝑋𝑖

 ⋙ 7) ⊞ 𝑌𝑖
) ⊕ 𝑘𝑖

′

 = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

) ⊕ ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

) ⊕ 𝑘𝑖
 ⊕ 𝑘𝑖

′

= 𝑘𝑖
 ⊕ 𝑘𝑖

′

 (3)

𝑌𝑖+1
 ⊕ 𝑌𝑖+1

′ = (𝑌𝑖
 ⋘ 2) ⊕ 𝑋𝑖+1

 ⊕ (𝑌𝑖
 ⋘ 2) ⊕ 𝑋𝑖+1

 = ((𝑌𝑖
 ⊕ 𝑌𝑖

) ⋘ 2) ⊕ (𝑋𝑖+1
 ⊕ 𝑋𝑖+1

)

= 𝑘𝑖
 ⊕ 𝑘𝑖

′

 (4)

However, in subsequent rounds of ciphertext pairs, the differential characteristics of the

ciphertext propagate due to the modular addition operations applied to the differential

values inherited from previous rounds. Simultaneously, the diffusion of differential

characteristics in the related subkey generation process further amplifies this effect.

Consequently, the differential values of the ciphertext pairs are influenced both by the

modular addition operations and the differentials of the subkeys, as demonstrated in

Equations (5) and (6). Under related-key encryption, the diffusion speed of ciphertext

differential characteristics is significantly faster compared to single-key encryption.

𝑋𝑖+1
 ⊕ 𝑋𝑖+1

′ = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

) ⊕ 𝑘𝑖
 ⊕ ((𝑋𝑖

′ ⋙ 7) ⊞ 𝑌𝑖
′) ⊕ 𝑘𝑖

 = (((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

) ⊕ ((𝑋𝑖
′ ⋙ 7) ⊞ 𝑌𝑖

′)) ⊕ (𝑘𝑖
 ⊕ 𝑘𝑖

′)
 (5)

ciphertext

difference 1

ciphertext

difference 2-1

ciphertext

difference 2-n

Rounds: First Round Second Round Third Round

Probability Probability

ciphertext

difference 3-1

ciphertext

difference 3-m

P1-1

P1-n

P2-1

P2-m

𝑌𝑖+1
 ⊕ 𝑌𝑖+1

′ = (𝑌𝑖
 ⋘ 2) ⊕ 𝑋𝑖+1

 ⊕ (𝑌𝑖
′ ⋘ 2) ⊕ 𝑋𝑖+1

′

= ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

) ⊕ ((𝑋𝑖
′ ⋙ 7) ⊞ 𝑌𝑖

′) ⊕ ((𝑌𝑖
 ⊕ 𝑌𝑖

′) ⋘ 2) ⊕ (𝑘𝑖
 ⊕ 𝑘𝑖

′)
(6)

When encrypting plaintext pairs with a zero differential using a master key pair with a

differential value of Δ=0x0040/0000/0000/0000, the subkey generation algorithm en-

sures that the first three rounds of subkey differentials are zero. Combined with the zero

plaintext differential, neither key nor ciphertext characteristics propagate during the

first three encryption rounds. This design partially mitigates the accelerated diffusion

of differential characteristics in subsequent rounds, allowing the neural differential dis-

tinguisher to effectively identify ciphertext features up to 8 rounds [15]. A schematic

of ciphertext differential characteristic diffusion under related-key encryption is illus-

trated in Fig. 4.

Fig. 4. Thumbnail of Ciphertext Feature Diffusion in Related-Key Encryption

3.2 New Subkey Generation Method

Building on the above analysis, this paper proposes a new method for generating related

subkeys. A 64-bit master key is randomly selected, and a related master key is derived

using the differential Δ=0x0040/0000/0000/0000. These two master keys form a related

master key pair. Using the key schedule algorithm, the first three rounds of subkeys

generated from this pair have zero differentials. A non-zero differential first appears in

the fourth-round subkeys. After encrypting four rounds with the fourth-round subkey

pair, the fifth-round ciphertext pair becomes the first to exhibit a differential. For the

fifth and subsequent rounds, only one set of subkeys (generated from one master key)

is retained and assigned to both subkey sequences. This ensures that subkey differen-

tials from the fifth round onward are eliminated, thereby slowing the diffusion of ci-

phertext differentials under related-key conditions.

The specific process for generating related subkeys is as follows:

1. Set the differential value Δ=0x0040/0000/0000/0000. Randomly and uniformly se-

lect a 64-bit string as the master key 𝐾
 .

2. Compute the related master key 𝐾
′ using 𝐾

 ⊕ 𝐾
′ =△.

3. Apply the key schedule algorithm F to K for r rounds (r≥5), generating the corre-

sponding subkeys 𝑘𝑖
 (𝑖 = 0,1,2, … , 𝑟 − 1).

4. Apply the key schedule algorithm to 𝐾
′ for 4 rounds, generating subkeys 𝑘𝑖

′(𝑖 =
0,1,2,3). Starting from the 5th round, assign 𝑘𝑖

′ = 𝑘𝑖
 (i = 4,5,6, … , r − 1).

ciphertext

difference 1

Difference in the

mode-added part_1

Difference in the

mode-added part_1

Rounds: First Round Second Round

ciphertext

difference 2-1

ciphertext

difference 2-m

P1

Pn

Pk1

Pkm

Pi : Differential probability of modular addition

Pki : Differential probability of related key

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

5. Organize the subkey pairs (ki
 , ki

′)(i = 0,1,2, … , r − 1) to obtain the related master

key pair(K
 , K

′) and its associated subkey sequences.

The complete related key generation workflow is illustrated in Fig. 5.

Fig. 5. Key Processing Procedure

4 Constructing Neural Differential Distinguishers

4.1 Building Input Data for Neural Differential Distinguishers

This paper adopts a multi-ciphertext-pair data structure as the input for neural differen-

tial distinguishers.

1. Randomly generate a training dataset containing 2n samples. Each sample consists

of mm uniformly distributed random plaintext pairs (𝑃
 , 𝑃

′) with a differential value

of 0, where 𝑃
 is 32 bits.

2. Assign a binary label vector T to the sample set. Randomly label half of the samples

in the set as positive samples, denoted by T=1; label the other half as negative sam-

ples, denoted by T=0. In the negative samples, replace 𝑃
′ with other different ran-

domly generated data.

3. Divide P evenly into two 16-bit parts, with the left part denoted as 𝑋0
 and the right

part as 𝑌0
 . Apply the same process to the plaintext 𝑃

′ ; thus, the plaintext pair

(𝑃
 , 𝑃

′)can be represented as (𝑋0
 , 𝑌0

 , 𝑋0
′ , 𝑌0

′) . Therefore, one sample can be ex-

pressed as in formula (7):

(𝑋0_1
 , 𝑌0_1

 , 𝑋0_1
′ , 𝑌0_1

′)

(𝑋0_2
 , 𝑌0_2

 , 𝑋0_2
′ , 𝑌0_2

′)
. . .

(𝑋0_𝑚
 , 𝑌0_𝑚

 , 𝑋0_𝑚
′ , 𝑌0_𝑚

′)

 (7)

In the formula, the subscript of 𝑋𝑖_𝑗
 denotes that i indicates encryption up to round i

and j indicates the j-th plaintext/ciphertext pair in the sample.

4. According to the related subkey generation method proposed in Section 3, randomly

generate 2n related keys(𝐾
 , 𝐾

′), where each related key generates corresponding r-

round related subkey pairs (𝑘𝑖
 , 𝑘𝑖

′)(i = 0,1,2, … , r − 1).

5. Introduce the r-round related subkey pairs (𝑘𝑖
 , 𝑘𝑖

′) to encrypt the plaintext samples

and obtain r rounds of ciphertext data. Then, based on the data structure proposed in

[11], perform transformation operations on the ciphertext data to obtain the final

input data samples for the neural differential discriminator, as shown in formula (8):

F F F FK F F
k0 k1 k2 k3 k4 kr-2 Kr-1

F F F FK k 0 k 1 k 2 k 3 k 4 k r-2 k r-1

K K =0x0040/0000/0000/0000

(𝑌𝑟−1_1
 , 𝑌𝑟−1_1

′ , Z_1, 𝑋𝑟_1
 , 𝑌𝑟_1

 , 𝑋𝑟_1
′ , 𝑌𝑟_1

′)

(𝑌𝑟−1_2
 , 𝑌𝑟−1_2

′ , Z_2, 𝑋𝑟_2
 , 𝑌𝑟_2

 , 𝑋𝑟_2
′ , 𝑌𝑟_2

′)
. . .

(𝑌𝑟−1_𝑚
 , 𝑌𝑟−1_𝑚

′ , Z_m, 𝑋𝑟_𝑚
 , 𝑌𝑟_𝑚

 , 𝑋𝑟_𝑚
′ , 𝑌𝑟_𝑚

′)

 (8)

The overall construction process of the input data structure is shown in the Fig. 6:

Fig. 6. Data structure

4.2 Network Architecture

This paper proposes a novel neural network architecture inspired by DenseNet and the

Inception module from GoogleNet. The network consists of an input layer, an initial

convolutional layer, Dense Blocks, and a prediction head. The overall framework is

depicted in Fig. 7.

Fig. 7. Neural network architecture

Input Layer: This layer performs preliminary processing on the data input into the neu-

ral network. The samples are input in the form of one-dimensional data. The input layer

receives these data and converts them into two-dimensional data with a shape of [W∗M,

m], and then passes these two-dimensional data to the Initial Convolutional Layer. In

[W∗M, m], W represents the bit-size of the basic data in the sample, M represents the

number of basic data in the sample, and m represents the number of plaintext pairs in a

sample.

Initial Convolutional Layer: This layer is used to extract low-level features from the

ciphertext data. After obtaining the two-dimensional data from the Input Layer, a con-

volution with a 1×1 kernel is first performed. Then, the convolved results are batch

X0_1 Y0_1

X0_2 Y0_2

X0_m Y0_m

Xr_1 Yr_1

Xr_2 Yr_2

Xr_m Yr_m

X'0_1 Y'0_1

X'0_2 Y'0_2

X'0_m Y'0_m

X'r_1 Y'r_1

X'r_2 Y'r_2

X'r_m Y'r_m

Xr_1 Yr_1 X'r_1 Y'r_1Yr-1_1 Y'r-1_1 Z_1

Xr_2 Yr_2 X'r_2 Y'r_2Yr-1_2 Y'r-1_2 Z_2

Xr_m Yr_m X'r_m Y'r_mYr-1_m Y'r-1_m Z_m

K K'

Input Layer

Initial Convolutional Layer

Dense Blocks

Prediction Head

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

normalized, followed by processing with the “relu” activation function to obtain the

output, which is then passed to the subsequent Dense Blocks. The number of filter

channels corresponding to the Initial Convolutional Layer is 3Nf.

Dense Blocks: First, three convolutional layers with the same number of channels

Nf and kernel sizes of 1×1, 3×3, and 8×8 are applied to the input data. Then, the results

of these three convolutions are concatenated along the channel dimension to obtain

merged data with 3Nf channels. The merged data is then processed by batch normali-

zation and the “relu” activation function to yield intermediate data. This intermediate

data is passed through a convolutional layer with a kernel size of 3×3 and 3Nf channels,

followed by a normalization layer and a “relu” activation layer to obtain the final data.

Finally, the input data of the Dense Block is concatenated with the final data obtained

within the Dense Block to form the output of the Dense Block. The Dense Block is

executed five times, with the output of the last block being passed to the subsequent

module.

Prediction Head: Once the final output with differential features from the Dense

Blocks is obtained, it is transformed into a one-dimensional format using the flatten

function. This data is then input into two fully connected layers, each containing 1024

neurons, followed by normalization and “relu” activation. A dropout function is incor-

porated to discard some neurons, preventing overfitting and enhancing model robust-

ness. Finally, a fully connected layer with a single neuron, activated by a sigmoid func-

tion, produces the final result.

The complete neural network process is shown in Fig. 8.

Fig. 8. Complete neural network

The network employs the Mean Squared Error (MSE) loss function and the ADAM

optimizer. The learning rate is updated cyclically after each epoch according to Equa-

tion (9):

Li = α +
(t − i) mod(t + 1)

n
(β − α) (9)

4.3 Specific Parameter Settings

The following are the specific parameters used in the input data and the neural network.

1×1，Conv，3Nf

BN

RELU

Initial

Convolutional

Layer

1×1，Conv，Nf 2×2，Conv，Nf 8×8，Conv，Nf

BN

RELU

3×3，Conv，3Nf

BN

RELU

Dense Block

BN

RELU

FLATTEN

DENSE，1024

BN

RELU

DENSE，1024

Dropout，0.5

DENSE，1

SIGMOID

Prediction Head

5 Experimental Results

The experiments in this paper were conducted on the Ubuntu 20.04 operating system,

utilizing Python 3.8 and TensorFlow 2.10.0 for code implementation. The hardware

setup includes a machine equipped with two NVIDIA A4500 16GB GPUs, a 16-core

Intel(R) Xeon(R) Gold 5222 CPU running at 3.80GHz, and 60GB of RAM.

Table 1. Specific Parameter Settings

Parameter Symbol Value

Number of samples 2n 220

Plaintext pairs per sample m 64

Bit size of basic data elements W 16

Number of basic data elements M 7

Filter channels Nf 32

Minimum learning rate α 10
-4

Maximum learning rate β 4×10
-3

Cycle parameter t 9

5.1 Experimental Results of the Neural Differential Distinguisher

Based on the methodology described in Section 4, a total of 220 training samples and

217 testing samples were randomly generated for the 9-round encrypted SPECK cipher,

with each sample containing m=64 ciphertext pairs. These samples were subsequently

fed into the 9-round neural differential distinguisher for training, the same procedure

was applied for ten rounds. The results are illustrated in Fig. 9.

Fig. 9. Experimental results of the nine and ten rounds neural differential distinguisher

Fig. 9 depict the training performance of the 9-round and 10-round neural differential

distinguishers. In these figures, the x-axis represents the epochs, while the y axis shows

the accuracy and loss rates during training and validation. The lines illustrate the

changes in accuracy and loss as the number of epochs increases. In the left figure, it is

evident that the validation accuracy of the 9-round neural differential distinguisher

reached 99.99%, with a corresponding loss rate of only 0.02%. In the right figure, the

validation accuracy of the 10-round neural differential distinguisher achieved 97.24%,

while the validation loss rate was 5.51%.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
cc

u
ra

cy
/L

o
ss

epoch

Results on 9-round Speck32

Training Loss Training Accuracy

Validation Loss Validation Accuracy

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
cc

u
ra

cy
/L

o
ss

epoch

Results on 10-round Speck32

Training Loss Training Accuracy

Validation Loss Validation Accuracy

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

The final results of Bao et al. and this paper are summarized in Table 2. The com-

parison indicates an improvement in accuracy with the proposed method. Specifically,

the accuracy of the 9-round distinguisher in this paper reached 99.99%, compared to

77.26% in Bao et al.’s findings. Additionally, the accuracy for the 10-round distin-

guisher was 97.24%, representing a 40.81% increase over Bao et al.’s result of 56.43%.

While this paper trained an 11-round neural differential distinguisher, the results were

less favorable, with an accuracy of only 53.64%.

Table 2. Comparison of the end result

SPECK’s round
Accuracy of Bao’s differentiators

[14]

The accuracy of the differ-

entiators in this paper

9 77.26% 99.99%

10 56.43% 97.24%

11 - 53.65%

5.2 Comparison of Different Encryption Methods

To demonstrate the advantages of the related key generation method proposed in this

paper, we compared the impact of four encryption approaches on neural differential

distinguisher accuracy. Using identical data structures and network architectures across

experiments ensured that performance differences solely reflected encryption method

variations. The evaluated approaches include:

1. Single-key encryption with plaintext differential ΔP=0x0040/0000.

2. Related-key encryption with ΔP=0 and key differential Δ=0x0040/0000/0000/0000.

3. Related-key encryption with ΔP=0 using keys conforming to specific differential

trails (Bao et al. [14]).

4. The proposed method: related-key encryption with ΔP=0 using fully random keys

generated via our approach.

The input data generated by these four methods were used to train the neural differential

distinguisher, and the results are presented in Table 3.

Table 3. Results of 10 Rounds of Training for Different Encryption Schemes

Input Data Encryption Mode 10-Round Distinguisher Accuracy

Single-key [7] 50.52%

Related-key [13] 50.19%

Bao [14] 74.14%

Ours 97.24%

From Table 3, it can be observed that data encrypted using either single-key or con-

ventional related-key methods fails to exhibit detectable differential features for the 10-

round neural distinguisher, with accuracies close to random guessing (approximately

50%). While Bao et al.'s encryption method achieves a 74.14% accuracy for the 10-

round neural distinguisher by employing related keys adhering to specific differential

trails, this approach narrows the key space by relying on not fully random key selection,

limiting its applicability to constrained scenarios. In contrast, our method generates

fully random keys while achieving a 10-round neural distinguisher accuracy of 97.24%.

This demonstrates that the keys generated in this work offer broader applicability, more

effectively mitigate ciphertext differential diffusion, and enable neural distinguishers

to identify high-round ciphertext features with greater reliability.

5.3 Comparison of Different Data Structures

In Bao et al.'s experiments, the data format was (𝑌𝑟−1
 , 𝑌𝑟−1

′ , 𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′), while this

paper adopts (𝑌𝑟−1
 , 𝑌𝑟−1

′ , Z, 𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′). To evaluate the impact of data structures on

neural distinguisher accuracy, a comparative experiment was conducted for 10-round

neural distinguishers using three structures: the proposed structure, Bao et al.'s struc-

ture, and Gohr’s structure (𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′). All experiments utilized the neural network

proposed in this paper, with other parameters held constant. Results are shown in Table

4.

Table 4. Results of 10 rounds of training for different data formats

Data Structures Source
Accuracy of neural differential

distinguishers

(𝑌𝑟−1
 , 𝑌𝑟−1

′ , Z , 𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′) ours 97.24%

(𝑌𝑟−1
 , 𝑌𝑟−1

′ , 𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′) Bao [14] 88.76%

(𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′) Gohr [7] 50.26%

Experimental results confirm that the parameter Z in the proposed structure preserves

features from the differential values of 𝑋𝑟−1
 and 𝑋𝑟−1

′ unaffected by subkey k [11].

This design achieves the highest accuracy 97.24% among the three structures, surpas-

sing Bao et al.'s method by 8.48%. In contrast, Gohr’s structure achieved only 50.26%

accuracy, failing to identify meaningful features. Thus, the proposed data structure

demonstrates superior performance in enhancing neural distinguisher accuracy.

5.4 Comparison of Different Neural Networks

To evaluate the impact of neural network architectures on the performance of neural

differential distinguishers, this paper compares three networks under identical experi-

mental conditions. All networks use the data processing method proposed in this paper,

adopt the same data structure, and adjust network parameters to optimize performance.

Comparative experiments for 10-round neural distinguishers were conducted against

the networks proposed by Bao et al. [14] and Yue et al. [11]. The accuracy results are

summarized in Table 5

As shown in Table 5, the proposed network achieves 97.24% accuracy for 10-round

distinguishers, outperforming the other two networks by at least 5%. This demonstrates

that the proposed architecture significantly enhances the recognition of ciphertext dif-

ferential features. For scenarios demanding higher accuracy, the proposed network is

the superior choice.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Through these comparative experiments, the novel related-key generation method

and network architecture proposed in this paper collectively advance the state-of-the-

art in neural differential distinguishers. The recognition accuracy for 10-round

SPECK32/64 reaches 97.24%, surpassing the previously highest reported 9-round ac-

curacy of 77.26% [14]. This represents a one-round improvement in attack capability

while achieving a substantial accuracy gain.

Table 5. Results of 10 rounds of training for different neural networks

Source Accuracy of neural differential distinguishers

Bao[14] 93.57%

Yue[11] 94.22%

ours 97.24%

6 Key Recovery Attack

To validate the effectiveness of the related-key neural differential distinguisher de-

scribed in Section 5, this chapter conducts a 15-round key recovery experiment using

the trained 10-round neural distinguisher. The following table defines key symbols used

in the key recovery process:

Table 6. Symbol Notation in Key Recovery

Symbol Explanation

n Sample size

m Number of plaintext pairs per sample

2-p
Propagation probability of the related-key differential

trail: Δ=0x0200/0080/0011/4a00→Δ=0x0040/0000/0000/0000

2-q Propagation probability of the classical differential ΔS→ΔP

c A positive constant

△S Input differential for the classical distinguisher: Δ=0x02a1/4001

△P Input differential for the neural distinguisher: Δ=0x0000/0000

△k Differential of the first-round related subkey pair: Δ=0x0000/4a00

6.1 Key Recovery Attack on Reduced-Round SPECK32/64

This experiment uses a (1 + s + r + 1)-round key recovery attack framework, which

consists of one free round, s rounds of classical distinguisher, r rounds of neural differ-

ential distinguisher, and one round of key guessing. Under the related-key condition, it

is necessary to determine an appropriate key differential trail and specify the key dif-

ferentials for the initial rounds in the experiment. The key differential trail is shown in

Table 7.

In the first free round, since the encryption process in the first round is influenced

by the related key, the decryption key is not (0, 0) but instead (0,0⊕△k) in order to

recover the plaintext. This adjustment effectively eliminates the impact of the first-

round subkey pair on the ciphertext differential of the first round.

Table 7. Related-key differential trails

Round(r) Differential in Key log2 Pr

0 (0200,0080,0011,4a00)

1 (2800,0200,0080,0001) -4

2 (0000,2800,0200,0004) -1

3 (0000,0000,2800,0010) -1

4 (0040,0000,0000,0000) -2

5 (0000,0040,0000,0000) 0

6 (0000,0000,0040,0000) 0

7 (8000,0000,0000,8000) 0

Following the free round, there are s rounds of a classical distinguisher, where s is

set to 3. The inclusion of the classical distinguisher extends the overall number of

rounds in the key-recovery process. The classical distinguisher employs related subkey

pairs that adhere to the differential trajectory for rounds 1–3 as specified in Table 7,

with an input ciphertext differential of ΔS and an output ciphertext differential of ΔP.

For the r rounds corresponding to the related-key neural differential distinguisher,

the first four rounds conform to the key differential trajectory for rounds 4–7 in Table

7, while also satisfying the requirements of the proposed key generation algorithm for

the first four rounds. By integrating this algorithm, the keys for subsequent rounds and

the associated ciphertext data can be derived.

Finally, in the last guessing round, a guessed key is used to perform one round of

decryption on the generated ciphertext data. The decryption results are then fed into the

neural differential distinguisher, which, based on its judgment, yields a guessed key

that is either the closest to the correct key or is the correct key outright.

Complete workflow of key recovery attack:

1. Create a candidate subkey score list variable d←(None). The list d records the cu-

mulative scores for each candidate subkey during key recovery, with a size of 216.

The index corresponds to the subkey value.

2. Uniformly sample n × (2𝑝 + 𝑐) random related master key pairs with differential

values △=0x0200/0080/0011/4a00. Filter n pairs satisfying the differential trail

in Table 7 to serve as related keys for encryption.

3. For the n master key pairs, execute the key scheduling algorithm to generate related

subkey pairs for the first four rounds. Using the method proposed in this paper, ex-

tend these to produce related subkey pairs for rounds 5–15, yielding full 15-round

related subkey pairs.

4. Uniformly sample n × m × (2𝑞 + 𝑐) random data pairs with input differential ΔS.

Perform single-round decryption using the related subkeys (0,0⊕ △k) to derive

plaintext pairs.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

5. Encrypt the plaintext pairs for four rounds using the related subkey pairs from Step

3. Filter n × m pairs with ciphertext difference result (0,0). Group every consecu-

tive m pairs into a sample, yielding n plaintext samples for key recovery.

6. Encrypt the n plaintext samples using the n related subkey pairs to generate n cipher-

text samples.

7. For j from 0 to 216:

a. Decrypt ciphertext samples for one round using subkey j.

b. Apply linear transformation to decrypted results to obtain input for the distin-

guisher.

c. Feed samples into the related-key differential neural distinguisher to compute pre-

diction scores.

d. Sum all sample scores as the total score for subkey j, recorded as d[j].

8. Sort list d in descending order and output the top 10 candidate subkeys with highest

scores.

6.2 Analysis of Key Recovery Results

In total, 150 key recovery experiments were conducted, with each experiment involving

128 plaintext pairs. If the correct key was found among the top ten candidates, it was

considered a successful guess. Out of 150 attempts, all were successful, resulting in a

100% success rate (with 94.67% of guesses in the top five), as detailed in Table 8.

Given that the criteria for key guessing success are not fixed, the corresponding success

rate may vary. Thus, the success rate in this section serves merely as a reference for the

effectiveness of the key recovery algorithm.

Table 8. Ranking of the correct subkeys

Rankings Number of experiments Rankings Number of experiments

1 31 6 4

2 46 7 2

3 34 8 1

4 26 9 1

5 5 others 0

Additionally, this section analyzes the accuracy of each bit in all results, as well as

the number of erroneous bits and their distribution in the individual guessed subkeys.

The bits are designated from right to left as k0 to k15. The candidate subkey with the

highest score across all results is selected as the final guessed key. If the number of

incorrect bits is fewer than three, the key guess is deemed successful. The final count

of erroneous bits can be eliminated through exhaustive methods. The analysis results

are presented in Tables 9 and 10.

Table 9 demonstrates that the differential neural network distinguisher proposed in

this paper successfully identifies 148 subkeys over 15 encryption rounds with 98.67%

accuracy, allowing no more than two erroneous bits in subkey guesses.

Table 10 reveals that only four bits positions−k7, k8, k14, k15−exhibit accuracy rates

below 100%. Specifically, k7 and k8 show accuracy rates exceeding 95%, while k14 and

k15 have accuracy rates between 45% and 50%.

Table 9. The number of error bits in the guessed subkey

Number of error bits Number of experiments

0 31

1 76

2 41

others 2

Table 10. The bit accuracy rate of the guessed subkey

Subkey bits Accuracy Subkey bits Accuracy

k15 48% k7 96%

k14 47% k6 1

k13 1 k5 1

k12 1 k4 1

k11 1 k3 1

k10 1 k2 1

k9 1 k1 1

k8 99% k0 1

Combining the insights from Tables 9 and 10 suggests that the one to two erroneous

bits in the guessed subkey predominantly occur at k14 and k15, with some instances at

k7 and k8. Consequently, further analysis of the distribution of erroneous bits in the

guessed subkey is presented in Fig. 10.

Fig. 10. The distribution of error bits in the guessed subkey

Fig.10 indicates that in the guessed subkeys with one erroneous bit, the errors are

primarily concentrated between k15 and k14, accounting for 49% and 50% of errors,

respectively, totaling 99% of all errors. In the cases of guessed subkeys with two erro-

neous bits, only three combinations of errors were observed: k15 + k14, k15 + k7 and

k14 + k7, with k15 + k14 comprising the majority at 93%.

k15

49%
k14

50%

k7, 1%

Distribution of one error bit

k15

k14

k8

k7
k15+k14

93%

k15+k7

2%
k14+k7, 5%

Distribution of two error bits

k15+k14

k15+k8

k15+k7

k14+k8

k14+k7

k8+k7

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

In summary, during the final exhaustive phase of key recovery attacks, it is advan-

tageous to prioritize the high probability cases of k15, k14, k15 + k14 to efficiently identify

the correct subkey.

7 Conclusion

This paper proposes a novel key processing procedure and a neural network model. The

proposed key generation methodology integrates characteristics of both related-key and

single-key scenarios, eliminating the need to separately analyze plaintext differentials

or key differentials. Compared to existing network architectures, our model captures

more primitive and discriminative features. A series of comparative experiments sys-

tematically validates the advantages of the proposed key processing mechanism and

neural architecture in training neural distinguishers. Furthermore, we successfully ap-

plied the trained related-key differential neural distinguisher to perform a key recovery

attack on 15-round SPECK32/64. By integrating candidate key ranking and error bit

analysis, the achieved key recovery correctness rate reaches 98.67%.

Throughout the experimental process, variations in the data structure also impact the

final outcomes. In future work, we will explore new data structures and develop more

efficient neural network training techniques to further boost the accuracy of the neural

differential distinguisher, and we will also investigate additional lightweight ciphers.

References

1. Beaulieu R, Shors D, Smith J, et al. The simon and speck families of lightweight block

ciphers[J]. IACR Cryptology ePrint Archive,2013,404. https://eprint.iacr.org/2013/404.pdf

2. Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems[J]. Journal of

CRVPTOLOGY, 1991,4(1):3-27

3. FIPS PUB. Data Encryption Standard (DES); NIST, 1999. Available online:

https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/docu-

ments/fips46-3.pdf (accessed on 27 April 2023).

4. Abed F, List E, Lucks S, et al. Differential cryptanalysis of round-reduced simon and

speck[C]. International Workshop on Fast Software Encryption. Springer, Berlin, Heidel-

berg, 2014: 525-545

5. Biryuköv A, Roy A, Velichkov V. Differential analysis of block ciphers simon and speck[C].

International Workshop on Fast Software Encryption. Springer, Berlin, Heidelberg, 2014:

546-570.

6. Kölbl S, Leander G, Tiessen T. Observations on the simon block cipher family[C]. Annual

Cryptology Conference. Springer, Berlin, Heidelberg, 2015: 161-185

7. Ghor A. Improving attacks on round reduced speck32/64 using deep learning[C]. Advances

in Cryptology—CRYPTO 2019, Part II. Springer Cham, 2019: 150–179

8. Kaiming He, xiangyu Zhang, et al. Deep Residual Learning for Image Recognition[C]. Con-

ference on Computer Vision and Pattern Recognition, 2016.

9. Yi Chen, Yantian Shen, Hongbo Yu, et al. A new neural distinguisher considering features

derived from multiple ciphertext pairs[J]. Cryptology ePrint Archive, Paper 2021/310, 2021.

https://eprint.iacr.org/2013/404.pdf

10. Liu Zhang, Zilong Wang, Baocang Wang, et al. Improving Differential-Neural Cryptanaly-

sis with Inception Blocks[J]. Cryptology ePrint Archive, 2022.

11. Xiaoteng Yue, Wanqing Wu. Improved Neural Differential Distinguisher Model for Light-

weight Cipher Speck[J]. Applied Sciences, 2023.

12. JiaShuo Liu, JiongJiong Ren, et al.Improved neural distinguishers with multi-round and

multi-splicing construction[J], Journal of Information Security and Applications,

2023:2214-2126

13. Erzhena Tcydenova, Byoungjin Seok, et al. Related-key Neural Distinguisher on Block Ci-

phers SPECK-32/64, HIGHT and GOST[J]. Journal of Platform Technology, 2023:72-84

14. Zhenzhen Bao, Jinyu Lu, et al. More Insight on Deep Learning-aided Cryptanalysis[C]. Ad-

vances in Cryptology – ASIACRYPT 2023,2023:436-467

15. Gao Huang, Zhuang Liu, et al. Densely Connected Convolutional Networks[J]. Conference

on Computer Vision and Pattern Recognition (CVPR),2017.

16. Christian Szegedy, Wei Liu, et al. Going Deeper with Convolutions[C]. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2015: 1-9

