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Abstract. Fire and smoke segmentation is crucial for disaster manage-

ment and emergency response. Existing fire and smoke segmentation 

methods predominantly rely on conventional deep learning models such 

as U-Net. However, a key challenge in fire and smoke segmentation is 

the inherent uncertainty in target scale—segmentation targets can range 

from large-scale fire or smoke regions to minute initial flames or smoke 

particles. This multi-scale characteristic poses additional challenges, as 

traditional models often struggle to balance global feature extraction for 

large targets with fine-grained feature representation for small targets, 

leading to missed or inaccurate detections. Furthermore, existing fire seg-

mentation datasets exhibit limited diversity, resulting in models trained 

with conventional methods that lack generalization ability in cross-do-

main applications. To overcome these limitations and enhance model 

performance, this study proposes an optimized Side Adapter Network 

(SAN) that integrates cross-attention mechanisms and a CrossViT archi-

tecture to improve feature extraction across different target scales. Spe-

cifically, the proposed approach employs cross-attention mechanisms to 

enhance information exchange between CLIP and the side network, 

while CrossViT effectively strengthens the side network’s capability in 

capturing fine-grained image details. Experimental results demonstrate 

that, compared to traditional CNN and Transformer-based models, the 

optimized SAN achieves significant improvements in accuracy for fire 

and smoke detection and segmentation tasks. Moreover, due to its strong 

open-vocabulary semantic segmentation capability, the model exhibits 

robust generalization in cross-domain applications, enabling it to effec-

tively handle complex environments and diverse fire scenarios. 

Keywords: Fire And Smoke Image Segmentation, Open-Vocabulary Semantic 

Segmentation, Cross Attention, Side Adapter Network. 

1 Introduction 

Fire and smoke semantic segmentation plays a crucial role in disaster management, fire 

safety, and emergency response applications. However, training deep neural networks 



for fire and smoke segmentation requires pixel-level annotations for each image, which 

is a labor-intensive and cost-prohibitive process. Moreover, existing annotated datasets 

may be incomplete, and real-world fire incidents present highly complex and dynamic 

scenarios. As a result, models are likely to encounter previously unseen categories, such 

as red car taillights in Fig. 1, posing challenges in accurate segmentation. With limited 

annotated data, deep learning models may struggle to precisely delineate fire and smoke 

boundaries due to insufficient learning. 

Fire and smoke sometimes occupy small regions within images, such as small flame 

in Fig. 1, making it challenging for traditional detection models to effectively capture 

these small objects' features. Their small scale may lead models to overlook these crit-

ical details, resulting in inaccurate segmentation. 

Small flame Burning oil tanker Red car taillights 

   

Fig. 1. Several different fire and smoke segmentation scenarios: A metal barrel is burning with 

an open flame. A overturned oil tanker is engulfed in intense flames. A fast-moving car with its 

headlights creating blurred light spots and glare. 

To address the challenges of small object detection and cross-domain application in 

fire and smoke semantic segmentation, we propose CASAN (Cross-Attention Side 

Adapter Network), integrating the following techniques to enhance segmentation per-

formance: 

1) Since the Vision Transformer (ViT) [1] has limitations in capturing local features 

effectively, we propose using CrossViT [2] to replace the traditional ViT. CrossViT 

leverages cross-layer feature fusion and cross-attention mechanisms to enhance the de-

tection accuracy of small objects. When handling small objects, CrossViT is more ef-

ficient in capturing fine-grained features, thereby improving the model's ability to seg-

ment small objects. 

2) To enhance the model's generalization and cross-domain capabilities, we employ a 

Side Adapter Network, which leverages the features of pre-trained model CLIP [3]. 

This approach endows the model with strong open-vocabulary semantic segmentation 

capabilities and improved generalization, enabling it to recognize fire types that were 

not present in the training dataset. Consequently, the model is well-suited for fire de-

tection tasks across diverse scenarios. 

3) We hypothesize a strong correlation between the query tokens used for generating 

mask proposals and the frozen CLIP CLS token, which encapsulates global information 

and text alignment features. Therefore, we introduce a cross-attention mechanism to 

facilitate information exchange between these two tokens, thereby fusing the features 

from the CLIP model. This mechanism helps the side-adaptation network better capture 

both global and local features of fire and smoke, enhancing the model’s ability to seg-

ment these objects with greater precision. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

The integration of these techniques enables CASAN to achieve high-precision and 

robust performance in complex fire and smoke segmentation tasks. In particular, it sig-

nificantly enhances segmentation accuracy for small object detection. Moreover, the 

model exhibits strong transferability, demonstrating excellent generalization capability 

when encountering objects not previously learned from fire and smoke datasets. 

2 Related works 

In recent years, deep learning-based image semantic segmentation techniques have gar-

nered widespread attention. FCN (Fully Convolutional Network), proposed by Jona-

than Long et al. [4] ,removes the fully connected layers from traditional networks and 

uses fully convolutional layers to effectively preserve the spatial information of image 

features. It also employs deconvolution operations to restore object contours in images. 

The U-Net network, introduced by Olaf Roneberger et al. [5] ,utilizes a symmetric en-

coder-decoder structure, skip connections, and deconvolution operations to perform 

high-precision pixel-level segmentation, making it particularly suitable for medical im-

age segmentation and other tasks involving fine structures. The DeepLab network, pro-

posed by Chen et al. [6]  , fully leverages dilated convolution to increase the receptive 

field and replace downsampling operations, thereby maximizing the preservation of 

spatial features, particularly excelling in small object segmentation tasks. 

DeepLabv3,proposed by Chen et al. [7] further enhances semantic segmentation per-

formance with innovations like dilated convolution and Atrous Spatial Pyramid Pooling 

(ASPP). SegFormer, proposed by Xie et al. [8] a model that combines Transformer and 

Convolutional Neural Networks (CNN), replaces traditional positional encodings with 

Mix-FFN, uses a fully MLP decoder, and a hierarchical transformer encoder. It is par-

ticularly effective at handling objects of varying scales, improving small object seg-

mentation accuracy. SegNext,proposed by Guo et al. [9] a model that combines CNNs 

and Transformers, further enhances semantic segmentation performance in complex 

scenarios by merging multi-scale information and efficient feature extraction, particu-

larly demonstrating strong generalization capabilities on large-scale datasets. 

In recent years, large-scale vision-language pre-training models such as CLIP and 

ALIGN have achieved significant success, leading many open-vocabulary semantic 

segmentation methods to leverage their capabilities. These vision-language models, by 

jointly learning image and text embedding spaces, enable the model to understand the 

correspondence between images and text.Building upon this, Muyang Yi proposed a 

two-stage framework based on the CLIP model called SimSeg [10] . In the first stage, 

SimSeg utilizes a mask generator to produce masked image crops, representing poten-

tial objects or regions within the image. In the second stage, SimSeg employs the CLIP 

model to perform mask recognition. Notably, the mask generator in SimSeg operates 

independently of the CLIP model, preventing it from utilizing CLIP's fea-

tures.MaskCLIP enhances this approach by progressively refining the initial masks us-

ing the CLIP encoder and directly applying CLIP's image-text alignment capabilities to 

the mask generation process. MaskCLIP,proposed by Dong et al. [11] , its CLIP en-

coder is employed to refine the initially generated masks, rather than solely relying on 



the mask generator's output.OVSeg [12] , on the other hand, departs from the two-stage 

framework by directly leveraging CLIP's image-text alignment capabilities without the 

need for an additional mask generator. By utilizing both the image encoder and text 

encoder of CLIP, OVSeg efficiently performs open-vocabulary semantic segmentation, 

employing the joint features of images and text for the segmentation task.In contrast to 

these methods, SAN [13] adopts a different approach by employing a side adapter net-

work to generate mask proposals, rather than directly producing the final masks. These 

mask proposals represent potential areas of interest within the image. During training, 

the mask proposals are combined with CLIP model features and guided by attention 

bias, ultimately achieving class recognition for these regions. 

In the field of flame and smoke segmentation, conventional methods [14] have pri-

marily focused on extracting the texture and fine details of flames. However, these ap-

proaches heavily rely on handcrafted features, which inherently limit their generaliza-

tion capability.In recent years, several innovative methods and models have been pro-

posed in the field of flame and smoke segmentation. Yuan et al.[15] (2018) introduced 

a dual-path encoder-decoder network based on Fully Convolutional Networks (FCN) 

to infer high-quality segmentation masks from blurry smoke images. Yang et al. 

[16](2023) proposed an effective smoke segmentation method combining KNN back-

ground modeling and the SegFormer semantic segmentation algorithm.  However, these 

methods lack open-vocabulary capabilities and exhibit slightly lower accuracy.How-

ever, these methods largely rely on a closed vocabulary, resulting in limited generali-

zation capability and poor adaptability to complex environments. 

Building upon the core ideas of the aforementioned studies, we propose CASAN, 

designed to address the challenges of insufficient multi-scale target modeling and poor 

cross-domain generalization in fire and smoke segmentation. 

3 Model Structure 

3.1 Cross Attention Side Adapter Network 

As shown in Fig. 2,the first part of the model utilizes CLIP to generate logits proposals 

for image-text alignment. Both the image and text are separately fed into the CLIP 

model, where the image encoder extracts features in the initial layers. At the ninth layer, 

the CLS token is duplicated to generate multiple SLS tokens. These SLS tokens, along 

with the CLIP CLS token and visual tokens, undergo cross-attention updates. Further-

more, the visual tokens and CLS token in the CLIP layer are updated under the influ-

ence of attention biases from the CrossViT side network, gradually incorporating fine-

grained segmentation features from the side network. Finally, the SLS tokens are mul-

tiplied with the features obtained from the CLIP text encoder to generate logits pro-

posals. These proposals represent the degree of alignment between each pixel in the 

segmented image and the textual description. 

By preserving the pretrained parameters of CLIP and leveraging its cross-modal 

alignment capability, the model maintains its open-vocabulary segmentation ability. 

Simultaneously, through SLS tokens and Cross-Attention mechanisms, it refines fine-
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grained feature extraction, ultimately generating logits proposals. This approach ena-

bles the model to effectively segment objects that were not present in the training set 

while maintaining robust performance across diverse environments. 

 

Fig. 2. Cross Attention Side Adapter Network 

The side network of the model adopts the CrossViT architecture, consisting of two Vi-

sion Transformers (ViTs) with different feature map sizes. A larger 16x16 patch is em-

ployed as the backbone network, primarily for capturing the macro-semantic infor-

mation within the image. Larger patches help the model understand the global structure 

of the image and the distribution of major objects, thus extracting high-level semantic 

features. Additionally, this approach efficiently facilitates interaction with CLIP fea-

tures. To address the limitations of larger patches in capturing small objects and fine 

details, smaller 10x10 patches are also used. These smaller patches enable the model to 

more finely capture the textures, details, and local features of small objects, thereby 

improving detection and segmentation accuracy for small objects. The side network 

consists of 8 MultiScaleBlocks, and after each block, cross-attention is applied to fuse 

the information from both networks. Finally, the tokens from the backbone network are 

output for further utilization. 

3.2 Multi-Scale Feature Extraction 

In traditional ViT, an image is typically divided into fixed-size patches, where each 

patch is flattened into a vector and then fed into the Transformer layers for processing. 

This approach effectively captures the global information of the image; however, it may 

lack sensitivity to small objects or fine details, as larger patches tend to lose local in-

formation of the image. To address this limitation, we employ CrossViT. Below is the 

process of feature fusion in CrossViT. 

The network architecture of CrossViT consists of two Vision Transformers with differ-

ent patch sizes. Suppose we have an image, and we process the image using two differ-

ent patch sizes. The main branch uses a patch size of 16 with an embedding dimension 

of 240, while the side branch uses a patch size of 10 with an embedding dimension of 



120.These patches are then mapped to their respective feature representations through 

linear transformations. 

               𝑋16 = 𝑀𝑊1 ,     𝑋10 = 𝑀𝑊2   (1) 

Subsequently, we add 100 query tokens to the tokens obtained from the main branch. 

These query tokens are used to further strengthen the model's attention mechanism and 

preserve fine-grained features, which are essential for generating detailed mask pro-

posals. The side branch remains unaffected by this process.X16 ∈ RN×D,Qnew ∈ R100×D 

            𝑋𝑚𝑎𝑖𝑛 = [X16 ∥ Qnew] (2) 

After both the main branch and the side branch are processed through ViT blocks, the 

output data from both branches is fused using cross-attention. To illustrate this using 

the main branch, the query tokens from the main branch are first mapped to ensure their 

dimensions match those of the output from the side network. These mapped query to-

kens are then concatenated with the visual tokens output from the side branch. 

            Xl = [f(Xqry
m ) ∥ Xvis

s ] (3) 

Subsequently, cross-attention is applied to fuse the information, and CA can be repre-

sented as follows: 

             𝑄 = 𝑋𝑞𝑟𝑦
𝑚 𝑊𝑞 ,    𝐾 = 𝑋𝑙𝑊𝑘,    𝑉 = 𝑋𝑙𝑊𝑣 (3) 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇/√𝐶/ℎ),    𝑍 = 𝑔 (𝐴 + 𝑓(𝑋𝑞𝑟𝑦
𝑚 )) (4) 

Similar to self-attention, cross-attention employs a multi-head mechanism, where C is 

the dimensionality, h is the number of heads. A residual connection is used to 

add 𝑓(𝑋𝑞𝑟𝑦
𝑚 ) to A, and the result is passed through function 𝑔 to map it back to the 

original dimensionality. Z represents the query tokens of the main branch after fusion. 

Finally, the obtained query tokens and visual tokens are projected through two separate 

MLP layers and then multiplied to generate the mask proposal. The process is similar 

to the attention bias mechanism, and the resulting attention bias is used to update the 

SLS tokens across multiple CLIP blocks. 

3.3 Cross Attention Fusion Layer 

In the previous Side Adapter Network, only the visual tokens from CLIP and the side 

network were fused. However, given that query tokens are essential for generating mask 

proposals, we argue that they should also incorporate a certain degree of text-aligned 

features. To achieve this, we introduce a cross-attention mechanism that facilitates in-

teraction between the sIs token of CLIP and the query tokens of the CASAN main 

branch. Through this process, the sIs token of CLIP influences and integrates with the 

query tokens of CASAN, enabling effective information transfer. As a result, the query 
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tokens can simultaneously capture both the overall text-aligned features from CLIP and 

the essential visual information required for segmentation. 

 

Fig. 3. The fusion of feature representations between the primary pathways of CLIP and CASAN. 

The CLIP visual tokens are passed through an MLP layer to align their dimensions, 

followed by a 1x1 convolution to further extract visual features. These visual features 

are then added and fused with the CASAN visual tokens, effectively combining the 

visual features from both the CLIP and CASAN main paths. Finally, the fused query 

tokens and fused visual tokens are concatenated. The concatenated tokens, which in-

clude information from both CLIP and CASAN, capture both visual and query features. 

This fusion of features allows the model to better capture critical image details and 

semantic information, thereby enhancing the accuracy of detection and segmentation 

tasks. 

3.4 Loss Function 

We employ a mixed loss function consisting of Dice Loss, Binary Cross-Entropy Loss, 

and Cross-Entropy Loss. 

            L = λ1Ldice + λ2Lbce + λ3Lcls (5) 

Dice Loss is utilized to optimize object segmentation and small object detection, while 

Binary Cross-Entropy Loss aids the model in making accurate pixel-level classifica-

tions for segmentation tasks. Cross-Entropy Loss is used to optimize the category pre-

diction. By weighted combination of these three loss functions, we achieve a balance 

between mask generation and classification tasks, thereby enabling the model to per-

form effectively in both segmentation and recognition tasks, leading to improved over-

all performance. 



4 Experimental Analysis and Results 

The experiments are conducted in the following environment: Ubuntu 20.04 operating 

system, 12 vCPUs Intel® Xeon® Platinum 8352V processor at 2.10GHz, 90 GB of 

RAM, with development carried out using PyTorch and Python. The training process 

is accelerated using an NVIDIA 4080s GPU. 

4.1 Dataset and Training Settings 

We conduct experiments on four datasets: COCOStuff [17] , PASCAL VOC 2012 Da-

taset [18] , PA-59 Dataset [19], and the "Jishi" Flame and Smoke Detection Dataset. 

COCOStuff is an extended version of the popular COCO dataset, specifically designed 

for open semantic segmentation tasks. It includes over 170,000 annotated images, la-

beled with 80 common object categories and multiple "Stuff" categories, which repre-

sent background regions such as sky, grass, and ground. 

PASCAL VOC 2012 is a classic image segmentation and object detection dataset 

widely used in object recognition and image segmentation research. It contains approx-

imately 11,000 images, annotated with 20 common object categories. 

PA-59 is a dataset designed specifically for open semantic segmentation tasks, com-

prising 59 categories derived from various objects and backgrounds in daily life, cov-

ering common object categories and natural environment backgrounds. 

"Jishi" Flame and Smoke Segmentation Dataset is designed for fire and smoke de-

tection and segmentation tasks. It consists of over 80,000 images covering five catego-

ries: fire, yellow smoke, black smoke, white smoke, and background. However, the 

dataset exhibits significant class imbalance and contains certain annotation errors, pos-

ing a substantial challenge for model generalization. 

We conducted ablation experiments on publicly available datasets such as COCO-Stuff 

to validate the effectiveness of our method. For the fire and smoke segmentation task, 

we trained and evaluated our model on the 'Jishi' Fire and Smoke Segmentation dataset. 

4.2 Performance Comparison of Different Models 

Models presents a comparison of segmentation accuracy among different models for 

the fire and smoke segmentation task, evaluating categories including fire, black smoke, 

white smoke, yellow smoke, and the overall mean Intersection over Union (mIoU). 

Our model, CASAN, achieves the highest segmentation accuracy across all categories. 

Specifically, the segmentation accuracy for the fire category reaches 76.97, while the 
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segmentation accuracy for black smoke, white smoke, and yellow smoke all exceed 63, 

significantly outperforming other benchmark models. Notably, CASAN achieves an 

mIoU of 71.69, which is a substantial improvement over Deeplabv3+ (51.82), Seg-

Former (66.96), and SegNext (69.28). 

Table 1. Segmentation Accuracy of  CASAN Compared to Other Models 

Methods Fire Smoke_black Smoke_white Smoke_yellow miou 

Deeplabv3+ 58.54 32.08 57.44 59.21 51.82 

Segformer 74.95 53.8 67.44 71.66 66.96 

SegNext 73.21 60.8 70.9 72.21 69.28 

CASAN 76.97 63.01 72.94 73.86 71.69 

Fig. 4. demonstrates that CASAN outperforms SegFormer in flame and smoke seg-

mentation tasks. The incorporation of the CrossViT module and the feature fusion mod-

ule effectively enhances the detection capability for objects of different scales, leading 

to more precise segmentation results for both small and large flames. Furthermore, the 

frozen CLIP model enables CASAN to achieve superior adaptability and robustness in 

complex environments compared to the SegFormer model trained on a closed dataset. 

This allows CASAN to accurately segment previously unseen objects with higher pre-

cision. 

input Segformer CASAN Mask 

    

    

    

    

    

Fig. 4. Comparison of Segmentation Results from Different Models 



These results demonstrate that CASAN exhibits superior segmentation capability in 

fire and smoke detection tasks, enabling more precise identification of different types 

of smoke and fire regions. Given that the dataset itself presents challenges such as class 

imbalance and annotation errors, CASAN still achieves leading segmentation perfor-

mance, proving its strong generalization ability and robustness. 

4.3 Ablation Study 

To validate the effectiveness of our experiments, we conducted evaluations on public 

datasets such as COCO-Stuff, PASCAL VOC 2012, and PC-59. All experiments were 

based on the CLIP ViT-B/16 model. Our baseline utilized the standard SAN model, 

which includes only fully connected and convolutional layers in its fusion layer without 

additional enhancement modules. Subsequent experiments incorporated enhanced fea-

ture fusion modules (fuse) and CrossViT structures into the baseline. All models were 

trained on the COCO-Stuff dataset and subsequently tested on the test sets of COCO-

Stuff, PASCAL VOC 2012, and PC-59. 

Table. 2. Ablation Study Results 

Methods VL-Model Training 

Dateset 

COCO VOC PC-59 

Original SAN 
CLIP VIT-

B/16 
COCO 41.6 93.8 53.5 

Ours(fuse) 
CLIP VIT-

B/16 
COCO 41.7 94.6 53.2 

Ours(crossvit) 
CLIP VIT-

B/16 
COCO 41.8 94.0 53.6 

Ours(fuse+crossvit) 
CLIP VIT-

B/16 
COCO 41.9 94.4 53.7 

These results ,as shown in Table. 2, Results indicate that the introduction of the im-

proved feature fusion module (fuse) and the CrossViT structure has varying impacts on 

model performance. The enhanced feature f usion module led to slight improvements 

on the COCO and VOC datasets but resulted in a minor decline on PC-59. We hypoth-

esize that the more complex feature fusion module enables the model to extract features 

more comprehensively; however, for more intricate scenes, its generalization may be 

slightly reduced. In contrast, the incorporation of CrossViT aids the model in better 

extracting multi-scale features, leading to modest performance gains across the tested 

datasets. Combining both approaches allows the model to retain its original generaliza-

tion capabilities while effectively capturing multi-scale features, resulting in more pre-

cise segmentation.  

Building upon this, Table .3 further validates the effectiveness of our model, partic-

ularly in small object segmentation. The results demonstrate that CASAN consistently 

achieves higher segmentation accuracy compared to the Baseline, highlighting its su-

perior ability to capture fine-grained details in small objects. The data in Table 3 is 

based on small object categories selected from the COCO-Stuff 171K dataset, ensuring 
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a targeted evaluation. This further confirms that our approach enhances multi-scale fea-

ture extraction, ultimately leading to more effective segmentation of small objects. 

Table .3.  Small object segmentation results 

Methods Tie Baseball bat Sports ball Knife Spoon Baseball 

gloves 

Original 

SAN 

9.52 37.01 58.76 15.21 24.07 50.29 

CASAN 9.89 39.46 56.87 18.69 25.06 54.49 

By integrating an enhanced feature fusion module and the CrossViT architecture, our 

model's capacity for multi-scale feature extraction has been significantly improved. 

This advancement enables the model to excel in smoke and flame segmentation tasks, 

facilitating more precise identification and delineation of these regions. Furthermore, 

the model demonstrates robust open-vocabulary semantic segmentation capabilities, al-

lowing it to effectively handle previously unseen categories and thereby enhancing its 

generalization performance. In contrast to traditional models, our approach exhibits 

greater resilience to data discrepancies absent from the training set, maintaining accu-

rate segmentation of smoke and flames even in complex and dynamic environments. 

5 Conclusion 

This study proposes an optimized Side-Adaptive Network (SAN) model, which incor-

porates a cross-attention mechanism and a CrossViT architecture to significantly en-

hance the performance of flame and smoke detection and segmentation. Compared to 

conventional Convolutional Neural Networks (CNNs) and Transformer-based models, 

the optimized SAN model demonstrates superior performance in complex backgrounds 

and small-object scenarios, particularly in its adaptability to underrepresented or previ-

ously unseen objects. 

This enhanced information interaction not only accelerates the training process but 

also improves the model's capability in fine-grained segmentation. Moreover, by utiliz-

ing a frozen CLIP model, the proposed approach retains open-set semantic segmenta-

tion capabilities, demonstrating strong resistance to interference when handling un-

derrepresented or previously unseen objects in complex environments, thereby enhanc-

ing the model's robustness. As evidenced by Table 1 and Fig. 4, integrating open-set 

semantic segmentation into flame and smoke segmentation is both a rational and nec-

essary enhancement to this task. 

In addition, the adoption of the CrossViT architecture further improves the side-

adaptive network’s ability to capture fine details. By integrating multi-scale feature fu-

sion and cross-domain information exchange, CrossViT enhances the model’s ability 

to extract both global and local information, leading to more precise segmentation of 

flames and smoke of varying sizes. Experimental results demonstrate that, compared to 

conventional deep learning approaches, the optimized model achieves superior accu-

racy and robustness in flame and smoke segmentation tasks. 
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