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Abstract. Multimodal Emotion Recognition in Conversation (MERC) aims 

to identify the emotional states of speakers by integrating linguistic, audio, and 

visual information from dialogues. The core challenge of MERC lies in effec-

tively fusing multimodal information and extracting key features. In recent years, 

hypergraph-based methods have been explored to construct hypergraphs directly 

using features output from unimodal encoders. However, due to the heterogeneity 

across modalities and the propagation of noise and redundant information within 

the hypergraphs, the modeling of inter-modal relationships often becomes inac-

curate. Furthermore, existing approaches that employ node-level hypergraph 

contrastive learning overlook global structural information, resulting in insuffi-

cient modeling of global features. To address these limitations, we propose Hy-

perMoCL, which integrates multimodal representation learning and multi-level 

hypergraph contrastive learning. First, HyperMoCL obtains higher-quality modal 

features through multimodal representation learning for hypergraph construction. 

Subsequently, a multi-level hypergraph contrastive learning framework is em-

ployed to comprehensively capture the structural features of the hypergraph, 

thereby enhancing feature discriminability and model robustness. Experimental 

results on two widely-used datasets (IEMOCAP, MELD) demonstrate that our 

method outperforms previous state-of-the-art approaches. 

Keywords: multimodal representation learning, multi-level hypergraph contras-

tive learning, conversation emotion recognition. 

1 INTRODUCTION 

Emotion represents an innate psychological phenomenon that reflects the mental state 

of individuals and influences behavioral patterns. With the widespread application of 

AI and Human-Computer interaction technologies, the recognition of emotional states 

in conversations has become increasingly important. Multimodal Emotion Recognition 

in Conversation (MERC) aims to infer the emotional states of speakers by integrating 

multiple sensory information, such as language, audio and facial expressions. However, 



the expression and recognition of emotions are influenced by various factors. Firstly, 

different modalities (e.g., language, audio, and facial expressions) may contain com-

plementary or conflicting information. For instance, a person may exhibit a neutral 

emotion in speech, while their facial expressions and tone reveal a negative emotion. 

Emotion recognition also relies on global context, such as the topic or background of 

the conversation. Additionally, individual characteristics of the speaker can affect the 

perception of emotions. Therefore, compared to unimodal emotion recognition, multi-

modal models can integrate multi-source information to comprehensively uncover the 

underlying emotional states of speakers, thereby improving recognition accuracy and 

robustness. Nevertheless, the heterogeneity between modalities makes the effective fu-

sion of multimodal information and extraction of key emotional features a core chal-

lenge in MERC tasks. 

Currently, MERC research primarily employs sequence-based and graph-based 

methods. Sequence-based methods employ Recurrent Neural Networks (RNNs) [1] and 

Transformers [2] to capture cross-modal interactions and temporal dynamics in conver-

sational data, but they have limited capabilities in modeling long-range dependencies 

and struggle to distinguish between intra-utterance and inter-utterance interaction rela-

tionships. To address these issues, researchers have introduced Graph Neural Network 

(GNN) into MERC tasks. Traditional graph-based methods treat the multimodal infor-

mation of utterances as nodes, connecting nodes of different modalities within the same 

utterance and nodes of the same modality across different utterances through edges. 

Graph convolution operations are then used to update the embeddings of nodes and 

edges, enabling information interaction within and between utterances. However, tra-

ditional graphs, limited to binary relationships, struggle to represent complex higher-

order relations, potentially leading to insufficient information fusion when dealing with 

multimodal data. To address this issue, recent studies [5] have introduced Hypergraph 

Neural Networks (HGNNs) into MERC tasks. By leveraging hyperedges to simultane-

ously connect multiple nodes, HGNNs enable the modeling of complex high-order re-

lationships across modalities. Through hypergraph convolution, these models effec-

tively aggregate information from both nodes and hyperedges, thereby facilitating a 

more comprehensive representation of multimodal interactions. HAUCL[6] proposed 

a variational hypergraph autoencoder to adaptively adjust the hypergraph structure and 

combined it with hypergraph contrastive learning to enhance model stability. However, 

existing hypergraph methods still face the following challenges: (1) While these ap-

proaches directly construct hypergraphs from unimodal encoder outputs, such a strat-

egy inherently overlooks the modality-specific characteristics and potential cross-

modal interactions. The resulting hypergraphs are susceptible to structural degradation 

caused by modality heterogeneity, as well as the amplification of noise and redundant 

signals during message propagation, ultimately leading to suboptimal modeling of in-

ter-modal dependencies. (2) Existing hypergraph contrastive learning methods restrict 

their contrastive objectives solely to node-level comparisons, failing to incorporate the 

rich structural information inherent in hypergraph topologies. 

To address these challenges, we propose a novel model, HyperMoCL, which inte-

grates multimodal representation learning with multi-level hypergraph contrastive 

learning. Specifically, HyperMoCL first employs unimodal encoders to extract 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

modality-specific features from each input stream. These features are then further de-

composed into shared and private components via a multimodal representation learning 

module. A Transformer encoder is subsequently utilized to capture global contextual 

information, resulting in high-quality modality representations for hypergraph con-

struction.To optimize the structural quality of the hypergraph, a Variational Hypergraph 

Autoencoder (VHGAE) is applied, followed by hypergraph convolution to iteratively 

update both node and hyperedge embeddings. To further enhance the discriminability 

and robustness of learned features, we introduce a multi-level hypergraph contrastive 

learning framework, which performs contrastive learning from three complementary 

perspectives: (1) node-level, (2) hyperedge-level, and (3) association-level, which op-

timizes the structural dependencies between nodes and hyperedges. Finally, the opti-

mized node features are fed into a classification layer for emotion recognition. 

The main contributions of this paper are summarized as follows: 

• A novel multimodal representation learning module is proposed, which extracts 

shared and private features of modalities through a shared-private network architecture 

and combines a Transformer encoder for global context modeling, providing higher-

quality modal representations for hypergraph construction. 

• A multi-level hypergraph contrastive learning framework is designed, conducting 

contrastive learning from three levels: nodes, hyperedges, and their interrelationships, 

achieving comprehensive modeling of the hypergraph structure and enhancing the ro-

bustness of the model. 

• Experiments on two mainstream datasets, IEMOCAP and MELD, demonstrate 

that the proposed method outperforms existing state-of-the-art methods in terms of ac-

curacy and weighted F1 score. 

 

Figure 1. An example of a multimodal emotion dialogue system. Image from The Big Bang 

Theory 



2 RELATED WORK 

2.1 Multimodal Emotion Recognition 

Multimodal emotion recognition research aims to identify speakers' emotions by inte-

grating information from multiple modalities, such as text, visual, and audio. Early 

studies were based on Transformer and recurrent neural networks. For example, Dia-

logueRNN [1] employs three GRUs (global GRU, party GRU, and emotion GRU) to 

model emotions, context, and speaker states in dialogues, enabling efficient information 

extraction and fusion through recursive connections. MulT [2] introduces a multimodal 

Transformer model, utilizing directional cross-modal Transformers to achieve pairwise 

modality feature fusion. Recently, graph neural networks have been introduced into this 

field. MMGCN [3] constructs fully connected graphs to model multimodal information, 

but it also introduces data heterogeneity issues. GraphMFT [4] addresses this by creat-

ing three bimodal graphs to reduce data heterogeneity and incorporates a graph atten-

tion mechanism to optimize information fusion. 

However, traditional graphs are limited to binary relationships, making it difficult to 

represent complex multi-way interactions. To address this issue, M3Net[5] pioneers the 

use of hypergraph neural networks, leveraging hyperedges to connect multiple nodes 

and capture high-order relationships, while improving prediction accuracy through fre-

quency filters. HAUCL[6] proposes a variational hypergraph autoencoder to dynami-

cally adjust the hypergraph structure, reduce information redundancy, and enhance 

model robustness through hypergraph contrastive learning. These approaches provide 

new perspectives for multimodal emotion recognition. 

2.2 Hypergraph Learning 

Hypergraph learning extends traditional graph learning methods and uses hypergraph 

structures to model complex interactions and higher-order relationships between data. 

Unlike traditional graphs, hypergraphs allow a hyperedge to connect multiple nodes, 

enabling a more natural representation of multi-order relationships. This capability en-

hances the integration of multimodal information and the modeling of multi-way rela-

tionships. Hypergraph learning has demonstrated significant advantages in various 

fields, including recommendation systems[7], computer vision[8], and sentiment recog-

nition[9]. 

With the rapid advancement of AI, research on hypergraph neural networks has deep-

ened. HGNN[10] defines the Laplacian operator on hypergraphs, facilitating infor-

mation propagation and aggregation between nodes and hyperedges, thereby learning 

deep feature representations. DHGNN[11] proposes a dynamic hypergraph neural net-

work that dynamically updates the hypergraph structure using k-NN and k-means, 

adapting to changes in feature embeddings and enhancing the ability to capture complex 

relationships. To further exploit hypergraph learning, researchers have delved into hy-

pergraph contrastive learning. TriCL[12] introduces a general hypergraph contrastive 

learning framework, employing three forms of contrast to enhance feature learning. 
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HyGCL-AdT[13] improves model performance through a dual-level contrastive learn-

ing approach, encompassing node-level and community-level contrasts. 

3 METHOD 

The goal of MERC is to identify the emotional type of each utterance in dialogues. 

Formally, a dialogue sequence containing 𝑛 utterances is defined as: {[𝑢1, 𝑘1], [𝑢2, 

𝑘2], [𝑢3, 𝑘3] ......[𝑢𝑛, 𝑘𝑛]}, where 𝑢𝑖 represents the i-th utterance, and 𝑘𝑖 denotes the 

speaker of that utterance. The model takes the utterances as input, with each utter-

ance 𝑢𝑖 consisting of three modalities: text, audio and visual, represented as [𝑢𝑖
𝑡, 𝑢𝑖

𝑎, 
𝑢𝑖

𝑣]. The objective of the model is to identify the emotional type of the utterance by 

integrating its multimodal information 𝑢𝑖
𝑡, 𝑢𝑖

𝑎, 𝑢𝑖
𝑣 and the speaker information 𝑘𝑖. As 

shown in Figure 2, the proposed model framework comprises six core modules: uni-

modal encoding, multimodal representation learning, hypergraph reconstruction, hy-

pergraph convolution, multi-level hypergraph contrastive learning, and emotion classi-

fication. 

3.1 Unimodal Encoding 

In this paper, we first employ unimodal encoders to extract features from the raw input 

data of each modality. Specifically, following the approach in M3NET[5], we utilize 

the RoBERTa large model[14] to extract textual features, the OpenSmile toolkit[15] to 

extract acoustic features, and DenseNet[16] or 3D-CNN[17] to extract visual features. 

To enhance the fusion of contextual information, we further process the extracted fea-

tures: two single-layer fully connected networks are used to encode the acoustic and 

visual features, respectively, while a bidirectional Gated Recurrent Unit (Bi-GRU) is 

employed to encode the textual features. Additionally, the features of the three modal-

ities are projected into the same dimensional space to facilitate subsequent multimodal 

information fusion. The mathematical representation is as follows: 

                                                Ui
t=Wt (GRU ⃡       (ui

t,Ui-1
t ,Ui+1

t ))                                        

                                                Ui
a=Waui

a+bi
a 

                                                Ui
v=Wvui

v+bi
v                                                               (1) 

Where Ui
t,Ui

a,Ui
v∈Rdm, ui and Ui are the input and output of the unimodal encoder re-

spectively, W and b are trainable parameters. 



 

Figure 2. The overall framework of the model we proposed. 𝑁𝑖 and 𝐻𝑖 represent the node fea-

tures and hyperedge features of the i-th view of the hypergraph, respectively. 

3.2 Multimodal Representation Learning 

In the task of MERC, directly constructing hypergraphs based on the modal features 

output by unimodal encoders poses two main challenges: (1) the heterogeneity between 

different modal data leads to inaccurate modeling of inter-modal relationships; and (2) 

noise and redundant information in the data propagate through the hypergraph structure. 

To address these issues, we design a Multimodal Representation Learning module. This 

module learns shared information across modalities through a shared network layer, 

reducing the impact of heterogeneity, while capturing modality-private features 

through private network layers, ensuring that key information within each modality is 

preserved. Specifically, the shared network layer 𝐸𝑠
𝑥 uses parameters 𝜃𝑠, while the pri-

vate network layer 𝐸𝑝
𝑥  assigns independent parameters 𝜃𝑝

𝑥  for each modality. Each 

modal feature 𝑈𝑥 is processed by the shared and private network layers to obtain the 

shared feature 𝑧𝑠
𝑥 and the private feature 𝑧𝑝

𝑥, respectively. Both the shared and private 

network layers are composed of feedforward neural networks. Mathematically: 

                                                     𝑧𝑠
𝑥 = 𝐸𝑠

𝑥[𝑈𝑥 , 𝜃𝑠] 

                                                     𝑧𝑝
𝑥 = 𝐸𝑝

𝑥[𝑈𝑥 , 𝜃𝑝
𝑥]                                                           (2) 

where 𝑥 ∈ {𝑡, 𝑎, 𝑣}. To further capture inter-modal interactions and perform global con-

text modeling, the six features [𝑧𝑠
𝑡 , 𝑧𝑠

𝑎 , 𝑧𝑠
𝑣 , 𝑧𝑝

𝑡 , 𝑧𝑝
𝑎 , 𝑧𝑝

𝑣] are concatenated and fed into a 

Transformer-Encoder for information fusion. Finally, the fused shared and specific fea-

tures of each modality are concatenated to form a higher-quality representation 𝑟𝑥 of 

each modality: 
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𝑟𝑥 = 𝑧𝑠
𝑥⨁𝑧𝑝

𝑥                                                              (3) 

where ⨁  denotes the concatenation operation. This design reduces noise and redundant 

information, providing a holistic view of the multimodal data. Considering the im-

portance of speaker information, we use one-hot encoding to encode the speaker and 

add it to the context-aware unimodal encoding to obtain the final output of this module:  

                                                         𝐾𝑖 = 𝑾1𝑘𝑖 

                                                       𝑣𝑖
𝑥 = 𝑟𝑖

𝑥 + 𝐾𝑖                                                                           (4) 

where 𝐾𝑖 represents the speaker information encoding, 𝑣𝑖
𝑥  is the final output, and 𝑊1 is 

a trainable weight matrix. 

Loss: Inspired by [18], this paper introduces three loss functions for this module: sim-

ilarity loss, diversity loss, and reconstruction loss. The details are as follows: 

Similarity Loss: To capture emotion information shared across modalities, we intro-

duce a similarity loss. This loss constrains the shared features of different modalities to 

be as close as possible in the feature space using the Central Moment Discrepancy 

(CMD) metric: 

                                             ℒ𝑠𝑖𝑚 =
1

3
∑ CMD(𝑧𝑠

𝑥1 , 𝑧𝑠
𝑥2)(𝑥1,𝑥2)                                         (5) 

Diversity Loss: The diversity loss ensures that the shared and private features capture 

different aspects of the input data by enforcing orthogonality constraints to achieve non-

redundancy between these features. The orthogonality constraint is implemented by 

calculating the Frobenius norm between two features. Additionally, to ensure that the 

private features of different modalities are as uncorrelated as possible, an orthogonality 

constraint is added between the private features of different modalities: 

ℒ𝑑𝑖𝑓𝑓 = ∑ ‖𝑧𝑠
𝑥𝑇

𝑧𝑝
𝑥‖

𝐹

2
+ ∑ ‖𝑧𝑝

𝑥1
𝑇

𝑧𝑝
𝑥2‖

𝐹

2

(𝑥1,𝑥2)𝑥∈{𝑡,𝑎,𝑣}                         (6) 

where ‖.‖F
2 denotes the squared Frobenius norm. 

Reconstruction Loss: To ensure the effectiveness of the shared and private features 

and prevent the model from learning invalid information during feature decomposition, 

we introduce a reconstruction loss that forces the decoder to reconstruct the original 

modal data. The decoder is defined as: 

𝑟𝑥 = 𝐷(𝑧𝑠
𝑥⨁𝑧𝑝

𝑥)                                                                        (7)  

where 𝐷  consists of linear network layers. The reconstruction loss be-

tween 𝑢𝑥 and ℎ𝑥 is defined as： 

ℒ𝑟𝑒 =
1

3
∑

‖𝑢𝑥−𝑟𝑥‖2
2

𝑑𝑥∈{𝑡,𝑎,𝑣}                                                     (8) 

where ‖.‖2
2  denotes the squared L2 norm. Finally, the three losses are weighted and 

summed to obtain the final modal representation loss: 



                                     ℒ𝑜 = 0.25 ∗ ℒ𝑠𝑖𝑚+0.25 ∗ ℒ𝑑𝑖𝑓𝑓 + 0.5 ∗ ℒ𝑟𝑒                                      (9) 

3.3 Hypergraph Reconstruction 

Hypergraph structure initialization. In this paper, we construct a hypergraph Φ= (𝑉, 
𝐸), where 𝑣 ∈ 𝑉 represents a node and 𝑒 ∈ 𝐸 represents a hyperedge. For a dialogue 

containing 𝑁  utterances, the information from each modality of every utterance is 

treated as a node in the hypergraph, resulting in a total of 3𝑁 nodes. We define two 

types of hyperedges: the first type connects all modalities within the same utterance, 

and the second type connects all utterance nodes of the same modality, resulting in a 

total of 𝑀 = 3 + 𝑁 hyperedges. The incidence matrix 𝐻 of the hypergraph is defined 

as:        

𝑯𝑖,𝑗 = {
1, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑜𝑛 ℎ𝑦𝑝𝑒𝑟𝑒𝑑𝑔𝑒 𝑗  

0, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑜𝑛 ℎ𝑦𝑝𝑒𝑟𝑒𝑑𝑔𝑒 𝑗 
                                        (10) 

VHGAE. We adopt the Variational Hypergraph Autoencoder (VHGAE) proposed in 

[6] to optimize the original hypergraph and generate two enhanced hypergraph struc-

tures. VHGAE consists of three steps: encoding, sampling, and decoding. 

Encoder: The encoder utilizes Hypergraph Neural Networks (HGNN) to perform 

hypergraph convolution, extracting feature representations of nodes and hyperedges, 

denoted as 𝑣 and 𝑒, respectively. These features are then mapped to mean vectors μ and 

variance vectors σ in the latent space through linear transformations and activation 

functions: 

                     𝑣, 𝑒 = 𝐻𝐺𝑁𝑁(𝐺)                    𝜇𝑙 = 𝑓(𝑙, 𝜃𝑢), 𝜎𝑙 = 𝑓(𝑙, 𝜃𝜎)                        (11) 

Where  𝑓  denotes linear transformation, 𝜃 represents trainable parameters, 𝑙 ∈ {𝑣, 𝑒}. 
Sampler: The sampler generates new embeddings by sampling representations from 

the latent space and introduces randomness using the reparameterization trick:     

                                                       𝑚𝑙 = 𝑢𝑙 + 𝜎𝑙 ⊙ 𝛿                                                    (12) 

where 𝛿 ∼ 𝑁(0,1) is standard normal distribution noise, ⊙ denotes element-wise mul-

tiplication, and 𝑚𝑙 represents the new embedding. 

Decoder: The decoder computes the initial connection matrix ℎ𝑖 by taking the dot 

product of node and hyperedge embeddings. The Gumbel-Softmax function is then ap-

plied to ℎ𝑖 to introduce randomness, followed by a softmax operation to obtain the final 

matrix ℎ: 

ℎ𝑖 = 𝑚𝑣
𝑇𝑚𝑒 

                                     ℎ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺𝑢𝑚𝑏𝑒𝑙_𝑆𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑖 , 𝜏) + 𝑝)                           (13)                                                                                             

where 𝜏 is the temperature coefficient, and 𝑝 is a constant to prevent numerical over-

flow. The first column of matrix ℎ corresponds to the incidence matrix of the new hy-

pergraph Φ′= (𝑉, 𝐸 ′), completing the hypergraph structure reconstruction. Through 
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VHGAE, we effectively reduce redundant information in the hypergraph and generate 

new hypergraph structures. 

The loss function of VHGAE is defined as: 

ℒ𝑔 = 𝐶𝐸(ℎ𝑜, ℎ) + 𝐾𝐿(𝑚𝑣 , 𝑣) + 𝐾𝐿(𝑚𝑒, 𝑒)                            (14) 

where 𝐶𝐸(ℎ𝑜, ℎ)  is the cross-entropy loss, measuring the difference in connection 

structures between the generated hypergraph and the original hypergraph. 𝐾𝐿() denotes 

the Kullback-Leibler (KL) divergence, which measures the difference between the dis-

tribution of latent variables (nodes and hyperedges) and the prior distribution. 

3.4 Hypergraph Convolution 

After constructing the new hypergraph, we employ hypergraph convolution to propa-

gate information and update the embeddings of nodes and hyperedges. The process 

consists of two steps: (1) Node-to-Hyperedge Information Propagation: The features 

of nodes connected by hyperedges are used to update the hyperedge embeddings. Math-

ematically: 

 𝑬 = 𝑯̂𝑽                                                                   (15) 

                                     𝑯̂ = {
𝛾𝑗

𝑖 , 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑜𝑛 ℎ𝑦𝑝𝑒𝑟𝑒𝑑𝑔𝑒 𝑗

0, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑜𝑛 ℎ𝑦𝑝𝑒𝑟𝑒𝑑𝑔𝑒 𝑗
                                   (16) 

where 𝑯̂ is the weighted adjacency matrix, and 𝛾𝑗
𝑖 represents the contribution weight of 

node i to hyperedge j. (2) Hyperedge-to-Node Information Propagation: The infor-

mation from hyperedges is propagated back to the nodes connected to them. Mathemat-

ically, this is expressed as: 

𝑽 = 𝑯𝑾𝑬                                                               (17) 

where W=diag{w1, w2, w3 …} is the hyperedge weight matrix. The overall process can 

be represented as: 

                                                   𝑽̂ = 𝑫−1𝑯𝑾𝑩−1𝑯̂𝑇𝑽                                                           (18) 

Here, 𝑫 and 𝑩 are the degree matrices of hyperedges and nodes, respectively, and 

both 𝑤 and 𝛾𝑗
𝑖 are trainable parameters initialized randomly. Through these two steps 

of information propagation, hypergraph convolution effectively updates the embed-

dings of nodes and hyperedges, thereby capturing high-order relationships among the 

data. 

3.5 Multi-level Hypergraph Contrastive Learning 

Previous studies [6] have focused solely on node-level hypergraph contrastive learning, 

overlooking the global structural properties of the hypergraph. To address this limita-

tion, we propose a multi-level hypergraph contrastive learning framework that captures 



structural information from three complementary perspectives: (a)node-level, (b)hy-

peredge-level, and (c)association-level. The details of each level are described as fol-

lows: 

(a) Node-Level: Corresponding node pairs in the two hypergraph views are treated as 

positive samples, while other node pairs are treated as negative samples. Specifically, 

for a node 𝑣1,𝑖 in the first view as the anchor, the corresponding node 𝑣2,𝑖 in the second 

view is the positive sample, and the remaining nodes 𝑣2,𝑘 (where 𝑘 ≠ 𝑖) in the second 

view are negative samples. The similarity between samples is measured using cosine 

similarity s(. ). The node-level contrastive loss is defined as: 

ℒn(𝑣1,i, 𝑣2,i) = − log
e

s(𝑣1,i,𝑣2,i) τ⁄

∑ e
s(𝑣1,i,𝑣2,k) τ⁄|V|

k=1

                                (19)  

Considering symmetry, the final node-level loss is obtained by averaging the losses 

from both views: 

                                           ℒn̂ =
1

2|V|
∑ {

|V|
i=1 ℒn(𝑣1,i, 𝑣2,i) + ℒn(𝑣2,i, 𝑣1,i)}                      (20) 

(b) Hyperedge-Level: Similarly, for a hyperedge 𝑒1,𝑗 in the first view as the anchor, 

the corresponding hyperedge 𝑒2,𝑗 in the second view is the positive sample, and the 

remaining hyperedges 𝑒2,𝑘 (where 𝑘 ≠ 𝑗) in the second view are negative samples. Us-

ing cosine similarity as the scoring function and considering symmetry, the hyperedge-

level contrastive loss is defined as: 

 ℒw(𝑒1,𝑗, 𝑒2,𝑗) = − log
es(𝑒1,𝑗,𝑒2,𝑗) τ⁄

∑ es(𝑒1,𝑗,𝑒2,𝑘) τ⁄|E|
k=1

 

                                    ℒ𝑤̂ =
1

2|𝐸|
∑ {

|𝐸|
𝑗=1 ℒ𝑤(𝑒1,𝑗, 𝑒2,𝑗) + ℒ𝑤(𝑒2,𝑗, 𝑒1,𝑗)}                    (21) 

(c) Association-Level: To model the structural relationships between nodes and hy-

peredges, we propose a node-hyperedge association-level contrastive learning method. 

For a node 𝑣𝑖 and a hyperedge 𝑒𝑗 connected in the hypergraph (i.e., 𝑒𝑗 connects 𝑣𝑖), we 

take node 𝑣1,𝑖 in the first view as the anchor and the corresponding hyperedge 𝑒2,𝑗 in 

the second view as the positive sample. Negative samples are randomly selected from 

hyperedges 𝑒2,𝑘 that are not connected to 𝑣𝑖  (where 𝑖  ∉ 𝑘 ). Alternatively, hy-

peredge 𝑒2,𝑗 can be used as the anchor, with nodes 𝑣1,𝑘 (where 𝑘 ∉ 𝑗) as negative sam-

ples. A scoring function 𝑅(𝑣, 𝑒) is designed to evaluate the matching degree of node-

hyperedge pairs. Based on this, the association-level contrastive loss is defined as: 

ℒm(𝑣i, 𝑒j) = − log
𝑒

𝑅(𝑣𝑖,𝑒𝑗) 𝜏⁄

𝑒
𝑅(𝑣𝑖,𝑒𝑗) 𝜏⁄

+∑ 𝑒𝑅(𝑣𝑖,𝑒𝑘) 𝜏⁄
𝑘:𝑖∉𝑘

− log
𝑒

𝑅(𝑣𝑖,𝑒𝑗) 𝜏⁄

𝑒
𝑅(𝑣𝑖,𝑒𝑗) 𝜏⁄

+∑ 𝑒
𝑅(𝑣𝑘,𝑒𝑗) 𝜏⁄

𝑘:𝑘∉𝑗

            (22) 

Considering symmetry, the final association-level loss is: 

         ℒ𝑚̂ =
1

2|𝐾|
∑ ∑ [ℎ𝑖𝑗 = 1]{

|𝐸|
𝑗=1

|𝑉|
𝑖=1 ℒ𝑚(𝑣1,𝑖 , 𝑒2,𝑗) + ℒ𝑚(𝑣2,𝑖 , 𝑒1,𝑗)}                 (23) 
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Finally, the overall loss function for this module is a weighted sum of the three losses: 

ℒ𝑐 = ℒn̂ + 0.5 ∗ ℒ𝑤̂ + ℒ𝑚̂                                              (24) 

3.6 Emotion Classification Layer 

After multi-level hypergraph contrastive learning, we aggregate the node features from 

the two hypergraphs by summing them. Then, the features of the three modalities for 

the same utterance are concatenated to obtain the final feature representation of the 

utterance. These fused features are subsequently fed into a classifier composed of fully 

connected layers to predict the corresponding emotion category. The entire process can 

be formally expressed as follows: 

                                 𝑝𝑖 = (𝑣1,𝑖
𝑡 + 𝑣2,𝑖

𝑡 )⨁(𝑣1,𝑖
𝑎  + 𝑣2,𝑖

𝑎 )⨁(𝑣1,𝑖
𝑣 + 𝑣2,𝑖

𝑣 )         

                                 𝑃𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾2𝑅𝑒𝐿𝑈(𝑝𝑖) + 𝑏1) 

                                 𝑦𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑖)                                                                     (25) 

where 𝑾2 is the weight matrix, 𝑏1 is the bias term, and 𝑦𝑖 is the predicted label. 

Loss: We employ a cross-entropy loss with L2 regularization for classification, defined 

as: 

ℒ𝑒𝑟𝑐 = −
1

∑ 𝑠(𝑚)𝑁
𝑚=1

∑ ∑ log 𝑃𝑖,𝑗
𝑠(𝑖)
𝑗=1

𝑁
𝑖=1 [𝑌𝑖,𝑗] + 𝜆‖𝜃‖2                        (26) 

where 𝑃 and 𝑌 represent the predicted and true label probabilities, respectively, N is 

the number of dialogues, and 𝑠(𝑚) is the number of utterances in dialogue 𝑚. Com-

bining the multimodal representation loss ℒ𝑜 from Equation (9), the hypergraph recon-

struction loss ℒ𝑔 from Equation (14), and the multi-level contrastive learning loss ℒ𝑐

 from Equation (24), the final loss function is: 

ℒ𝑎𝑙𝑙 = ℒ𝑒𝑟𝑐 + 𝜆𝑜ℒ𝑜 + 𝜆𝑔ℒ𝑔 + 𝜆𝑐ℒ𝑐                                         (27) 

Where 𝜆𝑜, 𝜆𝑔, and 𝜆𝑐 are the weighting parameters for the respective losses. 

4 Experiments 

4.1 Datasets 

This paper evaluates the performance of modal on two widely used datasets for dia-

logue emotion recognition: IEMOCAP [20] and MELD [21]. The IEMOCAP dataset 

consists of 151 dyadic dialogues from 10 speakers, comprising a total of 7,433 utter-

ances. Each utterance is annotated with one of six emotion labels: happy, sad, neutral, 

angry, excited, and frustrated. For experiments, 120 dialogues are used for training and 

validation, while the remaining dialogues are reserved for testing. MELD is a multi-

party dialogue dataset collected from the TV series Friends. It contains 1,433 dialogues 



and 13,708 utterances, with each utterance labeled as one of seven emotion categories: 

neutral, happy, surprise, sad, anger, disgust, and fear. For experiments, 1,153 dialogues 

are used for training and validation, and 280 dialogues are used for testing. For both 

datasets, this paper utilizes information from three modalities: audio, visual, and text, 

for emotion recognition. 

Table 1. Details of hyper-parameters for HyperMoCL 

Dataset Batch size Dropout Learning rate 𝜆𝑐  𝜆𝑜 𝜆𝑔 𝑑𝑚 

IEMOCAP 24 0.7 0.0001 0.1 0.1 0.8 512 

MELD 12 0.4 0.0001 1 1 0.5 256 

4.2 Experimental Details and Baseline Models 

Experimental Setup: The model is implemented using the PyTorch framework and 

trained/tested on an NVIDIA GeForce RTX 4090 machine. The experimental environ-

ment is configured with PyTorch 2.4.1 and CUDA 11.8. Adam is used as the optimizer 

for training, and additional hyperparameter settings are listed in Table 1. Model perfor-

mance is evaluated using accuracy (ACC) and weighted F1 score (WF1), with the F1 

score used as the metric for evaluating each individual emotion category. 

Baseline Models: To evaluate our model, we compare it with the following state-of-

the-art multimodal emotion recognition models, categorized into three groups: 

Non-graph-based deep learning models: bc-LSTM[22], MFN[23], and DialogueRNN 

[1]. Graph-based deep learning models: DialogueGCN[24], MMGCN[3], GraphMFT 

[4], COGMEN[25], and GraphCFC[26]. Hypergraph-based deep learning models: 

HAUCL [6] and M3NET [5]. 

Table 2. Overall performance of various methods. (*) denotes these baselines are reproduced 

from References [4, 6] 

 

Method 

IEMOCAP MELD 

Overall Overall 

Acc WF1 Acc WF1 

BC-LSTM* 59.58 59.10 59.62 56.80 

MFN* 60.14 60.32 59.93 57.29 

DialogueRNN* 63.40 62.75 60.31 57.66 

DialogueGCN*        65.54     65.04         58.62       56.36 

MMGCN*        65.56 65.71         59.31       57.82 

GraphMFT*        67.90 68.07         61.30       58.37 

GraphCFC        68.76     68.31         61.32       58.66 

M3NET        69.01     69.09         67.43       65.81 

HAUCL        69.44     69.50         67.74       66.30 

HyperMoCL        70.43     70.28         68.12       66.99 
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Table 3. F1 scores for six emotion categories of IEMOCAP. 

 

Method 

Emotion Categories of IEMOCAP (F1) 

Happy Sad Neutral Angry Excited Frustrated 

BC-LSTM* 32.62 70.34 51.14 63.44 67.91 61.06 

MFN* 47.19 72.49 55.38 63.04 64.52 61.91 

DialogueRNN* 33.18 78.80 59.21 65.28 71.86 58.91 

DialogueGCN* 47.10 80.88 58.71 66.08 70.97 61.21 

MMGCN* 45.45 77.53 61.99 66.67 72.04 64.12 

GraphMFT* 45.99 83.12 63.08 70.30 76.92 63.84 

GraphCFC 40.32 84.65 65.26 70.89 78.46 65.33 

M3NET 55.37 78.60 68.10 65.48 77.89 63.87 

HAUCL 54.24 81.89 69.55 65.69 72.89 66.30 

HyperMoCL 51.66 80.72 68.93 69.49 75.99 67.83 

4.3 Experimental Results and Analysis 

To validate the performance of HyperMoCL, we conduct extensive experiments on two 

widely used datasets, IEMOCAP and MELD, and compared the results with state-of-

the-art models, as shown in Table 2. The experiments demonstrate that HyperMoCL 

achieves superior performance in terms of accuracy and weighted F1 score. Compared 

to the state-of-the-art hypergraph model HAUCL, HyperMoCL improves accuracy and 

weighted F1 score by 0.99% and 0.78%, respectively, on the IEMOCAP dataset, and 

by 0.38% and 0.69%, respectively, on the MELD dataset. Table 3 provides a detailed 

breakdown of the F1 scores for each emotion category on the IEMOCAP dataset. 

Compared to sequence-based and graph-based methods, HyperMoCL enhances the 

modeling of long-range dependencies through its hypergraph structure, more effec-

tively capturing high-order relationships among information. In contrast to existing hy-

pergraph methods, the proposed multimodal representation learning module provides 

higher-quality modal features for hypergraph construction, while the multi-level con-

trastive learning framework comprehensively models the structural information of the 

hypergraph. In summary, the experimental results demonstrate that the proposed model, 

HyperMoCL, outperforms other baseline models on both the IEMOCAP and MELD 

datasets. 

4.4 Parameter Sensitivity Study 

To evaluate the impact of model parameters on performance, we conducted experi-

ments on the IEMOCAP and MELD datasets by varying the number of layers K in the 

Transformer-Encoder and the number of layers L in the hypergraph convolution. The 



results indicate that setting the number of Transformer-Encoder layers to 1 allows the 

model to effectively capture contextual information while avoiding overfitting. Simi-

larly, setting the number of hypergraph convolution layers to 1 yield optimal model 

performance. Increasing the number of layers leads to varying degrees of performance 

degradation, suggesting that additional layers not only increase computational com-

plexity but also cause performance decline due to over-smoothing. Therefore, selecting 

an appropriate number of layers is crucial for model optimization. 

 

 

Figure 3. (a) and (b) show the effect of parameters K and L on the performance of MELD da-

taset, while Figure 3 (c) and (d) show the effect of K and L on the performance of IEMOCAP 

dataset. During the test, other parameters were fixed to the optimal values. 

At the same time, we also conducted sensitivity analysis on the loss weights of contras-

tive learning at different levels and the loss weights 𝜆𝑜, 𝜆𝑔, 𝜆𝑐 of different modules on 

the MELD, and obtained the most appropriate loss weight parameters. The results are 

shown in Figures 4 and 5 respectively. 
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Figure 4. (a), (b), and (c) respectively show the impact of Node-level loss weight, Hyperedge-

level loss weight, and Association-level loss weight on the performance of the model on the 

MELD dataset. 

 

 

Figure 5. (a), (b), and (c) respectively show the impact of different module loss weights (𝜆𝑜, 

𝜆𝑔, 𝜆𝑐) on the performance of the model on the MELD dataset. 



4.5 Ablation Study 

To validate the importance of each module in HyperMoCL, we conducted the following 

ablation experiments, with the results shown in Table 4: 

(1) Contrastive Learning Module: The proposed multi-level hypergraph contrastive 

learning framework performs contrastive learning at three levels: node-level, hy-

peredge-level, and association-level, to fully exploit high-order dependencies in the 

data. We validated its effectiveness through the following configurations: 1) removing 

the contrastive learning module (“w/o CL” in table 4); 2) using only Node-Level contras-

tive learning (“w/o A_CL&H_CL”); and 3) using Node-Level and Hyperedge-Level con-

trastive learning, removing the Association-Level contrastive learning module (“w/o 

A_CL”). The experimental results demonstrate that the multi-level contrastive learning 

framework significantly enhances model performance. 

(2) Multimodal Representation Learning Module: Table 4 compares the perfor-

mance of our model with and without the multimodal representation learning module 

(“w/o MRL” in table 4). The results show that removing this module leads to accuracy 

drops of 1.67% and 0.80% on the IEMOCAP and MELD datasets, respectively. This 

confirms that the multimodal representation learning module effectively reduces noise 

and redundant information, improves information fusion, and thereby enhances model 

performance. 

(3) Impact of Speaker Embedding Information: We conducted ablation experiments 

to evaluate the impact of speaker information by removing it from our model on both 

datasets (denoted as “w/o SP” in Table 4). The results show a performance drop of 

0.74% on the IEMOCAP dataset and 1.87% on the MELD dataset in terms of accuracy. 

This performance degradation highlights the importance of incorporating speaker fea-

tures, underscoring their critical role in enhancing the accuracy of emotion recognition 

models. 

Table 4. Ablation experimental results of HyperMoCL. 

Method IEMOCAP MELD    

Acc F1 Acc F1  

w/o CL 68.95 68.94 67.28 65.98 

w/o A_CL&H_CL 69.87 69.89 67.36   66.47 

w/o A_CL 69.99 69.97 67.82   66.82 

w/o MRL 68.76 68.80     67.32   66.13 

w/o SP 69.69 69.64     66.25   65.32 

HyperMoCL   70.43   70.28     68.12   66.99 
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5 Conclusion 

This paper proposes a joint framework model based on multimodal representation 

learning and multi-level hypergraph contrastive learning to address the task of MERC. 

Our method introduces a multimodal representation learning module, which reduces 

noise and redundant information in multimodal data, providing higher-quality modal 

representations for hypergraph construction. Additionally, we propose a multi-level hy-

pergraph contrastive learning framework to comprehensively model the hypergraph 

structure, enhancing the model's robustness and feature discriminability. Experimental 

results on the IEMOCAP and MELD datasets demonstrate the superior performance of 

HyperMoCL. In future work, we will continue to explore the application of hypergraph 

models in emotion recognition with missing modalities and investigate integrating our 

model with recent pre-trained models. 
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