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Abstract. Lightweight encryption algorithms play a vital role in securing com-

munications for resource-constrained devices. As a prominent lightweight cipher, 

SPECK has attracted extensive security analyses. At ASIACRYPT 2023, Bao 

et al. introduced a related-key neural-network differential distinguisher capable 

of effectively distinguishing 9-round SPECK32/64 ciphertexts and integrated it 

into a (1+s+r+1) key-recovery framework to attack 14-round SPECK32/64. In-

spired by their work, this paper presents a new related-key neural differential 

distinguisher for SPECK32/64, built upon a novel related-key processing method 

and an alternative network architecture, which significantly boosts the accuracy 

of distinguishing 10-round ciphertexts. Within the same (1+s+r+1) key-recovery 

framework, we employed our trained distinguisher to recover the key of 15-round 

SPECK32/64. The specific contributions are as follows: First, this paper intro-

duces a novel related-key processing method, generating correlated subkey pairs 

for encrypting samples containing 64 plaintext pairs. Second, a related-key neural 

differential distinguisher was constructed based on the Inception module from 

GoogleNet and the DenseNet architecture. Experimental results demonstrate that 

the trained distinguisher achieves a recognition accuracy of 97.24% for 10-round 

ciphertexts, surpassing Bao et al.'s results by extending the recognizable rounds 

by one. Finally, leveraging the 10-round neural distinguisher, this paper success-

fully executed a key recovery attack on 15-round SPECK32/64. Analysis of er-

ror-bit distributions revealed a correct key recovery success rate of 98.67%. 

Keywords: SPECK, Key Recovery Attack, Neural Differential Distinguisher, 

Related Key. 

1 Introduction 

With the rapid development of the Internet of Things (IoT) and embedded systems, 

traditional encryption algorithms such as DES and AES struggle to function effectively 

under constrained storage and computational resources. Consequently, lightweight en-

cryption algorithms have emerged. The SPECK cipher, designed by the U.S. National 

Security Agency (NSA) [1], is a lightweight block cipher that exhibits strong perfor-

mance in both hardware and software implementations. However, as modern 



cryptographic attack techniques continue to evolve, evaluating the security of the 

SPECK algorithm has become critically important. In block cipher research, differen-

tial cryptanalysis remains one of the most effective analytical methods. 

Differential cryptanalysis, proposed by Biham and Shamir [2] in 1991 to crack the 

DES cipher [3], is a primary method for attacking symmetric encryption algorithms. It 

infers key information by analyzing the relationship between input and output differ-

ences. Subsequent studies have explored SPECK variants and SPECK differential trails 

[4-6]. At CRYPTO 2019, Gohr [7] introduced neural differential distinguishers, com-

bining neural networks (ResNet [8]) with differential cryptanalysis. For reduced-round 

SPECK32/64, neural distinguishers were successfully trained for 5–7 rounds. Com-

pared to classical differential distinguishers, neural distinguishers capture richer feature 

information and achieve higher key recognition accuracy. The 7-round distinguisher 

achieved 61.6% accuracy, a 2.5% improvement over the classical distinguisher’s 

59.1%. This advancement propelled research on neural network-based cryptanalysis. 

In 2021, Chen et al. [9] extended the input plaintext pairs from one pair to multiple 

pairs, organizing them into input matrices based on bit positions. This approach im-

proved Gohr’s [7] 7-round neural distinguisher accuracy by 3.3%, reaching 64.9%. In 

2022, Zhang et al. [10] proposed an extended data format (𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′, 𝑌𝑟−1
 , 𝑌𝑟−1

′ ), 

incorporating information from the previous round into the neural network input. This 

modification increased the 7-round distinguisher’s accuracy to 89.58%, with the 8-

round distinguisher achieving 58.53%. In 2023, Yue et al. [11] introduced a new data 

structure (𝑌𝑟−1
 , 𝑌𝑟−1

′ , Z, 𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′) , further boosting the 7-round neural distin-

guisher’s accuracy to 97.13%. The same year, Liu et al. [12] proposed a novel input 

data generation method and two specialized input models, constructing distinguishers 

capable of identifying 8-round SPECK32/64 ciphertext differential features, achieving 

65.02% accuracy for the 8-round distinguisher. 

Subsequently, researchers integrated related-key differential attacks with neural net-

works to develop related-key neural differential distinguishers. Tcydenova et al. [13] 

utilized key differences to build related-key neural distinguishers, improving 8-round 

distinguisher accuracy to 84.84% and achieving 59.32% accuracy for a 9-round distin-

guisher. Bao et al. [14] analyzed high-probability differential characteristics of related 

keys, encrypting plaintext pairs with related keys conforming to specific differences, 

and using the resulting ciphertexts as inputs for neural distinguishers. Their work en-

hanced the 9-round distinguisher’s accuracy to 77.26% and successfully trained a 10-

round neural distinguisher with 56.43% accuracy. 

Inspired by these advancements, this paper proposes a novel key processing method 

that integrates features of related-key and single-key scenarios to generate correlated 

subkey pairs for encrypting plaintext samples. For the neural network architecture, we 

design a new model based on DenseNet [15] and Inception modules [16]. The core 

module employs three parallel convolutional layers with varying kernel sizes, enabling 

the neural differential distinguisher to capture richer feature information from cipher-

text samples, thereby achieving higher accuracy. Experimental results demonstrate re-

lated-key neural distinguishers for 9-round and 10-round SPECK with accuracies of 

99.99% and 97.24%, respectively. Finally, we validate the correctness of the 10-round 

SPECK neural distinguisher by performing a key recovery attack on 15-round SPECK. 
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2 Preliminaries 

2.1 SPECK Algorithm 

SPECK is a lightweight block cipher designed by the U.S. National Security Agency 

(NSA) in 2013. SPECK employs a Feistel structure and utilizes four core operations: 

modular addition (⊞), XOR (⊕), right rotation (⋙), and left rotation (⋘).This paper 

primarily focuses on SPECK32/64, which consists of 22 round functions, with a block 

size of 32 bits, a key size of 64 bits, and a word length of 16 bits. 

For the round function, given the i-th round input (𝑋𝑖
 , 𝑌𝑖

 ) and subkey 𝑘𝑖
 , the corre-

sponding output is (𝑋𝑖+1
 , 𝑌𝑖+1

 ), where 0 ≤ i ≤ 21. The detailed process is as follows: 

{
𝑋𝑖+1

 = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

 ) ⊕ 𝑘𝑖
 

𝑌𝑖+1
 = (𝑌𝑖

 ⋘ 2) ⊕ 𝑋𝑖+1
           

 

The subkey generation algorithm aligns closely with the SPECK round function. The 

round function is illustrated in Fig. 1. 

 

Fig. 1. Round function for SPECK cipher. 

2.2 DenseNet 

Deep neural networks face challenges such as vanishing gradients, inefficient feature 

reuse, and parameter redundancy. To address these issues, Huang et al. [15] proposed 

DenseNet, which introduces dense connectivity: each layer connects directly to all sub-

sequent layers. This mechanism enhances gradient flow, maximizes feature reuse, and 

improves parameter efficiency and training stability. 

DenseNet's dense connectivity mechanism can be divided into feature concatenation 

and feature reuse. Feature concatenation can be expressed mathematically. If the output 

formula of a traditional neural network at layer i is represented as: 

 𝐿𝑖
 = 𝐻(𝐿𝑖−1

 ) 

, then the output formula of DenseNet at layer i can be expressed as: 

𝐿𝑖
 = 𝐻([𝐿0

 , 𝐿1
 , … , 𝐿𝑖−1

 ]) 

where H(⋅) denotes a nonlinear transformation function, comprising a series of opera-

tions including Batch Normalization (BN), ReLU activation, Pooling, and Convolution 



(Conv). The symbol [⋅] represents concatenation along the channel dimension, and 𝐿𝑖
 

denotes the output of the i-th H function mapping from all preceding layers. 

Feature reuse refers to the direct access of feature maps from all previous layers by 

each subsequent layer, facilitating the fusion of low-level and high-level features and 

thereby reducing redundant computations. 

The core components of DenseNet’s architecture are the Dense Block and Transition 

Layer. The workflow of a Dense Block is illustrated in Fig. 2. 

 

Fig. 2. Dense Block 

Within a Dense Block, multiple densely connected layers are included. Each layer can 

directly access the feature maps from all preceding layers. The spatial dimensions of 

the feature maps remain unchanged, while the number of channels increases incremen-

tally at a predefined growth rate. 

The Transition Layer, positioned between two Dense Blocks, compresses the feature 

map dimensions and reduces the number of channels to prevent parameter explosion. 

2.3 Inception Module 

The Inception module first appeared in GoogleNet and serves as its core component, 

proposed by Christian Szegedy [16]. By introducing multi-scale convolution and pool-

ing operations, this module enables the network to perform feature extraction across 

varying receptive fields, thereby enhancing the model’s recognition capability and ef-

ficiency. The Inception module executes parallel convolutional operations with kernels 

of different sizes (e.g.,1×1, 3×3, and 5×5). The 1×1 convolution is used for dimension-

ality reduction to minimize parameters and computational costs, while 

the 3×3 and 5×5 convolutions capture features at different scales. These features are 

concatenated to form the input for the subsequent layer. 

3 A New Method for Generating Related Keys 

3.1 Analysis of Single-Key and Related-Key Encryption 

Single-Key Encryption.  

When encrypting plaintext pairs with a single key, the diffusion of differential charac-

teristics in ciphertext pairs arises solely from the modular addition operations during 

encryption. The differential value calculations are shown in Equations (1) and (2). The 

differential value after the i-th round of encryption is: 

𝑋𝑖+1
 ⊕ 𝑋𝑖+1

′ = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

 ) ⊕ 𝑘𝑖
 ⊕ ((𝑋𝑖

′ ⋙ 7) ⊞ 𝑌𝑖
′) ⊕ 𝑘𝑖

 

   = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

 ) ⊕ ((𝑋𝑖
′ ⋙ 7) ⊞ 𝑌𝑖

′)
                    (1) 
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𝑌𝑖+1
 ⊕ 𝑌𝑖+1

′ = (𝑌𝑖
 ⋘ 2) ⊕ 𝑋𝑖+1

 ⊕ (𝑌𝑖
′ ⋘ 2) ⊕ 𝑋𝑖+1

′                                        

 = ((𝑌𝑖
 ⊕ 𝑌𝑖

′) ⋘ 2) ⊕ (𝑋𝑖+1
 ⊕ 𝑋𝑖+1

′ )                        

                         =  ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

 ) ⊕ ((𝑋𝑖
′ ⋙ 7) ⊞ 𝑌𝑖

′) ⊕  ((𝑌𝑖
 ⊕ 𝑌𝑖

′) ⋘ 2)

(2) 

As the number of rounds increases, the diffusion of differential characteristics intensi-

fies, making it progressively harder for neural networks to recognize ciphertext differ-

entials. A schematic of ciphertext feature diffusion in single-key encryption is shown 

in Fig. 3. 

 

Fig. 3. Thumbnail of Ciphertext Feature Diffusion in Single-Key Encryption 

Related-Key Encryption 

Encrypting identical plaintexts with related subkeys (with a non-zero differential) pro-

duces ciphertext pairs whose differential values are influenced solely by the key differ-

ences. The differential value after the first round is calculated as follows: 

𝑋𝑖+1
 ⊕ 𝑋𝑖+1

′ = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

 ) ⊕ 𝑘𝑖
 ⊕ ((𝑋𝑖

 ⋙ 7) ⊞ 𝑌𝑖
 ) ⊕ 𝑘𝑖

′

                        = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

 ) ⊕ ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

 ) ⊕ 𝑘𝑖
 ⊕ 𝑘𝑖

′

=  𝑘𝑖
 ⊕ 𝑘𝑖

′                                                      

      (3) 

𝑌𝑖+1
 ⊕ 𝑌𝑖+1

′ = (𝑌𝑖
 ⋘ 2) ⊕ 𝑋𝑖+1

 ⊕ (𝑌𝑖
 ⋘ 2) ⊕ 𝑋𝑖+1

 

                = ((𝑌𝑖
 ⊕ 𝑌𝑖

 ) ⋘ 2) ⊕ (𝑋𝑖+1
 ⊕ 𝑋𝑖+1

 )

= 𝑘𝑖
 ⊕ 𝑘𝑖

′                                    

                         (4) 

However, in subsequent rounds of ciphertext pairs, the differential characteristics of the 

ciphertext propagate due to the modular addition operations applied to the differential 

values inherited from previous rounds. Simultaneously, the diffusion of differential 

characteristics in the related subkey generation process further amplifies this effect. 

Consequently, the differential values of the ciphertext pairs are influenced both by the 

modular addition operations and the differentials of the subkeys, as demonstrated in 

Equations (5) and (6). Under related-key encryption, the diffusion speed of ciphertext 

differential characteristics is significantly faster compared to single-key encryption. 

𝑋𝑖+1
 ⊕ 𝑋𝑖+1

′ = ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

 ) ⊕ 𝑘𝑖
 ⊕ ((𝑋𝑖

′ ⋙ 7) ⊞ 𝑌𝑖
′) ⊕ 𝑘𝑖

 

                                 = (((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

 ) ⊕ ((𝑋𝑖
′ ⋙ 7) ⊞ 𝑌𝑖

′)) ⊕ (𝑘𝑖
 ⊕ 𝑘𝑖

′)
   (5) 

ciphertext 

difference  1

ciphertext 

difference 2-1

  

ciphertext 

difference 2-n

Rounds: First Round Second Round Third Round

Probability Probability

ciphertext 

difference  3-1

ciphertext 

difference  3-m

  

  

P1-1

P1-n

P2-1

P2-m

  

  

  

 
   



𝑌𝑖+1
 ⊕ 𝑌𝑖+1

′ = (𝑌𝑖
 ⋘ 2) ⊕ 𝑋𝑖+1

 ⊕ (𝑌𝑖
′ ⋘ 2) ⊕ 𝑋𝑖+1

′                                             

= ((𝑋𝑖
 ⋙ 7) ⊞ 𝑌𝑖

 ) ⊕ ((𝑋𝑖
′ ⋙ 7) ⊞ 𝑌𝑖

′) ⊕ ((𝑌𝑖
 ⊕ 𝑌𝑖

′) ⋘ 2)  ⊕ (𝑘𝑖
 ⊕ 𝑘𝑖

′) 
(6) 

When encrypting plaintext pairs with a zero differential using a master key pair with a 

differential value of Δ=0x0040/0000/0000/0000, the subkey generation algorithm en-

sures that the first three rounds of subkey differentials are zero. Combined with the zero 

plaintext differential, neither key nor ciphertext characteristics propagate during the 

first three encryption rounds. This design partially mitigates the accelerated diffusion 

of differential characteristics in subsequent rounds, allowing the neural differential dis-

tinguisher to effectively identify ciphertext features up to 8 rounds [15]. A schematic 

of ciphertext differential characteristic diffusion under related-key encryption is illus-

trated in Fig. 4. 

 

Fig. 4. Thumbnail of Ciphertext Feature Diffusion in Related-Key Encryption 

3.2 New Subkey Generation Method 

Building on the above analysis, this paper proposes a new method for generating related 

subkeys. A 64-bit master key is randomly selected, and a related master key is derived 

using the differential Δ=0x0040/0000/0000/0000. These two master keys form a related 

master key pair. Using the key schedule algorithm, the first three rounds of subkeys 

generated from this pair have zero differentials. A non-zero differential first appears in 

the fourth-round subkeys. After encrypting four rounds with the fourth-round subkey 

pair, the fifth-round ciphertext pair becomes the first to exhibit a differential. For the 

fifth and subsequent rounds, only one set of subkeys (generated from one master key) 

is retained and assigned to both subkey sequences. This ensures that subkey differen-

tials from the fifth round onward are eliminated, thereby slowing the diffusion of ci-

phertext differentials under related-key conditions. 

The specific process for generating related subkeys is as follows: 

1. Set the differential value Δ=0x0040/0000/0000/0000. Randomly and uniformly se-

lect a 64-bit string as the master key 𝐾 
 . 

2. Compute the related master key 𝐾 
′ using 𝐾 

 ⊕ 𝐾 
′ =△. 

3. Apply the key schedule algorithm F to K for r rounds (r≥5), generating the corre-

sponding subkeys 𝑘𝑖
 (𝑖 = 0,1,2, … , 𝑟 − 1). 

4. Apply the key schedule algorithm to 𝐾 
′ for 4 rounds, generating subkeys 𝑘𝑖

′(𝑖 =
0,1,2,3). Starting from the 5th round, assign 𝑘𝑖

′ = 𝑘𝑖
 (i = 4,5,6, … , r − 1). 

ciphertext 

difference  1

Difference in the 

mode-added part_1

Difference in the 

mode-added part_1

Rounds: First Round Second Round

ciphertext 

difference 2-1

ciphertext 

difference 2-m

P1

Pn

Pk1

Pkm

  

 
 

 
 

 
 

 
 

 
 

Pi : Differential probability of modular addition

Pki : Differential probability of related key
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5. Organize the subkey pairs (ki
 , ki

′)(i = 0,1,2, … , r − 1) to obtain the related master 

key pair(K 
 , K 

′) and its associated subkey sequences. 

The complete related key generation workflow is illustrated in Fig. 5. 

 

Fig. 5. Key Processing Procedure 

4 Constructing Neural Differential Distinguishers 

4.1 Building Input Data for Neural Differential Distinguishers 

This paper adopts a multi-ciphertext-pair data structure as the input for neural differen-

tial distinguishers. 

1. Randomly generate a training dataset containing 2n samples. Each sample consists 

of mm uniformly distributed random plaintext pairs (𝑃 
 , 𝑃 

′) with a differential value 

of 0, where 𝑃 
  is 32 bits. 

2. Assign a binary label vector T to the sample set. Randomly label half of the samples 

in the set as positive samples, denoted by T=1; label the other half as negative sam-

ples, denoted by T=0. In the negative samples, replace 𝑃 
′ with other different ran-

domly generated data. 

3. Divide P evenly into two 16-bit parts, with the left part denoted as 𝑋0
  and the right 

part as 𝑌0
 . Apply the same process to the plaintext 𝑃 

′ ; thus, the plaintext pair 

(𝑃 
 , 𝑃 

′)can be represented as (𝑋0
 , 𝑌0

 , 𝑋0
′ , 𝑌0

′) . Therefore, one sample can be ex-

pressed as in formula (7): 

                              

(𝑋0_1
 , 𝑌0_1

 , 𝑋0_1
′ , 𝑌0_1

′ )

(𝑋0_2
 , 𝑌0_2

 , 𝑋0_2
′ , 𝑌0_2

′ )
. . .

(𝑋0_𝑚
 , 𝑌0_𝑚

 , 𝑋0_𝑚
′ , 𝑌0_𝑚

′ )

                               (7) 

In the formula, the subscript of 𝑋𝑖_𝑗
  denotes that i indicates encryption up to round i 

and j indicates the j-th plaintext/ciphertext pair in the sample. 

4. According to the related subkey generation method proposed in Section 3, randomly 

generate 2n related keys(𝐾 
 , 𝐾 

′ ), where each related key generates corresponding r-

round related subkey pairs (𝑘𝑖
 , 𝑘𝑖

′ )(i = 0,1,2, … , r − 1). 

5. Introduce the r-round related subkey pairs (𝑘𝑖
 , 𝑘𝑖

′ ) to encrypt the plaintext samples 

and obtain r rounds of ciphertext data. Then, based on the data structure proposed in 

[11], perform transformation operations on the ciphertext data to obtain the final 

input data samples for the neural differential discriminator, as shown in formula (8): 

F F F FK F F 
k0 k1 k2 k3 k4 kr-2 Kr-1

F F F FK  k 0 k 1 k 2 k 3 k 4 k r-2 k r-1

K K =0x0040/0000/0000/0000



                             

(𝑌𝑟−1_1
 , 𝑌𝑟−1_1

′ , Z_1, 𝑋𝑟_1
 , 𝑌𝑟_1

 , 𝑋𝑟_1
′ , 𝑌𝑟_1

′ )

(𝑌𝑟−1_2
 , 𝑌𝑟−1_2

′ , Z_2, 𝑋𝑟_2
 , 𝑌𝑟_2

 , 𝑋𝑟_2
′ , 𝑌𝑟_2

′ )
. . .

(𝑌𝑟−1_𝑚
 , 𝑌𝑟−1_𝑚

′ , Z_m, 𝑋𝑟_𝑚
 , 𝑌𝑟_𝑚

 , 𝑋𝑟_𝑚
′ , 𝑌𝑟_𝑚

′ )

                    (8) 

The overall construction process of the input data structure is shown in the Fig. 6: 

 

Fig. 6. Data structure 

4.2 Network Architecture 

This paper proposes a novel neural network architecture inspired by DenseNet and the 

Inception module from GoogleNet. The network consists of an input layer, an initial 

convolutional layer, Dense Blocks, and a prediction head. The overall framework is 

depicted in Fig. 7. 

 

Fig. 7. Neural network architecture 

Input Layer: This layer performs preliminary processing on the data input into the neu-

ral network. The samples are input in the form of one-dimensional data. The input layer 

receives these data and converts them into two-dimensional data with a shape of [W∗M, 

m], and then passes these two-dimensional data to the Initial Convolutional Layer. In 

[W∗M, m], W represents the bit-size of the basic data in the sample, M represents the 

number of basic data in the sample, and m represents the number of plaintext pairs in a 

sample. 

Initial Convolutional Layer: This layer is used to extract low-level features from the 

ciphertext data. After obtaining the two-dimensional data from the Input Layer, a con-

volution with a 1×1 kernel is first performed. Then, the convolved results are batch 

X0_1 Y0_1

X0_2 Y0_2

X0_m Y0_m

 

Xr_1 Yr_1

Xr_2 Yr_2

Xr_m Yr_m

 

X'0_1 Y'0_1

X'0_2 Y'0_2

X'0_m Y'0_m

X'r_1 Y'r_1

X'r_2 Y'r_2

X'r_m Y'r_m

Xr_1 Yr_1 X'r_1 Y'r_1Yr-1_1 Y'r-1_1 Z_1

Xr_2 Yr_2 X'r_2 Y'r_2Yr-1_2 Y'r-1_2 Z_2

Xr_m Yr_m X'r_m Y'r_mYr-1_m Y'r-1_m Z_m

 

K K'

Input Layer

Initial Convolutional Layer

Dense Blocks

Prediction Head
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normalized, followed by processing with the “relu” activation function to obtain the 

output, which is then passed to the subsequent Dense Blocks. The number of filter 

channels corresponding to the Initial Convolutional Layer is 3Nf. 

Dense Blocks: First, three convolutional layers with the same number of channels 

Nf and kernel sizes of 1×1, 3×3, and 8×8 are applied to the input data. Then, the results 

of these three convolutions are concatenated along the channel dimension to obtain 

merged data with 3Nf channels. The merged data is then processed by batch normali-

zation and the “relu” activation function to yield intermediate data. This intermediate 

data is passed through a convolutional layer with a kernel size of 3×3 and 3Nf  channels, 

followed by a normalization layer and a “relu” activation layer to obtain the final data. 

Finally, the input data of the Dense Block is concatenated with the final data obtained 

within the Dense Block to form the output of the Dense Block. The Dense Block is 

executed five times, with the output of the last block being passed to the subsequent 

module. 

Prediction Head: Once the final output with differential features from the Dense 

Blocks is obtained, it is transformed into a one-dimensional format using the flatten 

function. This data is then input into two fully connected layers, each containing 1024 

neurons, followed by normalization and “relu” activation. A dropout function is incor-

porated to discard some neurons, preventing overfitting and enhancing model robust-

ness. Finally, a fully connected layer with a single neuron, activated by a sigmoid func-

tion, produces the final result. 

The complete neural network process is shown in Fig. 8. 

 

Fig. 8. Complete neural network 

The network employs the Mean Squared Error (MSE) loss function and the ADAM 

optimizer. The learning rate is updated cyclically after each epoch according to Equa-

tion (9): 

Li = α +
(t − i) mod(t + 1)

n
(β − α)                                 (9) 

4.3 Specific Parameter Settings 

The following are the specific parameters used in the input data and the neural network. 

1×1，Conv，3Nf

BN

RELU

Initial 

Convolutional 

Layer

1×1，Conv，Nf 2×2，Conv，Nf 8×8，Conv，Nf

BN

RELU

3×3，Conv，3Nf

BN

RELU

Dense Block

BN

RELU

FLATTEN

DENSE，1024

BN

RELU

DENSE，1024

Dropout，0.5

DENSE，1

SIGMOID

Prediction Head



5 Experimental Results 

The experiments in this paper were conducted on the Ubuntu 20.04 operating system, 

utilizing Python 3.8 and TensorFlow 2.10.0 for code implementation. The hardware 

setup includes a machine equipped with two NVIDIA A4500 16GB GPUs, a 16-core 

Intel(R) Xeon(R) Gold 5222 CPU running at 3.80GHz, and 60GB of RAM. 

Table 1. Specific Parameter Settings 

Parameter Symbol Value 

Number of samples 2n 220 

Plaintext pairs per sample m 64 

Bit size of basic data elements W 16 

Number of basic data elements M 7 

Filter channels Nf 32 

Minimum learning rate α 10
-4
 

Maximum learning rate β 4×10
-3
 

Cycle parameter t 9 

5.1 Experimental Results of the Neural Differential Distinguisher 

Based on the methodology described in Section 4, a total of 220 training samples and 

217 testing samples were randomly generated for the 9-round  encrypted SPECK cipher, 

with each sample containing m=64 ciphertext pairs. These samples were subsequently 

fed into the 9-round neural differential distinguisher for training, the same procedure 

was applied for ten rounds. The results are illustrated in Fig. 9.  

 

Fig. 9. Experimental results of the nine and ten rounds neural differential distinguisher 

Fig. 9 depict the training performance of the 9-round and 10-round neural differential 

distinguishers. In these figures, the x-axis represents the epochs, while the y axis shows 

the accuracy and loss rates during training and validation. The lines illustrate the 

changes in accuracy and loss as the number of epochs increases. In the left figure, it is 

evident that the validation accuracy of the 9-round neural differential distinguisher 

reached 99.99%, with a corresponding loss rate of only 0.02%. In the right figure, the 

validation accuracy of the 10-round neural differential distinguisher achieved 97.24%, 

while the validation loss rate was 5.51%.  
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The final results of Bao et al. and this paper are summarized in Table 2. The com-

parison indicates an improvement in accuracy with the proposed method. Specifically, 

the accuracy of the 9-round distinguisher in this paper reached 99.99%, compared to 

77.26% in Bao et al.’s findings. Additionally, the accuracy for the 10-round distin-

guisher was 97.24%, representing a 40.81% increase over Bao et al.’s result of 56.43%. 

While this paper trained an 11-round neural differential distinguisher, the results were 

less favorable, with an accuracy of only 53.64%. 

Table 2. Comparison of the end result 

SPECK’s round 
Accuracy of Bao’s differentiators 

[14] 

The accuracy of the differ-

entiators in this paper 

9 77.26% 99.99% 

10 56.43% 97.24% 

11 - 53.65% 

5.2 Comparison of Different Encryption Methods 

To demonstrate the advantages of the related key generation method proposed in this 

paper, we compared the impact of four encryption approaches on neural differential 

distinguisher accuracy. Using identical data structures and network architectures across 

experiments ensured that performance differences solely reflected encryption method 

variations. The evaluated approaches include: 

1. Single-key encryption with plaintext differential ΔP=0x0040/0000. 

2. Related-key encryption with ΔP=0 and key differential Δ=0x0040/0000/0000/0000. 

3. Related-key encryption with ΔP=0 using keys conforming to specific differential 

trails (Bao et al. [14]). 

4. The proposed method: related-key encryption with ΔP=0 using fully random keys 

generated via our approach.  

The input data generated by these four methods were used to train the neural differential 

distinguisher, and the results are presented in Table 3. 

Table 3. Results of 10 Rounds of Training for Different Encryption Schemes 

Input Data Encryption Mode 10-Round Distinguisher Accuracy 

Single-key [7] 50.52% 

Related-key [13] 50.19% 

Bao [14] 74.14% 

Ours 97.24% 

From Table 3, it can be observed that data encrypted using either single-key or con-

ventional related-key methods fails to exhibit detectable differential features for the 10-

round neural distinguisher, with accuracies close to random guessing (approximately 

50%). While Bao et al.'s encryption method achieves a 74.14% accuracy for the 10-

round neural distinguisher by employing related keys adhering to specific differential 

trails, this approach narrows the key space by relying on not fully random key selection, 



limiting its applicability to constrained scenarios. In contrast, our method generates 

fully random keys while achieving a 10-round neural distinguisher accuracy of 97.24%. 

This demonstrates that the keys generated in this work offer broader applicability, more 

effectively mitigate ciphertext differential diffusion, and enable neural distinguishers 

to identify high-round ciphertext features with greater reliability. 

5.3 Comparison of Different Data Structures 

In Bao et al.'s experiments, the data format was (𝑌𝑟−1
 , 𝑌𝑟−1

′ , 𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′), while this 

paper adopts (𝑌𝑟−1
 , 𝑌𝑟−1

′ , Z, 𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′). To evaluate the impact of data structures on 

neural distinguisher accuracy, a comparative experiment was conducted for 10-round 

neural distinguishers using three structures: the proposed structure, Bao et al.'s struc-

ture, and Gohr’s structure (𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′). All experiments utilized the neural network 

proposed in this paper, with other parameters held constant. Results are shown in Table 

4. 

Table 4. Results of 10 rounds of training for different data formats 

Data Structures Source 
Accuracy of neural differential 

distinguishers 

(𝑌𝑟−1
 , 𝑌𝑟−1

′ , Z , 𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′) ours 97.24% 

(𝑌𝑟−1
 , 𝑌𝑟−1

′ , 𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′) Bao [14] 88.76% 

(𝑋𝑟
 , 𝑋𝑟

′ , 𝑌𝑟
 , 𝑌𝑟

′) Gohr [7] 50.26% 

Experimental results confirm that the parameter Z in the proposed structure preserves 

features from the differential values of 𝑋𝑟−1
  and 𝑋𝑟−1

′  unaffected by subkey k [11]. 

This design achieves the highest accuracy 97.24% among the three structures, surpas-

sing Bao et al.'s method by 8.48%. In contrast, Gohr’s structure achieved only 50.26% 

accuracy, failing to identify meaningful features. Thus, the proposed data structure 

demonstrates superior performance in enhancing neural distinguisher accuracy. 

5.4 Comparison of Different Neural Networks 

To evaluate the impact of neural network architectures on the performance of neural 

differential distinguishers, this paper compares three networks under identical experi-

mental conditions. All networks use the data processing method proposed in this paper, 

adopt the same data structure, and adjust network parameters to optimize performance. 

Comparative experiments for 10-round neural distinguishers were conducted against 

the networks proposed by Bao et al. [14] and Yue et al. [11]. The accuracy results are 

summarized in Table 5 

As shown in Table 5, the proposed network achieves 97.24% accuracy for 10-round 

distinguishers, outperforming the other two networks by at least 5%. This demonstrates 

that the proposed architecture significantly enhances the recognition of ciphertext dif-

ferential features. For scenarios demanding higher accuracy, the proposed network is 

the superior choice. 
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Through these comparative experiments, the novel related-key generation method 

and network architecture proposed in this paper collectively advance the state-of-the-

art in neural differential distinguishers. The recognition accuracy for 10-round 

SPECK32/64 reaches 97.24%, surpassing the previously highest reported 9-round ac-

curacy of 77.26% [14]. This represents a one-round improvement in attack capability 

while achieving a substantial accuracy gain. 

Table 5. Results of 10 rounds of training for different neural networks 

Source Accuracy of neural differential distinguishers 

Bao[14]  93.57% 

Yue[11] 94.22% 

ours 97.24% 

6 Key Recovery Attack 

To validate the effectiveness of the related-key neural differential distinguisher de-

scribed in Section 5, this chapter conducts a 15-round key recovery experiment using 

the trained 10-round neural distinguisher. The following table defines key symbols used 

in the key recovery process: 

Table 6. Symbol Notation in Key Recovery 

Symbol Explanation 

n Sample size 

m Number of plaintext pairs per sample 

2-p 
Propagation probability of the related-key differential 

trail: Δ=0x0200/0080/0011/4a00→Δ=0x0040/0000/0000/0000 

2-q Propagation probability of the classical differential ΔS→ΔP 

c A positive constant 

△S Input differential for the classical distinguisher: Δ=0x02a1/4001 

△P Input differential for the neural distinguisher: Δ=0x0000/0000 

△k Differential of the first-round related subkey pair: Δ=0x0000/4a00 

6.1 Key Recovery Attack on Reduced-Round SPECK32/64 

This experiment uses a (1 + s + r + 1)-round key recovery attack framework, which 

consists of one free round, s rounds of classical distinguisher, r rounds of neural differ-

ential distinguisher, and one round of key guessing. Under the related-key condition, it 

is necessary to determine an appropriate key differential trail and specify the key dif-

ferentials for the initial rounds in the experiment. The key differential trail is shown in 

Table 7. 

In the first free round, since the encryption process in the first round is influenced 

by the related key, the decryption key is not (0, 0) but instead (0,0⊕△k) in order to 



recover the plaintext. This adjustment effectively eliminates the impact of the first-

round subkey pair on the ciphertext differential of the first round. 

Table 7. Related-key differential trails 

Round(r) Differential in Key log2 Pr 

0 (0200,0080,0011,4a00)  

1 (2800,0200,0080,0001) -4 

2 (0000,2800,0200,0004) -1 

3 (0000,0000,2800,0010) -1 

4 (0040,0000,0000,0000) -2 

5 (0000,0040,0000,0000) 0 

6 (0000,0000,0040,0000) 0 

7 (8000,0000,0000,8000) 0 

 

Following the free round, there are s rounds of a classical distinguisher, where s is 

set to 3. The inclusion of the classical distinguisher extends the overall number of 

rounds in the key-recovery process. The classical distinguisher employs related subkey 

pairs that adhere to the differential trajectory for rounds 1–3 as specified in Table 7, 

with an input ciphertext differential of ΔS and an output ciphertext differential of ΔP. 

For the r rounds corresponding to the related-key neural differential distinguisher, 

the first four rounds conform to the key differential trajectory for rounds 4–7 in Table 

7, while also satisfying the requirements of the proposed key generation algorithm for 

the first four rounds. By integrating this algorithm, the keys for subsequent rounds and 

the associated ciphertext data can be derived. 

Finally, in the last guessing round, a guessed key is used to perform one round of 

decryption on the generated ciphertext data. The decryption results are then fed into the 

neural differential distinguisher, which, based on its judgment, yields a guessed key 

that is either the closest to the correct key or is the correct key outright. 

Complete workflow of key recovery attack: 

1. Create a candidate subkey score list variable d←(None). The list d records the cu-

mulative scores for each candidate subkey during key recovery, with a size of 216. 

The index corresponds to the subkey value. 

2. Uniformly sample n × (2𝑝 + 𝑐) random related master key pairs with differential 

values △=0x0200/0080/0011/4a00. Filter n pairs satisfying the differential trail 

in Table 7 to serve as related keys for encryption. 

3. For the n master key pairs, execute the key scheduling algorithm to generate related 

subkey pairs for the first four rounds. Using the method proposed in this paper, ex-

tend these to produce related subkey pairs for rounds 5–15, yielding full 15-round 

related subkey pairs. 

4. Uniformly sample n × m × (2𝑞 + 𝑐) random data pairs with input differential ΔS. 

Perform single-round decryption using the related subkeys (0,0⊕ △k) to derive 

plaintext pairs. 
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5. Encrypt the plaintext pairs for four rounds using the related subkey pairs from Step 

3. Filter n × m pairs with ciphertext difference result (0,0). Group every consecu-

tive m pairs into a sample, yielding n plaintext samples for key recovery. 

6. Encrypt the n plaintext samples using the n related subkey pairs to generate n cipher-

text samples. 

7. For j from 0 to 216: 

a. Decrypt ciphertext samples for one round using subkey j. 

b. Apply linear transformation to decrypted results to obtain input for the distin-

guisher. 

c. Feed samples into the related-key differential neural distinguisher to compute pre-

diction scores. 

d. Sum all sample scores as the total score for subkey j, recorded as d[j]. 

8. Sort list d in descending order and output the top 10 candidate subkeys with highest 

scores. 

6.2 Analysis of Key Recovery Results 

In total, 150 key recovery experiments were conducted, with each experiment involving 

128 plaintext pairs. If the correct key was found among the top ten candidates, it was 

considered a successful guess. Out of 150 attempts, all were successful, resulting in a 

100% success rate (with 94.67% of guesses in the top five), as detailed in Table 8. 

Given that the criteria for key guessing success are not fixed, the corresponding success 

rate may vary. Thus, the success rate in this section serves merely as a reference for the 

effectiveness of the key recovery algorithm. 

Table 8. Ranking of the correct subkeys 

Rankings Number of experiments Rankings Number of experiments 

1 31 6 4 

2 46 7 2 

3 34 8 1 

4 26 9 1 

5 5 others 0 

Additionally, this section analyzes the accuracy of each bit in all results, as well as 

the number of erroneous bits and their distribution in the individual guessed subkeys. 

The bits are designated from right to left as k0 to k15. The candidate subkey with the 

highest score across all results is selected as the final guessed key. If the number of 

incorrect bits is fewer than three, the key guess is deemed successful. The final count 

of erroneous bits can be eliminated through exhaustive methods. The analysis results 

are presented in Tables 9 and 10. 

Table 9 demonstrates that the differential neural network distinguisher proposed in 

this paper successfully identifies 148 subkeys over 15 encryption rounds with 98.67% 

accuracy, allowing no more than two erroneous bits in subkey guesses.  



Table 10 reveals that only four bits positions−k7, k8, k14, k15−exhibit accuracy rates 

below 100%. Specifically, k7 and k8 show accuracy rates exceeding 95%, while k14 and 

k15 have accuracy rates between 45% and 50%.  

Table 9. The number of error bits in the guessed subkey 

Number of error bits Number of experiments 

0 31 

1 76 

2 41 

others 2 

Table 10. The bit accuracy rate of the guessed subkey 

Subkey bits Accuracy Subkey bits Accuracy 

k15 48% k7 96% 

k14 47% k6 1 

k13 1 k5 1 

k12 1 k4 1 

k11 1 k3 1 

k10 1 k2 1 

k9 1 k1 1 

k8 99% k0 1 

 

Combining the insights from Tables 9 and 10 suggests that the one to two erroneous 

bits in the guessed subkey predominantly occur at k14 and k15, with some instances at 

k7 and k8. Consequently, further analysis of the distribution of erroneous bits in the 

guessed subkey is presented in Fig. 10.  

  

Fig. 10. The distribution of error bits in the guessed subkey 

Fig.10 indicates that in the guessed subkeys with one erroneous bit, the errors are 

primarily concentrated between k15 and k14, accounting for 49% and 50% of errors, 

respectively, totaling 99% of all errors. In the cases of guessed subkeys with two erro-

neous bits, only three combinations of errors were observed: k15 + k14, k15 + k7 and 

k14 + k7, with k15 + k14 comprising the majority at 93%.  
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In summary, during the final exhaustive phase of key recovery attacks, it is advan-

tageous to prioritize the high probability cases of k15, k14, k15 + k14 to efficiently identify 

the correct subkey. 

7 Conclusion 

This paper proposes a novel key processing procedure and a neural network model. The 

proposed key generation methodology integrates characteristics of both related-key and 

single-key scenarios, eliminating the need to separately analyze plaintext differentials 

or key differentials. Compared to existing network architectures, our model captures 

more primitive and discriminative features. A series of comparative experiments sys-

tematically validates the advantages of the proposed key processing mechanism and 

neural architecture in training neural distinguishers. Furthermore, we successfully ap-

plied the trained related-key differential neural distinguisher to perform a key recovery 

attack on 15-round SPECK32/64. By integrating candidate key ranking and error bit 

analysis, the achieved key recovery correctness rate reaches 98.67%. 

Throughout the experimental process, variations in the data structure also impact the 

final outcomes. In future work, we will explore new data structures and develop more 

efficient neural network training techniques to further boost the accuracy of the neural 

differential distinguisher, and we will also investigate additional lightweight ciphers. 
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