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Abstract. Accurate remaining useful life (RUL) prediction of rolling bearings 

plays a vital role in industrial predictive maintenance. Nevertheless, current 

approaches fail to effectively extract multi-scale degradation features in noisy 

environments, resulting in significant prediction inaccuracies. We propose a 

Multi-Scale Convolutional Bidirectional Gated Recurrent Unit (MSCNN-

BiGRU) network for bearing remaining useful life prediction. First, raw vibration 

signals undergo deep feature extraction via a Stacked Denoising Autoencoder 

(SDAE), followed by dimensionality reduction using a Hierarchical Self-

Organizing Map (HSOM) to generate a 1D degradation curve (DC). A Multi-

Scale Convolution module is then constructed, incorporating 1D dilated 

convolution and a multi-scale strategy to extract degradation features from the 

DC, enabling the simultaneous capture of localized defects and global trend 

patterns. Finally, an attention layer is integrated at the feature input stage, 

combined with a GRU to construct a Bidirectional GRU (BiGRU) prediction 

model, which dynamically weights critical temporal dependencies for accurate 

RUL estimation. Experiments on the PHM2012 dataset that MAE is reduced by 

an average of 18.7% compared to sub-optimal models, and this work provides a 

generalizable framework for RUL prediction of rotating machinery, enhancing 

the reliability of industrial maintenance systems. 

 

Keywords: Remaining Useful Life, Rolling bearings, Feature Extraction, 
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1 Introduction 

In modern industrial production, the stability and reliability of machinery are critical to 

ensuring both production efficiency and operational safety. As a key rotating 

component in machinery, bearings play a pivotal role in determining the overall 

system's performance and operational effectiveness [1]. However, under harsh working 

conditions, bearings are prone to degradation caused by wear, fatigue, and aging, which 

can ultimately lead to failure. Consequently, implementing Prognostics and Health 
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Management (PHM) [2,3] strategies for bearings is essential to ensure the health and 

stability of equipment operations. Within the domain of PHM, accurately predicting the 

RUL of bearings has emerged as a critical yet challenging problem [4,5]. Precise RUL 

predictions not only enhance operational efficiency but also prevent unplanned failures 

and ensure the safety and continuity of industrial production processes [6]. 

The rapid advancements in deep learning technologies in recent years have 

highlighted their exceptional scalability, powerful representation learning capabilities, 

and ability to extract deep features from raw data. These advancements have driven the 

widespread application of deep learning techniques in bearing RUL prediction. Unlike 

traditional methods, deep learning approaches enable direct prediction of bearing RUL 

from raw vibration signals without requiring manual feature engineering. This 

eliminates issues such as subjectivity and inefficiency, as the models can autonomously 

learn and extract degradation features. Methods leveraging Convolutional Neural 

Networks (CNN) [7], Recurrent Neural Networks (RNN) [8] and Deep Belief Networks 

(DBN) [9] have been widely adopted for RUL prediction. For example, Tang et al. [10] 

developed a bearing RUL prediction framework based on Long Short-Term Memory 

(LSTM) networks and Transformer models. Their approach constructs a degradation 

feature set using time-frequency domain features and trains the LSTM-Transformer 

model to improve prediction accuracy. Similarly, Mou et al. [11] proposed a method 

combining Convolutional Deep Belief Networks (CDBN) and Bidirectional Long 

Short-Term Memory (BiLSTM) to handle large-scale, nonlinear, and high-dimensional 

degradation systems. This method uses CDBN to generate deep health indicators and 

BiLSTM to analyze time-series data and degradation trends, with RUL estimated 

through Monte Carlo simulation. Wang et al. [12] introduced a novel approach that 

converts raw vibration signals into time-frequency representations and employs a 3D 

deep CNN to extract degradation features comprehensively. Yang et al. [13] proposed 

an LSTM-based bearing RUL prediction model that incorporates a Dropout module to 

enhance training stability and prediction accuracy. Furthermore, Cao et al. [14] utilized 

raw vibration signals processed through edge spectral analysis, feeding them into a 

time-convolutional neural network to extract deep degradation features. Pan et al. [15] 

designed a performance degradation assessment method for gearbox bearings based on 

Deep Belief Networks and Self-Organizing Maps, where denoised vibration signals 

were analyzed and an improved particle filter was applied to predict gearbox RUL. 

Despite the demonstrated efficacy of deep learning in bearing RUL prediction 

through autonomous fault pattern analysis, critical challenges persist, including 

unbalanced feature importance allocation undermining prediction reliability, 

limitations in spatiotemporal feature extraction from vibration signals, and suboptimal 

model parameter configurations compromising robustness. To address these issues, this 

paper proposes a novel approach for bearing RUL prediction based on the bearing 

degradation curve and an improved MSCNN-BiGRU neural network. The main 

contributions are as follows: 

(1) This method innovatively integrates the deep feature extraction capability of SDAE 

with the topology-preserving properties of HSOM. By implementing a hierarchical 

feature space compression mechanism via HSOM, it maintains the continuity of 

fault evolution trajectories during dimensionality reduction. The proposed approach 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

achieves nonlinear mapping between high-dimensional vibration signal features and 

low-dimensional health indicators in degradation curve construction, thereby 

providing a novel pathway to address accuracy deviations caused by distortion in 

degradation representation within high-dimensional vibration signals.   

(2) This paper proposes a bearing RUL prediction model based on MSCNN-BiGRU. 

The framework integrates multi-scale convolution and dilated convolution to 

enhance feature learning, utilizes bidirectional gated recurrent unit networks to 

capture temporal dependencies while improving computational speed and reducing 

model complexity, and incorporates attention mechanisms to prioritize critical 

features, thereby boosting prediction accuracy and computational efficiency. 

2 Methods 

To address the prevalent issues in existing bearing degradation state modeling methods, 

such as excessive reliance on manual intervention and suboptimal feature extraction 

performance under noisy environmental signals, we introduce an SDAE-HSOM 

degradation curve construction method upstream of the BiGRU model. This approach 

employs SDAE to perform deep feature extraction on raw vibration signals, followed 

by HSOM to achieve layer-wise ordered dimensionality reduction of the SDAE-

processed features, ultimately yielding a one-dimensional bearing degradation curve. 

Furthermore, we enhance traditional convolutional neural networks by integrating a 1D 

dilated convolution technique and a multi-scale concept, thereby improving the model's 

ability to capture multi-scale features and global information from sequential data. The 

complete bearing RUL prediction framework is illustrated in Fig. 1, where red dashed 

boxes highlight the proposed improvements in this study. 

2.1 Construction of Bearing DC Based on SDAE-HSOM 

The key to predicting the RUL of bearings lies in establishing a robust state degradation 

model. Vibration signals collected from operational equipment contain critical 

information reflecting bearing health conditions. By analyzing these signals, we can 

extract essential features that characterize the transition from healthy to faulty states. 

To accurately capture degradation trends, we propose a method for constructing bearing 

degradation curves based on a SDAE and HSOM. The SDAE [16], composed of 

multiple denoising autoencoders (DAEs) [16] trained layer-wise, enhances noise 

resistance, robustness, and generalization through noise injection mechanisms such as 

random masking or Gaussian noise.An overview of the three-layer DAE network 

structure designed in this study is shown in Fig. 2. 

The DAE enhances feature learning through a noise injection mechanism. The input 

signal 𝑥 is corrupted by random masking or Gaussian noise to generate the damaged 

signal  𝑥̂  , and the network reconstructs the original signal 𝑥′.The SDAE adopts a 

hierarchical feature extraction strategy, leveraging a three-layer stacked architecture to  



 

  

Fig. 1.  The overall framework of MSCNN-BiGRU. 

 

Fig.2. Three-Layer SDAE Structure. The SDAE comprises an input layer 𝑥𝑖, a hidden 

layer ℎ𝑖 , and an output layer 𝑥𝑖
′ , where 𝑓𝜃  denotes the encoder, 𝑔𝜃  represents the 

decoder, and ∆(𝑥𝑖 , 𝑥𝑖
′) corresponds to the reconstruction error. 

achieve progressive feature learning. Each network layer adjusts encoder parameters 

through reconstruction error minimization, progressively forming abstract features in 

high-dimensional space. This hierarchical training framework significantly enhances 

the expressive capability of deep features.  

However, the SDAE-derived features often exhibit redundancy. To address this, the 

HSOM a nonlinear dimensionality reduction framework combining two Self-

Organizing Map (SOM) layers—is employed. The HSOM compresses high-

dimensional features into a 1D representation while preserving topological 

relationships and hierarchical data patterns, thereby mitigating overfitting risks. By 

integrating the SDAE and HSOM, the preprocessed vibration data is transformed into 

an interpretable 1D degradation curve that visually tracks the bearing’s evolution from 

health to failure. This approach effectively compresses high-dimensional industrial 

data, enables intuitive degradation pattern visualization, and provides a reliable, 

interpretable foundation for RUL prediction through deep feature extraction and 

hierarchical topology mapping. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

2.2 Hybrid MSCNN-BiGRU Architecture 

In feature extraction for sequential data, the kernel size of convolutional layers critically 

impacts model performance. Conventional convolutional neural networks employ 

single-scale kernels, limiting their ability to capture multi-scale temporal features—

smaller kernels focus on local details and high-frequency patterns, while larger kernels 

capture global trends and low-frequency modes. To address this issue, we propose a 

multi-Scale 1D Dilated Convolution Module integrated into traditional CNN 

architectures, enhancing the model’s capacity to extract multi-scale features and global 

information. 

This module combines 1D dilated convolution with multi-scale convolution 

techniques. Dilated convolution [18] expands the receptive field by inserting zeros at 

fixed intervals into the kernel, increasing coverage without adding parameters.The 1D 

dilated convolution is a specialized adaptation of the dilated convolution concept from 

image processing, extended to 1D sequential data. It extracts features from 1D signals 

with continuous or discrete numerical structures, such as time-series data. This method 

enables models to effectively capture long-range dependencies and global patterns in 

1D signals.The module adapts to varying scales by adjusting dilation rates and 

employing multiple kernel sizes, enabling comprehensive feature extraction from local 

to global contexts and adaptive learning of hierarchical contextual information. 

Specifically, in the first convolutional layer, kernels of diverse sizes and dilation rates 

process the input to generate three distinct feature maps. These multi-scale features are 

then concatenated into a unified representation, serving as the input to subsequent 

layers. This approach overcomes the limitations of traditional single-scale convolution, 

significantly improving the modeling of long-range dependencies and global structures 

in 1D signals. 

The BiGRU model captures temporal dependencies in time-series data by integrating 

a self-attention mechanism, which dynamically optimizes feature weights. The self-

attention layer computes correlations between time-step features and assigns adaptive 

weights, allowing the model to prioritize critical degradation patterns. This design 

enhances the accuracy of remaining useful life prediction and strengthens long-term 

memory capabilities. By balancing local and global temporal contexts, the model 

achieves superior performance and generalization in handling complex temporal 

dependencies and nonlinear degradation dynamics. 

As a type of attention mechanism, Self-Attention aggregates information by 

computing correlations between elements, capturing global relationships, and 

enhancing the model's adaptability and performance, especially in long sequence tasks. 

The calculation formula for the self-attention mechanism is as follows:  

                                          𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
)                                (1) 

In the formula, Q, K and V represent matrices composed of vectors derived from the 

input data through different linear transformations;Softmax(·) is the activation function 

used for normalization; √𝑑 is the scaling factor, which prevents the dot product from 

becoming too large as the dimensionality increases. 



 

3 Experimental Results and Analysis 

3.1  Datasets 

The PHM2012 dataset [19] is a data resource from the Prognostics and Health 

Management Challenge organized by the IEEE Reliability Society in 2012, specifically 

targeting the remaining useful life  prediction of rolling bearings.Provided by the 

FEMTO-ST Institute in France, this dataset captures degradation processes of 17 

bearings under three representative operating conditions, For detailed information, refer 

to Table 1.Regarding data division, From each operating condition, the first two bearing 

samples are used for training, and the rest for testing. Data mainly includes horizontal 

and vertical accelerometer readings, with some datasets incorporating temperature 

sensors. Samples are recorded every 10 seconds at 25.6 kHz for 0.1 s, yielding 2560 

points per instance. Each sample is structured as a six-column matrix, containing 

timestamp components and bi-directional vibration signals. 

Table 1. Dateset of PHM2012 

3.2 Training Details and Evaluation Metrics 

Training Details. The experiments are implemented in the Pytorch framework. We 

employ an Nvidia RTX 4060 GPU for accelerated computing, with CUDA technology 

utilized to optimize training efficiency.The first-layer multi-scale 1D dilated 

convolutional kernels were configured to 3, 5, and 7 for multi-frequency degradation 

feature extraction, while layers 2–4 employed a uniform kernel size of 3. Training 

hyperparameters included a learning rate of 0.0005, 200 epochs, an overfitting control 

coefficient of 0.18, and a dilation rate of 2 to optimize temporal context coverage. 

Evaluation Metrics. To validate the effectiveness of the RUL prediction method, Root 

Mean Square Error (RMSE) and Mean Absolute Error (MAE) were used to evaluate 

the accuracy of the model. The smaller the computed loss, the closer the predicted 

Condition Training Set Training Set 

  Bearing1_3 

Rotation: 1800rpm Bearing1_1 Bearing1_4 

Radial Force: 4000N Bearing1_2 Bearing1_5 

  Bearing1_5 

  Bearing1_7 

  Bearing2_3 

Rotation: 1650rpm Bearing2_1 Bearing2_4 

Radial Force: 4200N Bearing2_2 Bearing2_5 

  Bearing2_6 

  Bearing2_7 

Rotation: 1500rpm Bearing3_1 
Bearing3_3 

Rotation: 1500rpm Bearing3_2 
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values are to the ground truth, reflecting greater prediction precision.The calculation 

methods are as follows: 

                                                   𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̃(𝑥𝑖))2𝑛

𝑖=1                                           (2) 

                                                        𝑀𝐴𝐸 =
1

𝑛
∑|𝑦̂(𝑥𝑖) − 𝑦𝑖|

1

𝑛

                                              (3) 

where n is the number of samples, 𝑦𝑖 represents the true value of the i-th sample, 

and 𝑦̂(𝑥𝑖) denotes the predicted value of the i-th sample. 

3.3 Results on PHM2012 

This study employs MAE and RMSE as evaluation metrics to comprehensively assess 

the discrepancies between model predictions and ground-truth values across multiple 

dimensions. To ensure the reliability and persuasiveness of conclusions, MAE and 

RMSE were calculated for all test bearings under three representative operating 

conditions.As detailed in Table 2, which quantifies prediction errors for each test case, 

both MAE and RMSE metrics exhibit consistently low values across the majority of 

datasets. These results demonstrate the proposed model’s superior predictive 

performance in most samples, characterized by minimal average absolute deviations 

from true values. Furthermore, the model demonstrates robust stability and consistency 

across heterogeneous samples, underscoring its adaptability to diverse operational 

scenarios. 

Table 2. The performance of bearing RUL prediction. 

We adopted an improved MSCNN-BiGRU network model to predict the RUL of 

five test bearings (1_3, 1_4, 1_5, 1_6, and 1_7) under working condition 1. The 

Bearing Name MAE (%) RMSE (%) 

Bearing1_3 0.119 1.400 

Bearing1_4 0.225 2.685 

Bearing1_5 0.644 6.335 

Bearing1_6 0.622 8.064 

Bearing1_7 0.089 3.321 

Bearing2_3 0.785 5.842 

Bearing2_4 0.868 4.528 

Bearing2_5 0.945 10.884 

Bearing2_6 0.920 6.411 

Bearing2_7 1.524 9.127 

Bearing3_3 3.200 11.142 



 

predictive performance of the model is visually demonstrated, as shown in Fig 3, where 

the predicted results exhibit a good fit with the actual values. The prediction results are 

expressed as the bearing degradation ratio, with the full lifespan serving as the baseline 

(assigned a value of 1). The formula for calculating the remaining life proportion is as 

follows: 

                                                        𝑅𝑈𝐿(%) = 1 − 𝐷𝐿(%)                                                   (2) 

Where DL represents the degradation ratio (the proportion of elapsed time),  RUL 

represents the remaining life ratio. 

 

Fig.3. The RUL prediction results of the MSCNN-BiGRU model on the test set under 

working condition 1. 

3.4 Ablation experiment analysis 

To validate the effectiveness of the key components in the proposed MSCNN-BiGRU 

model, this section compares the performance differences of various configurations by 

progressively removing or replacing core components, using the PHM2012 dataset. The 

comparative models involved in the ablation experiment are as follows: 

1. BiGRU: This model integrates the bidirectional gating mechanism on top of the 

GRU to capture both forward and backward temporal dependencies. 

2. CNN-BiGRU: This model combines convolutional neural networks with 

bidirectional gated recurrent units, utilizing convolutional layers to extract spatial 

local features and leveraging the bidirectional gating mechanism to capture temporal 

dependencies. 
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3. MCNN-BiGRU: Building upon traditional convolutional neural networks, this 

model incorporates one-dimensional dilated convolution techniques and multiscale 

ideas. Through a multi-branch structure, it synchronously extracts both local details 

and global long-range features from the sequence data, while using bidirectional 

gated recurrent units to capture temporal dependencies. This enhances the model's 

ability to represent complex sequence patterns. 

4. MSCNN-BiGRU: Based on MCNN-BiGRU, this model adds a degradation      curve 

construction module to accurately capture deep structural features reflecting the 

changes in bearing conditions.  

As shown in Table 3, the proposed MSCNN-BiGRU model achieves the lowest values 

in both MAE and RMSE metrics among the compared methods, validating its superior 

predictive performance. Compared to models that only capture temporal dependencies 

through the bidirectional gating mechanism, MCNN-BiGRU introduces CNN 

convolutional layers and adds a spatial local feature extraction module. This effectively 

reduces the prediction bias caused by neglecting the spatial correlation of sensor 

signals, as seen in BiGRU. MCNN-BiGRU captures both local details and global long-

range features of the vibration signals synchronously through one-dimensional dilated 

convolutions and a multiscale branching structure. MSCNN-BiGRU further enhances 

this by adding a degradation curve construction module, explicitly modeling the deep 

structural features that reflect bearing condition changes. This design specifically 

strengthens the model's sensitivity to key stages of RUL, significantly improving 

prediction accuracy in the late stages of degradation. In addition, as shown in Table 5, 

compared to the second-best model, our model achieves a 1.7% reduction in parameter 

count while improving the training speed by 13.9%. 

Table 3. Ablation Experiment Performance Evaluation of Different Models 

Network model 
Bearing1_3 Bearing1_4 Bearing1_5 

MAE RMSE MAE RMSE MAE RMSE 

BiGRU 0.592 2.537 0.711 4.376 2.535 9.693 

CNN-BiGRU 0.516 2.164 0.655 3.911 1.814 8.712 

MCNN-BiGRU 0.375 1.731 0.576 3.463 0.987 7.648 

MSCNN-BiGRU 0.088 1.400 0.174 2.685 0.644 6.335 

 

 

 



 

Table 4. Comparison of training speed and number of training parameters 

Network model Training speed 
Volume of training 

parameters 

MCNN-BiGRU 86min 14,159,895 

Ours 74min 13,993,487 

3.5 Comparative analysis with other algorithms 

To thoroughly demonstrate the superiority of the MSCNN-BiGRU model proposed in 

this study, we selected a range of representative and widely adopted classical models 

and SOTA models for comparison and analysis. The models included in the comparison 

are BiLSTM, GAU, Transformer, BiGRU-Att, BiLSTM-Att, and iTransformer. Under 

consistent parameter configurations, the MAE metric is used to evaluate the prediction 

performance of all models. Taking five bearing samples (1_3 to 1_7) under Condition 

1 as an example, the RUL prediction results of different models are shown in Table 5. 

A comprehensive comparison and analysis of the final prediction performance of 

different bearing sample models are presented. Compared to other models, our method 

achieves the lowest MAE across all datasets.On the PHM 2012 dataset, compared to 

the second-best method, our approach reduces the MAE by 27.3%, 29.5%, 11.9%, 

13.0%, and 13.8%, respectively, validating the effectiveness of our method. The 

baseline model BiLSTM lacks the ability to extract spatial features, which results in 

larger prediction errors. BiGRU-Att, BiLSTM-Att, and GRU, which incorporate self-

attention mechanisms to improve the capture of critical information, still fail to 

adequately capture the importance of deep features, thus limiting their prediction 

performance. The SOTA Transformer model benefits from its advanced internal 

attention module but has limited capacity in extracting deep features, leaving room for 

improvement in prediction accuracy. In contrast, MSCNN-BiGRU covers the key 

aspects of SOTA models and effectively utilizes deep degraded features through the in-

depth exploration and integration of historical and current information. Therefore, it is 

more suitable for RUL prediction of rotating machinery.  

Table 5. MAE of different forecasring models 

Network model 
Bearing 

1_3 

Bearing 

1_4 

Bearing 

1_5 

Bearing 

1_6 

Bearing 

1_7 

BiLSTM 0.612 0.635 1.724 1.236 0.672 

GAU 0.311 0.435 0.927 1.001 0.504 

Transformer 0.355 0.476 0.876 1.020 0.375 

BiGRU-Att 0.942 1.154 1.845 1.788 0.937 

BiLSTM-Att 0.207 0.326 0.885 0.815 0.188 

iTransformer 0.121 0.247 0.731 0.715 0.218 

Ours 0.088 0.174 0.644 0.622 0.188 
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4 Conclusion 

In this paper, we propose an MSCNN-BiGRU network for RUL prediction of rolling 

bearings. First, we develop a degradation curve construction method based on SDAE 

and HSOM. The SDAE extracts deep features from raw vibration signals, while the 

HSOM performs hierarchical and ordered dimensionality reduction on SDAE-

processed features to precisely capture deep structural characteristics that reflect 

bearing state transitions, thereby constructing degradation curves. To enhance 

prediction accuracy, we employ multi-scale convolution with varied kernel sizes to 

capture multi-level features and dilated convolution to model long-range contextual 

relationships. Additionally, a self-attention mechanism is integrated to highlight 

prediction-critical features, ensuring both efficient model training and improved 

prediction performance. Experimental validation on the PHM2012 open dataset 

demonstrates that our method achieves lower prediction errors and higher accuracy in 

bearing RUL estimation compared to baseline approaches. Future work will focus on 

enhancing cross-domain generalization capabilities through meta-learning, and 

developing an FPGA-based edge-cloud collaborative real-time RUL monitoring system 

to enable timely and precise maintenance decision-making for industrial equipment. 
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