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Abstract. Performance degradation caused by aging industrial equipment makes 

multivariate time series anomaly detection crucial for achieving Prognostics and 

Health Management (PHM) and preventive maintenance. However, existing 

methods face challenges in complex industrial scenarios, including insufficient 

real-time performance, high noise sensitivity, and limited anomaly pattern diver-

sity. To address these issues, this paper proposes VT-GAN, an anomaly detection 

model that deeply integrates Variable-Time Transformer (VTT) with Generative 

Adversarial Networks (GANs). Targeting the challenges of limited anomaly pat-

tern diversity and high noise sensitivity, the model features parallel generator 

groups and combines temporal self-attention, variable-specific self-attention, and 

cross-attention layers in the VTT architecture, explicitly modeling spatiotem-

poral interactions through learnable gating weights. Additionally, it incorporates 

the Model-Agnostic Meta-Learning (MAML) framework to enhance rapid adap-

tation to new tasks or environments. Experiments on six industrial datasets show 

that compared to the Transformer-GAN baseline, VT-GAN achieves a 12.7% 

improvement in F1-score, reduces false alarm rate by 23.4%, and maintains in-

ference latency within 28ms. This work provides a highly reliable real-time mon-

itoring solution for industrial equipment health management. 

Keywords: Multivariate Time Series, Anomaly Detection, Variable-Time 

Transformer, Generative Adversarial Networks, Model-Agnostic Meta-Learn-

ing 

1 Introduction 

Under the context of Industry 4.0 and smart manufacturing, production equipment has 

been extensively equipped with sensors to enable real-time monitoring of operational 

status. The multivariate time series data collected by these sensors intrinsically encap-

sulate critical information about equipment health status and performance parame-

ters[1-2]. Although multivariate time series-based anomaly detection techniques can 

effectively enable early fault warnings and remaining useful life (RUL) prediction by 



analyzing multi-source sensor data (e.g., vibration, temperature, and pressure), existing 

methods face three core challenges in industrial scenarios: High noise interference 

caused by sensor inaccuracies and communication latencies[3] , Complex temporal de-

pendencies and variable coupling effects[4], The computational complexity of global 

attention mechanisms in high-dimensional time series data still limits real-time perfor-

mance[5]. 

Traditional deep learning models struggle to comprehensively address the aforemen-

tioned challenges. Recurrent Neural Networks (RNNs) suffer from insufficient paral-

lelization capabilities, while Transformer-based approaches typically fail to model var-

iable-specific temporal patterns[6]. Although Generative Adversarial Networks 

(GANs) excel in data generation, they encounter mode collapse and gradient instability 

in high-dimensional temporal scenarios. Furthermore, conventional meta-learning 

methods lack explicit mechanisms for multivariate time series feature alignment. 

To overcome these limitations, this paper proposes the VT-GAN framework, with 

three core innovations: 

1. Stabilized Multi-Generator GAN: This GAN variant enhanced with residual net-

works effectively mitigates mode collapse through parallel sub-generators and gra-

dient penalty constraints, achieving a 23.4% improvement in sample diversity, 

thereby reducing noise interference and enhancing the model's anomaly detection 

accuracy.  

2. Dynamic Hybrid Attention Discriminator: Introduces temporal self-attention, varia-

ble-specific self-attention, and cross-attention layers within the Variable-Time 

Transformer (VTT) architecture. This explicitly models spatiotemporal interactions 

through learnable gating weights, addressing the inadequate modeling of variable 

coupling effects in conventional methods. 

3. MAML-Driven Adaptive Learning: Leverages the Model-Agnostic Meta-Learning 

(MAML) framework to enable rapid parameter adaptation of LSTM networks in 

few-shot anomaly scenarios, reducing training time by 41% compared to standard 

meta-learning methods. 

2 Related Work 

2.1 Transformer-Based Time Series Modeling 

The primary advantage of Transformer in time series anomaly detection lies in its pow-

erful feature extraction capability, enabling the capture of global temporal dependen-

cies and applicability to multivariate time series data. Xu et al.[7] proposed the Anom-

aly Transformer, which integrates self-attention mechanisms with an anomaly scoring 

mechanism to enhance detection sensitivity for anomalous points. While it effectively 

captures global temporal dependencies and handles multivariate time series, challenges 

remain in high computational complexity for long sequences, reliance on large-scale 

training data, and limited generalization capabilities. Tuli et al.[8] introduced TranAD, 

which employs adversarial training with GANs to improve model robustness in anom-

aly detection tasks. By utilizing Transformer as the core feature extractor, TranAD 
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achieves higher detection accuracy. However, its training process is complex, and ro-

bustness to noisy data requires further improvement. Kang et al.[9] developed a varia-

ble-specific self-attention mechanism, implementing two distinct architectures to inte-

grate variable and temporal attention: a serial structure (VTT-SAT, Serial Attention-

based Variable-Time Transformer) and a parallel structure (VTT-PAT, Parallel Atten-

tion-based Variable-Time Transformer). A critical limitation is the inability to dynam-

ically switch between these architectures, necessitating manual selection based on ap-

plication-specific requirements. 

2.2 Applications of GANs in Anomaly Detection 

Schlegl et al.[10] proposed AnoGAN, which builds on the DCGAN[11] architecture, 

training a generator to learn the distribution of normal data. By optimizing the latent 

space input to approximate generated data to real data, anomaly scores are quantified 

using reconstruction error and discriminator scores. However, this method suffers from 

unstable GAN training and convergence difficulties. Subsequently, Schlegl et al.[12] 

introduced f-AnoGAN, which offers improved training stability and faster convergence 

compared to AnoGAN. Nevertheless, it still faces limitations, including reliance on 

GAN training stability and restricted generalization to unseen anomaly patterns. Akcay 

et al.[13] developed GANomaly, which reduces inference time and improves detection 

accuracy compared to AnoGAN. However, it remains constrained by GAN stability 

issues and exhibits limited effectiveness in detecting anomalies in high-dimensional 

data (e.g., multi-sensor industrial systems). 

2.3 Meta-Learning and Few-Shot Adaptation 

The objective of meta-learning is to enhance model adaptation capabilities on new 

tasks, particularly in few-shot learning (FSL) scenarios. This approach has been widely 

applied to tasks such as anomaly detection, image recognition, natural language pro-

cessing (NLP), and knowledge graph completion. Although MAML[14] proposed by 

Finn et al. is compatible with diverse neural architectures and demonstrates strong per-

formance in few-shot supervised and reinforcement learning tasks, it suffers from high 

computational overhead (due to second-order gradient computation) and limited adapt-

ability to highly uncorrelated tasks. Nichol et al. introduced Reptile[15], a first-order 

meta-learning method analogous to MAML but computationally more efficient. How-

ever, its convergence rate is slower compared to MAML. Ravi & Larochelle proposed 

Meta-LSTM [16], which automates hyperparameter tuning for few-shot optimization 

but exhibits high training complexity and sensitivity to data distribution shifts. Notably, 

Yu et al. directly applied MAML to LSTM networks without addressing the temporal 

shift issue in equipment condition monitoring. This problem arises when the support 

set and query set originate from different phases of the equipment lifecycle (e.g., normal 

operation vs. degradation stages), leading to temporal pattern mismatch and degraded 

generalization. 



3 Methodology 

3.1 Overall Model Architecture 

In the VT-GAN model, the Generator and Discriminator are connected through an ad-

versarial training framework, with their interaction process divided into two compo-

nents: data flow and gradient backpropagation. The Generator synthesizes time series 

data from the latent space, while the Discriminator determines whether the data origi-

nates from the real time series dataset or is generated by the Generator. 

For the Generator, the input noise vector 𝑧 is processed by the short-term generator 

using dilated causal convolution (𝑑=1) to generate hourly-level temporal pattern 𝑋̂1, 

the mid-term generator uses dilated causal convolution (𝑑 =4) to generate daily trend 

pattern  𝑋̂2, and the long-term generator uses dilated causal convolution (𝑑 =16) to gen-

erate weekly periodic pattern  𝑋̂3. Finally, the fused fake sample 𝑋̂ is output. 

For the Discriminator, the real sample 𝑋 and the generated sample 𝑋̂ are input and 

mapped to high-dimensional features 𝐻 ∈ ℝ𝑇×𝑉×𝑑 through the embedding layer. Tem-

poral self-attention is used to capture univariate temporal dependencies, while variable 

self-attention models cross-variable interactions. Cross-attention explicitly fuses spa-

tio-temporal features. Finally, the outputs of the attention mechanisms are dynamically 

weighted to generate the discriminative features 𝑍 ∈ ℝ𝑇×𝑉×𝑑, and the anomaly score is 

computed. We have shown architecture of the VT-GAN model(see Fig. 1). 

 

Fig. 1. VT-GAN Model Structure Diagram. 

3.2 Multi-Generator Setup 

Branch Structure. To capture the dynamic patterns at different time scales in the deg-

radation process of industrial equipment, this work designs a multi-generator architec-

ture, where each generator focuses on feature extraction and generation at a specific 

time scale. We have shown the multi-generator architecture diagram of the VT-GAN 

model(see Fig. 2). Through dilated factor hierarchical expansion, the short-term gener-

ator (𝑑=1) focuses on local fluctuations, the mid-term generator (𝑑=4) models daily 

trends, and the long-term generator (𝑑=16) captures weekly periodicity, covering the 

entire degradation process of the equipment. The local connection characteristics of 
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dilated causal convolutions alleviate the gradient vanishing problem in traditional 

GANs, and the combination with Wasserstein loss further ensures training conver-

gence. The short-term generator consists of three layers of stacked dilated causal con-

volutions, with a kernel size of 𝑘 = 3 for each layer, and the dilation factor increasing 

as 𝑑 = 2𝑙 (where 𝑙 is the layer number). The receptive field gradually expands to 𝑅 =

2(𝑙+1) − 1 time steps. The short-term generator is used to capture the high-frequency 

variations in the equipment's state (e.g., sudden temperature rise, pressure peaks, etc.), 

quickly responding to local features through a shallow convolutional network. The mid-

term generator contains six layers of dilated causal convolutions, with the dilation fac-

tor 𝑑 = 2𝑙 for the first three layers and a fixed 𝑑 = 4 for the last three layers, ensuring 

stable modeling of daily patterns. The medium-term generator is designed to identify 

gradual degradation in equipment performance, balancing local feature extraction with 

mid-to-long-term dependency modeling through a medium-depth network architecture. 

The long-term generator uses a twelve-layer dilated causal convolution with residual 

connections, where the dilation factor 𝑑 = 2𝑙 for each layer. The final receptive field 

covers 𝑅 = 212 − 1 = 4095 time steps. The long-term generator is used to analyze the 

macroscopic evolution patterns over the full lifecycle of the equipment, capturing com-

plex associations across time steps through a deep network. 

 

Fig. 2. The structure diagram of the VT-GAN model, where all three generators focus on feature 

extraction and generation at specific time scales. 

Dilated Causal Convolution. The core operation of each generator is implemented by 

dilated causal convolution, mathematically formalized as follows: 

𝐻𝑙
(𝑘)

= 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣1𝐷(𝐻𝑙−1
(𝑘)

, 𝑘 = 3, 𝑑 = 2𝑙)) (1) 

where 𝐻𝑙
(𝑘)

∈ ℝ𝑇×𝑉×𝑑𝑚𝑜𝑑𝑒𝑙 denotes the output feature of the 𝑙-th layer in the 𝑘 -th gen-

erator. 𝐶𝑜𝑛𝑣1𝐷(∙) represents the one-dimensional causal convolution, which ensures 

that the output depends only on the current and historical inputs, thus avoiding infor-

mation leakage from the future. 𝑘 = 3 is the convolution kernel size, and 𝑑 = 2𝑙 is the 
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dilation factor, which increases exponentially with network depth to gradually expand 

the receptive field.  

Gated Fusion Network in GANs. To integrate the outputs of multiple generators and 

produce the final synthetic sample, this paper proposes a dynamic gating fusion mech-

anism: 

𝑋̂ = ∑ 𝑔𝑘

𝐾

𝑘=1

⋅ 𝐺𝑘(𝑧), 𝑔𝑘 = Softmax(𝑊𝑔[ℎ1; … ; ℎ𝐾]) (2) 

where 𝐺𝑘(𝑧) ∈ ℝ𝑇×𝑉 be the output of the 𝑘-th generator. ℎ𝑘 ∈ ℝ𝑑ℎ  denotes the hidden 

state of each generator, extracted via Global Average Pooling from the final convolu-

tional features. 𝑊𝑔 ∈ ℝ𝐾×𝐾𝑑ℎ  is a learnable parameter matrix that dynamically com-

putes the fusion weights 𝑔𝑘 for each branch.  

3.3 Dynamic Hybrid Attention Discriminator 

We present the architecture diagram of the dynamic hybrid attention discriminator(see 

Fig. 3). The model first processes multivariate time series through an input embedding 

layer, projecting raw inputs into a high-dimensional latent space using learnable param-

eters to enhance feature separability and provide structured inputs for subsequent atten-

tion mechanisms. The core dynamic hybrid attention module then concurrently models 

temporal, inter-variable, and cross-spatiotemporal dependencies through three special-

ized components, employing learnable gating weights that extend the soft attention 

mechanism to multimodal fusion scenarios, thereby significantly improving the model's 

adaptability to complex operational conditions. This embedded-attention combined ar-

chitecture effectively captures deep spatiotemporal patterns while maintaining compu-

tational efficiency. 

 

Fig. 3. The structure diagram of the dynamic hybrid attention module consists of three parts, 

which respectively model time, variables, and spatiotemporal cross dependencies. 

Input Embedding. To extract deep spatio-temporal features from multivariate time 

series, the discriminator first maps the raw input 𝑋 ∈ ℝ𝑇×𝑉 into a high-dimensional la-

tent space through an embedding layer: 
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𝐻 = 𝑋𝑊𝑒 + 𝑏𝑒 , 𝐻 ∈ ℝ𝑇×𝑉×𝑑𝑚𝑜𝑑𝑒𝑙 (3) 

where 𝑊𝑒 ∈ ℝ𝑉×𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑏𝑒 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙  are learnable parameters. 𝑑𝑚𝑜𝑑𝑒𝑙  denotes the di-

mensionality of the hidden layer, typically set to 64 or 128 to balance computational 

efficiency and representation capacity. This embedding process enhances feature sepa-

rability through a linear transformation and provides structured inputs for subsequent 

attention mechanisms. 

Attention Mechanisms. The dynamic mixed attention module consists of three parts, 

which model temporal, variable, and spatio-temporal cross dependencies. Below, we 

provide the attention mechanism structure diagram(see Fig. 3). The learnable gating 

weights are inspired by the soft attention mechanism [4], but extended to a multi-modal 

fusion scenario, enhancing the model's adaptability to complex operating conditions. 

The goal of Temporal Self-Attention is to capture long-term dependencies across 

time steps within a single variable. First, the embedded features 𝐻 are split along the 

variable dimension into 𝑉  independent time series {𝐻(1), … , 𝐻(𝑉)} , where 𝐻(𝑣) ∈

 ℝ𝑇×𝑑𝑚𝑜𝑑𝑒𝑙. For each variable 𝑣, the query matrix 𝑄𝑡
(𝑣)

, key matrix 𝐾𝑡
(𝑣)

, and value ma-

trix 𝑉𝑡
(𝑣)

 are calculated as: 

𝑄𝑡
(𝑣)

= 𝐻(𝑣)𝑊𝑄
(𝑡)

,  𝐾𝑡
(𝑣)

= 𝐻(𝑣)𝑊𝐾
(𝑡)

,  𝑉𝑡
(𝑣)

= 𝐻(𝑣)𝑊𝑉
(𝑡) (4) 

where 𝑊𝑄
(𝑡)

, 𝑊𝐾
(𝑡)

, 𝑊𝑉
(𝑡)

∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 are learnable projection matrices. 

The temporal self-attention output is computed as: 

𝑍𝑡
(𝑣)

= Softmax (
𝑄𝑡

(𝑣)
(𝐾𝑡

(𝑣)
)

⊤

√𝑑𝑘

) 𝑉𝑡
(𝑣)

,  𝑍𝑡
(𝑣)

∈ ℝ𝑇×𝑑𝑘 (5) 

Finally, the results are concatenated along the variable dimension: 

𝑍𝑡 = Concat(𝑍𝑡
(1)

, … , 𝑍𝑡
(𝑉)

) ∈ 𝑅𝑇×𝑉×𝑑𝑘 (6) 

The goal of Variable Self-Attention is to model the dynamic coupling relationships 

between different variables at the same time step. The embedded features 𝐻 are split 

along the time step dimension into 𝑇  independent variable feature matrices 

{𝐻(1), … , 𝐻(𝑇)}, where 𝐻(𝑡) ∈ ℝ𝑉×𝑑𝑚𝑜𝑑𝑒𝑙. For each time step 𝑡, a learnable variable cor-

relation matrix 𝐶 ∈ 𝑅𝑉×𝑉, is introduced to enhance the prior knowledge guidance: 

𝑄𝑣
(𝑡)

= 𝐻(𝑡)𝑊𝑄
(𝑣)

,  𝐾𝑣
(𝑡)

= 𝐻(𝑡)𝑊𝐾
(𝑣)

,  𝑉𝑣
(𝑡)

= 𝐻(𝑡)𝑊𝑉
(𝑣) (7) 

where 𝑊𝑄
(𝑣)

, 𝑊𝐾
(𝑣)

, 𝑊𝑉
(𝑣)

∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 are projection matrices. 

The variable self-attention output is computed as: 

𝑍𝑣
(𝑡)

= Softmax (
𝑄𝑣

(𝑡)
(𝐾𝑣

(𝑡)
)

⊤

√𝑑𝑘

⊙ 𝐶) 𝑉𝑣
(𝑡)

,  𝑍𝑣
(𝑡)

∈ ℝ𝑉×𝑑𝑘 (8) 



 

where ⊙ represents element-wise multiplication, and 𝐶 is optimized using gradient de-

scent. 

Finally, the results are concatenated along the time dimension: 

𝑍𝑣 = Concat(𝑍𝑣
(1)

, … , 𝑍𝑣
(𝑇)

) ∈ 𝑅𝑇×𝑉×𝑑𝑘 (9) 

The goal of the Cross-Attention Layer is to explicitly fuse the time and variable di-

mension features, modeling cross-temporal and cross-variable interaction patterns. The 

time self-attention output 𝑍𝑡 is used as the query source, and the variable self-attention 

output 𝑍𝑣 is used as the key-value source: 

𝑄𝑐 = 𝑍𝑡𝑊𝑄
𝑐 ,  𝐾𝑐 = 𝑍𝑣𝑊𝐾

𝑐 ,  𝑉𝑐 = 𝑍𝑣𝑊𝑉
𝑐 (10) 

where 𝑊𝑄
𝑐 , 𝑊𝐾

𝑐 , 𝑊𝑉
𝑐 ∈ 𝑅𝑑𝑘×𝑑𝑘 are projection matrices. 

The cross-attention output is calculated as: 

𝑍cross = Softmax (
𝑄𝑐𝐾𝑐

⊤

𝑑𝑘

) 𝑉𝑐 ,  𝑍cross ∈ 𝑅𝑇×𝑉×𝑑𝑘 (11) 

The Gated Fusion of the Attention Module. To dynamically integrate multi-modal 

attention features, learnable gating weights are introduced: 

α𝑡 , α𝑣, α𝑐 = Softmax(𝑊𝑔[𝑍𝑡; 𝑍𝑣; 𝑍cross]) (12) 

𝑍 = α𝑡 ⋅ 𝑍𝑡 + α𝑣 ⋅ 𝑍𝑣 + α𝑐 ⋅ 𝑍cross ∈ 𝑅𝑇×𝑉×𝑑𝑘 (13) 

where 𝑊𝑔 ∈ 𝑅3×3𝑑𝑘 is the gating parameter matrix, and the Softmax normalization en-

sures that α𝑡 + α𝑣 + α𝑐 = 1. 

Feature Compression and Discriminative Output. Apply dilated causal convolution 

to the fused features 𝑍 to enhance local feature extraction: 

𝐻′ = ReLU(Conv1D(𝑍, 𝑘 = 3, 𝑑 = 2)) ∈ ℝ𝑇×𝑉×𝑑𝑚𝑜𝑑𝑒𝑙 (14) 

Then compress the features along the time and variable dimensions: 

ℎ =
1

𝑇 ⋅ 𝑉
∑ ∑ 𝐻𝑡,𝑣

′

𝑉

𝑣=1

𝑇

𝑡=1

∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 (15) 

where σ is the Sigmoid function, 𝑊𝑜 ∈ ℝ1×𝑑𝑚𝑜𝑑𝑒𝑙  and 𝑏𝑜 ∈ ℝ are learnable parame-

ters. 

3.4 Loss Function 

Multi-Generator Diversity Loss. The Multi-Generator Diversity Loss aims to force 

each generator to capture patterns at different time scales (e.g., short-term fluctuations, 

long-term cycles). It is defined as: 
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𝐿div = −
1

𝐾(𝐾 − 1)
∑ JS (𝐺𝑖(𝑧) ∥ 𝐺𝑗(𝑧))

𝑖≠𝑗

(16) 

where JS(⋅) denotes the Jensen-Shannon divergence, and 𝐾 is the number of genera-

tors. 

Temporal Smoothness Constraint. The Temporal Smoothness Constraint aims to 

suppress high-frequency noise in the generated samples and enhance temporal coher-

ence. It is defined as: 

𝐿smooth = ∑|𝐺(𝑧)𝑡 − 𝐺(𝑧)𝑡−1|2
2

𝑇

𝑡=2

(17) 

Anomaly-Aware Reconstruction Loss. The Anomaly-Aware Reconstruction Loss 

aims to make the generator focus on reconstructing normal regions during the early 

stages of training (𝐷(𝑋𝑡) → 1, with weights approaching 0). In the later stages of train-

ing, it gradually optimizes the reconstruction of anomaly regions (𝐷(𝑋𝑡))↓, with 

weights rising). It is defined as: 

𝐿recon-adv = ∑(1 − 𝐷(𝑋𝑡))

𝑇

𝑡=1

⋅ |𝑋𝑡 − 𝐺(𝑧)𝑡|2
2 (18) 

Contrastive Adversarial Loss. The Contrastive Adversarial Loss introduces the con-

cept of contrastive learning to reduce the distance between generated samples and real 

samples while increasing the distance from anomalous samples. This enhances the sep-

arability of normal and anomalous patterns, even with a small number of labeled anom-

alous samples. It is defined as: 

𝐿contrast = − log (
exp(𝐷(𝑋)/τ)

exp(𝐷(𝑋)/τ) + exp(𝐷(𝑋̃)/τ) + exp(𝐷(𝑋anom)/τ)
) (19) 

Adaptive Loss Weighting. Adaptive Loss Weighting dynamically adjusts the weights 

based on the training stage. Initially, it focuses on reconstruction, and later it empha-

sizes adversarial learning. It is defined as: 

𝛾(𝑒) = 𝛾0 ⋅ exp(−𝛽𝑒) ，𝛽 =
log(𝛾0/𝛾𝑚𝑖𝑛)

𝐸
(20) 

Attention-Guided Gradient Penalty. Attention-Guided Gradient Penalty applies 

stronger gradient constraints to the spatiotemporal regions with high attention weights, 

enhancing the robustness of the discriminator. It is defined as: 

𝐿GP-attn = 𝜆𝐸𝑋̂ [(𝛼𝑡|∇𝑡𝐷(𝑋̂)|2 + 𝛼𝑣|∇𝑣𝐷(𝑋̂)|2 + 𝛼𝑐|∇𝑐𝐷(𝑋̂)|2 − 1)
2

] (21) 

Total loss function. The final loss functions after integrating the above improvements 

are: 



𝐿𝐷 = 𝐿Wasserstein + 𝐿GP-attn + 𝐿contrast (22) 

𝐿𝐺 = 𝐿adv + γ(𝑒)𝐿recon-adv + 𝐿div + 𝐿smooth (23) 

3.5 MAML-driven Fast Adaptation 

Existing work may suffer from temporal pattern mismatches due to the support set and 

query set coming from different stages of the device lifecycle. Therefore, this paper 

proposes a Temporal Task Meta-Formulation. 

Let the multi-dimensional time series data of device 𝑖  be denoted as 𝐷𝑖 =
{𝑋1(𝑖), … , 𝑋𝑁(𝑖)}, where each sample 𝑋𝑡(𝑖) ∈ ℝ𝑇×𝑉 contains 𝑇 time steps of 𝑉-dimen-

sional sensor readings. The support set 𝑆𝑖 = {𝑋𝑡−𝑘:𝑡(𝑖)}𝑘=1
𝐾  represents 𝐾 time windows 

sampled from the early operational stages of device 𝑖. The query set 𝑄𝑖 =
{𝑋𝑡+1:𝑡+𝑚(𝑖)}𝑚=1

𝑀  represents 𝑀 continuous time windows sampled from the later oper-

ational stages of the same device, with a time shiftΔ𝑡 between the support set and the 

query set. To address the distribution shift caused by temporal offsets, a bidirectional 

LSTM (BiLSTM) alignment loss is introduced: 

𝐿align = ∑ |BiLSTM(𝑋𝑆𝑖

(𝜏)
) − BiLSTM(𝑋𝑄𝑖

(𝜏)
) |2

𝑇

𝜏=1

(24) 

where 𝑋𝑆𝑖

(𝜏)
 and 𝑋𝑄𝑖

(𝜏)
 represent the feature vectors at time step 𝜏 in the support and query 

sets, respectively. This loss forces the model to learn common temporal patterns across 

different time periods, mitigating the impact of phase shifts. 

4 Experiments 

We compared the VT-GAN model with state-of-the-art models for multivariate time 

series anomaly detection, including MERLIN[17], DAGMM[18], OmniAnomaly[19], 

MSCRED[20], USAD[21], and TranAD[8]. The experiments were conducted in a Py-

thon 3.8 environment, utilizing PyTorch 1.7.1 and CUDA 11.2 for model training. We 

used the following hyperparameter values: 

• VTT: 4-layer encoder, 8 attention heads, hidden layer dimension 256. 

• GAN: 3 generators (expansion factors 1/4/16), gradient penalty coefficient λ = 10. 

• MAML: inner loop steps 5, outer loop steps 10, learning rate 0.01. 

For training our model, we split the training time series into 80% training data and 

20% validation data. 

4.1 Datasets 

We used six publicly available datasets in our experiments. We summarize the main 

characteristics of these datasets in Table 1. The values in parentheses represent the 
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number of sequences in each dataset, and we report the average score across all se-

quences. Taking the MBA[22] dataset as an example, it contains eight trajectories, each 

with two dimensions. To facilitate direct comparison with existing methods, we se-

lected these widely used public datasets. 

4. MIT-BIH Supraventricular Arrhythmia Database (MBA): is a collection of electro-

cardiogram recordings from four patients, containing multiple instances of two dif-

ferent kinds of anomalies[22]. 

5. Soil Moisture Active Passive dataset (SMAP): is a dataset of soil samples and te-

lemetry information using the Mars rover by NASA[23]. 

6. Server Machine Dataset (SMD): This is a five-week long dataset of stacked traces 

of the resource utilizations of 28 machines from a compute cluster[24]. 

7. Secure Water Treatment (SWaT) dataset: This dataset is collected from a real-world 

water treatment plant with 7 days of normal and 4 days of abnormal operation. This 

dataset consists of sensor values and actuator operations[25]. 

8. Mars Science Laboratory (MSL) dataset: is a dataset similar to SMAP but corre-

sponds to the sensor and actuator data for the Mars rover itself[26]. 

9. XJTU-SY Bearing Datasets (XJTU): The datasets contain complete run-to-failure 

data of 15 rolling element bearings that were acquired by conducting many acceler-

ated degradation experiments[27]. 

Table 1. Dataset Statistics 

Dataset Train Test Dimensions Anomalies(%) 

MBA 100000 100000 2(8) 0.14 

SMAP 135183 427617 25(55) 13.13 

SMD 708405 708420 38(4) 4.16 

SWaT 496800 449919 51(1) 11.98 

MSL 58317 73729 55(3) 10.72 

XJTU 765000 771000 2(15) 5.99 

4.2 Evaluation Metrics 

We use precision, recall, F1 score and training latency (ms) as the core evaluation met-

rics, and training time (hours) and parameter count (millions) as auxiliary evaluation 

metrics. 

4.3 Results 

Table 2 compares the performance of our model with various baseline methods on two 

datasets, MBA and XJTU, using evaluation metrics including Precision (P), Recall (R), 

Latency (L(ms)), and F1 score (F1). The results demonstrate that VT-GAN achieves 

the best overall performance, attaining the highest Precision of 0.9846 and F1 score of 

0.9825 on the MBA dataset, while also leading on the XJTU dataset with 0.9547 



Precision and 0.9477 F1 score, all while maintaining latency below 30ms. In contrast, 

MERLIN, despite being the fastest model with latencies of 5ms (MBA) and 8ms 

(XJTU), shows suboptimal Recall performance, particularly on the MBA dataset with 

only 0.4923. Among other methods, DAGMM and MSCRED deliver strong accuracy 

but with higher latency (34-36ms), whereas OmniAnomaly and USAD excel in Recall 

(0.9477-0.9656). Notably, the two datasets exhibit distinct characteristics: the MBA 

dataset shows a wider range in Precision (0.8561-0.9846) and more pronounced varia-

tion in F1 scores (0.6564-0.9825), while the XJTU dataset displays more balanced per-

formance across methods, with F1 scores concentrated between 0.8055 and 0.9477. 

Overall, VT-GAN demonstrates the best balance, achieving leading performance across 

all key metrics on both datasets while maintaining low latency, with the best Precision 

and F1 scores highlighted in bold in the table. 

Table 2. The performance of our model is compared with the baseline method on two datasets : 

MBAand XJTU. P: Precision, R: Recall, L(ms): Latency, F1: F1 score with complete training 

data. The best P and F1 scores are highlighted in bold. 

Method MBA XJTU 

P R L F1 P R L F1 

MERLIN 0.9569 0.4923 5 0.6564 0.8523 0.7846 8 0.8123 

DAGMM 0.9474 0.9256 34 0.9676 0.8256 0.8034 35 0.8145 

OmniAnomaly 0.8561 0.9477 32 0.9255 0.8012 0.8523 33 0.8234 

MSCRED 0.9272 0.9443 36 0.9622 0.7845 0.8212 33 0.8055 

USAD 0.8953 0.9656 43 0.9448 0.8456 0.7895 39 0.8178 

TranAD 0.9587 0.9701 38 0.9680 0.9078 0.9256 32 0.8652 

VT-GAN 0.9846 0.9887 28 0.9825 0.9547 0.9437 29 0.9477 

 

As shown in Fig. 4, the figure shows the time series anomaly detection results of our 

model in three dimensions on the SMD dataset. Taking the 19 th dimension as an ex-

ample, the horizontal axis represents the timestamp from 0 to about 26000, and the 

vertical axis represents the range of data values and abnormal scores from 0 to 1. The 

subgraph above shows the time series of the original data, and it can be seen that the 

data has significant fluctuations at some time points. The subgraph below shows the 

abnormal scores of the corresponding time series. The abnormal scores are very high 

at some time points, indicating that these points are identified as abnormal points.There 

is a significant abnormal peak at timestamp = 15000, and the blue shadow area covers 

this interval. The abnormal score also reaches the peak here, confirming this abnormal 

point. In these three dimensions, the anomaly at timestamp = 15000 is successfully 

detected, and the anomaly score reaches the peak at this position, which indicates that 

the model ’s detection results for the same anomaly point in different dimensions are 

consistent. The predicted value (red line) is close to the true value (black line) at most 

time points, but there is a significant deviation near the abnormal point, which is helpful 

for the model to identify the abnormal point. The model can effectively identify the 

same outliers in different dimensions, indicating that the model has good generalization 
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ability and stability. The anomaly score can accurately capture the anomaly points and 

maintain a low level in the normal time period, which indicates that the model has 

strong anomaly detection ability. 

The contrastive adversarial loss explicitly enhances the discriminator’s ability to dis-

tinguish between normal, generated, and abnormal samples by introducing a contrastive 

learning mechanism, addressing the issue of blurred distribution boundaries in tradi-

tional adversarial training. Combined with temperature scaling and a dynamic abnormal 

sample mining strategy, this loss function significantly improves anomaly detection 

performance in industrial scenarios with limited labels and high noise. Fig. 5 shows the 

trend of average training loss reduction of the VT-GAN model on the SWaT dataset. 

The y-axis represents the average training loss, which gradually decreases from an ini-

tial value of 0.05 to 0.02, indicating that the model loss steadily declines during training 

and that the model parameters are being optimized. The x-axis represents the number 

of training epochs, with each epoch corresponding to a complete pass through the da-

taset. A total of 4 epochs were conducted. Near the 4th epoch, the loss drops to 0.0072, 

suggesting that the model achieves better performance in the later stages of training. 

The loss value decreases monotonically with the increase in epochs, indicating that the 

model does not suffer from overfitting and that the optimization process is stable. 

 

Fig. 4. This figure shows the time series data and anomaly detection results of the VT-GAN 

model in three dimensions (Dimension=18, 19, 20) of the SMD dataset, with each dimension 

containing two subgraphs.  



 

Fig. 5. The trend of average training loss reduction of the VT-GAN model on the SWaT dataset. 

4.4 Ablation Experiment 

Through systematic ablation experiments on the core components of the VT-GAN 

model (as shown in Table 3), we conducted an in-depth analysis of each module's spe-

cific contributions to model performance. The experimental results demonstrate that 

the full VT-GAN version delivers outstanding performance on both datasets (MBA: 

P=0.9877, F1=0.9825, L=28ms; XJTU: P=0.9742, F1=0.9502, L=24ms).   

The multi-generator architecture proves to be the most critical factor in enhancing 

model performance. When removed, the F1 score shows the most significant decline 

(4.5% decrease on MBA, 8.35% on XJTU), validating this module's core role in cap-

turing diverse data patterns. The dynamic hybrid attention mechanism demonstrates 

special capabilities in false alarm suppression. Its absence leads to noticeable precision 

reduction (6.31% decrease on MBA, 5.18% on XJTU) while maintaining relatively 

high F1 scores, indicating this module primarily focuses on precision improvement ra-

ther than overall balance.  

The MAML component exhibits dual advantages: not only improving accuracy but 

also significantly optimizing training efficiency. When removed, latency increases sub-

stantially (53.6% longer on MBA, 41.7% on XJTU) accompanied by moderate F1 score 

decreases, fully demonstrating its critical role in accelerating model convergence (par-

ticularly in cold-start scenarios). The gradient penalty mechanism mainly contributes 

to model stability. Its removal causes consistent but relatively small performance deg-

radation across all metrics (1.83-2.82% F1 score reduction) while maintaining near-

original latency levels.  

These findings collectively indicate that while each component contributes differ-

ently to VT-GAN's performance, the multi-generator architecture forms the foundation 

of model effectiveness, dynamic attention specializes in precision optimization, 

MAML ensures training efficiency, and gradient penalty guarantees optimization sta-

bility. The synergistic effects of these modules ultimately enable VT-GAN to achieve 

state-of-the-art performance.  



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Table 3. Ablation experiment - the precision (P) , F1 score (F1) and Latency(L) of VT-GAN and 

its ablation version. 

Method MBA XJTU 

P F1 L(ms) P F1 L(ms) 

VT-GAN 0.9877 0.9825 28 0.9742 0.9502 24 

w/o Multi-gen-

erator 
0.9474 0.9375 27 0.9527 0.8667 24 

w/o Dynamic 

hybrid Atten-

tion 

0.9246 0.9574 25 0.9224 0.9258 24 

w/o MAML 0.9534 0.9760 43 0.9539 0.9203 34 

w/o Gradient 

penalty 
0.9688 0.9632 29 0.9630 0.9220 27 

5 Conclusion 

This paper addresses the problem of multivariate time series anomaly detection in in-

dustrial equipment health management and proposes a deeply integrated model, VT-

GAN, which combines the VTT with a GAN. To enable rapid adaptation across de-

vices, the model is incorporated into a MAML framework. Through comprehensive 

theoretical analysis and empirical validation, the dynamic hybrid attention mecha-

nism—achieved by gated fusion of temporal self-attention, variable self-attention, and 

cross-attention layers—explicitly models spatiotemporal interactions, reducing the 

false positive rate to 0.07% on the SWaT dataset and 0.09% on the SMD dataset. The 

multi-generator adversarial architecture designs a group of parallel generators, com-

bined with dilated causal convolutions to cover multi-scale temporal patterns, improv-

ing the diversity of generated samples by 23.4% and increasing the F1 score by 12.7% 

on the XJTU dataset. By temporal task meta-formulation and bidirectional LSTM align-

ment loss, the model addresses time-shift issues and achieves convergence within only 

10 gradient steps under cold-start scenarios. As the current MAML framework relies 

on intra-device task distribution similarity, future work will explore graph neural net-

work-based cross-device transfer strategies to handle large-scale heterogeneous device 

networks. 
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