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Abstract. Brain-Computer Interface (BCI) systems aim to decode neural activity 

and translate it into actionable commands for external devices. Electroencepha-

logram (EEG) is a widely used, non-invasive method for analyzing brain activity. 

However, the significant inter-subject variability in EEG signals poses a major 

challenge for the generalization of EEG-based models. While Domain-Adversar-

ial Neural Networks (DANN) have demonstrated promising results in transfer 

learning tasks, their application to EEG-based cross-subject P300 detection re-

mains relatively unexplored. In this study, we introduce the Domain-Adversarial 

Spatio-Temporal Convolution Network (DASTCN), which combines a Genera-

tive Adversarial Network (GAN) with a lightweight spatio-temporal convolu-

tional architecture to address the issue of inter-subject variability. Extensive em-

pirical evaluations show that DASTCN outperforms conventional models, 

achieving an accuracy of 84.9% in cross-subject P300 detection. These findings 

underscore the potential of DASTCN as a transformative tool for advancing prac-

tical BCI systems and offer significant implications for future research and ap-

plications in this field. 
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1 Introduction 

BCI systems have emerged as a transformative technology, enabling direct communi-

cation between the human brain and external devices without the need for peripheral 

nervous system involvement [1]. By decoding neural signals, BCI technology translates 

brain activity into actionable commands, offering significant potential in assistive tech-

nologies and neurorehabilitation. Among the various neuroimaging modalities, Elec-

troencephalogram (EEG)-based BCI have gained prominence due to their non-invasive 

nature, portability, and real-time processing capabilities. Prominent EEG-based para-

digms include P300, steady-state visual evoked potentials (SSVEP), and motor imagery 
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(MI) systems. This study focuses on P300-based BCI, which have demonstrated robust 

performance across diverse applications [2]. 

A critical challenge in EEG-based BCI is the inherent variability in neural responses 

across individuals. This inter-subject variability is particularly pronounced in the P300 

component, which exhibits significant differences in amplitude, latency, and spatial 

distribution [3]. Traditional BCI systems typically require extensive user-specific cali-

bration, wherein new users must provide substantial training data to tailor the model to 

their unique neural patterns. However, this calibration process is often time-consuming 

and impractical for real-world deployment. Consequently, reducing the reliance on 

user-specific calibration and developing robust cross-subject adaptation methods has 

become a pivotal research direction in advancing BCI technology [4]. 

Significant efforts have been made to minimize or eliminate the calibration phase. 

For instance, semi-supervised learning approaches, such as those proposed by [5], lev-

erage small labeled datasets to construct support vector machine (SVM) classifiers. 

Similarly, unsupervised online methods have been applied to develop zero-training BCI 

for both motor imagery and P300 paradigms [6]. While these methods reduce calibra-

tion time, they often require an adaptation period during which system performance 

gradually improves. Recent advancements in transfer learning, such as the template-

based approach introduced by [7], have shown promise in transferring SSVEP tem-

plates from existing subjects to new users, thereby enhancing detection accuracy. Ad-

ditionally, proposed a multimodal EEG-EOG analysis framework for cognitive load 

assessment [8], significantly improving EEG-based drowsiness detection by mitigating 

inter- and intra-subject variability. 

From the perspective of feature extraction and classifier design, researchers have 

explored various techniques to enhance BCI performance. For example, utilized spec-

tral feature analysis for cognitive workload classification [9], achieving robust perfor-

mance in EEG-based BCI. Similarly, applied Common Spatial Pattern (CSP) for feature 

extraction and used extreme learning machines (ELM) to identify mental workload 

shifts [10]. Hybrid approaches, such as the integration of EEG with forehead elec-

trooculography (EOG) signals, have also been investigated to evaluate cognitive load 

levels [11]. Despite their effectiveness in subject-specific contexts, these methods face 

significant challenges in cross-subject scenarios, primarily due to the high variability 

in EEG signals across individuals. 

The impressive success of deep learning across a wide range of machine learning 

tasks has spurred its adoption in brain signal analysis. Early work by demonstrated the 

potential of convolutional neural networks (CNN) for P300 detection [12], employing 

a four-layer architecture to extract spatial and temporal features from EEG signals. 

However, the performance of CNN is heavily reliant on the quantity and quality of 

training data, which is often limited in P300 tasks due to the high cost and difficulty of 

data collection [13]. This issue is further compounded in BCI research, where the scar-

city of large, high-quality datasets remains a significant barrier. To overcome these 

challenges, proposed EEGNet [14], a generalized deep network utilizing depthwise sep-

arable convolutions, which achieved state-of-the-art performance across various EEG 

detection tasks. Recent studies have further validated the effectiveness of lightweight 

CNN architectures in cross-subject EEG analysis [15][16]. 
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Despite these advancements, developing a subject-independent BCI system that 

maintains consistently high performance remains a major challenge. The inherent sub-

ject-specific variability, dynamic nature, and weak signal characteristics of EEG, cou-

pled with a low signal-to-noise ratio (SNR), make robust analysis difficult. Moreover, 

the majority of previous studies have not fully explored the potential of transfer learning 

techniques. DANN, which have demonstrated significant success in natural language 

processing and image classification [17], present a promising approach for cross-do-

main adaptation in EEG analysis. However, applying DANN to cross-subject BCI anal-

ysis introduces unique challenges, including class imbalance between source and target 

domains and the risk of "negative transfer" due to significant inter-subject variability 

[18]. 

To address these limitations, we propose the Domain-Adversarial Spatio-Temporal 

Convolution Network (DASTCN), which introduces three key innovations: (1) A 

streamlined spatiotemporal feature extraction network for efficient capture of spatial 

and temporal patterns in P300 signals; (2) A generative adversarial mechanism that 

synthesizes target-like data from random noise distributions, effectively bridging the 

source-target domain gap; (3) An adaptive source selection strategy that identifies op-

timal source subjects through distribution similarity metrics, enhancing cross-subject 

generalization while mitigating negative transfer effects. 

2 Materials 

2.1 Subjects 

Twenty healthy participants (9 males, and 11 females, aged 18 to 32 years) were re-

cruited for this experiment. The study received approval from the relevant Ethics Com-

mittee, and all participants provided written informed consent. During the experiment, 

participants were instructed to focus on the flashing of a designated target character and 

mentally count the flashes while their EEG signals were recorded. Each participant 

completed 30 trials, and the sequence of 30 target characters was randomly generated 

for each participant before the experiment. 

2.2 Experimental paradigm 

The electroencephalogram (EEG) signals were acquired at a sampling frequency of 250 

Hz utilizing a 30-electrode cap arranged according to the extended 10-20 international 

system. The acquired signals were referenced to the right mastoid. Signal amplification 

was performed using a 64-channel SynAmps2 amplifier (Compumedics, Neuroscan, 

Australia). Throughout the experimental procedure, electrode impedances were metic-

ulously maintained below 5 kΩ , with continuous real-time monitoring facilitated 

through a dedicated computer interface. 

 



 

 

Fig. 1. The GUI of the used P300 speller BCI. 

The experimental paradigm employed a P300 speller interface, the graphical represen-

tation of which is illustrated in Fig. 1 [19]. The interface comprised a 4 × 10 matrix 

containing alphanumeric characters, with participants instructed to focus their attention 

on specific target characters. Each experimental trial commenced with a 3-second pre-

paratory phase, during which the interface remained static without any visual intensifi-

cation. Following this preparatory interval, the stimulus presentation phase was initi-

ated, characterized by the sequential illumination of all 40 buttons in a randomized or-

der. This randomization protocol was implemented to enhance the oddball paradigm 

effect, thereby facilitating more robust detection of the P300 component during target 

stimulus presentation. Each illumination event persisted for 100 milliseconds, with an 

inter-stimulus interval of 30 milliseconds, resulting in a 70-millisecond temporal over-

lap between consecutive stimuli. A complete round consisted of 40 such illumination 

events, and each trial incorporated 10 consecutive rounds without inter-round intervals. 

The cumulative duration for a complete trial, encompassing 400 illumination events, 

was calculated as (400 - 1) × 30 + 100 = 12,070 milliseconds. 

 As depicted in Fig. 2, the experimental protocol for single-character input trials in-

corporated an initial preparatory phase devoid of visual stimulation. Each trial encom-

passed ten complete rounds of stimulus presentation, with each round consisting of 40 

randomized button illuminations. The illumination sequence was characterized by a 

100 ms activation period for each button, with successive activations separated by 30 

ms intervals, yielding a 70 ms temporal overlap between consecutive stimuli. This con-

figuration resulted in a total trial duration of approximately 12.07 s for the complete 

400-stimulus sequence. It is crucial to emphasize that the illumination sequence exhib-

ited stochastic variability across both rounds and trials. The specific sequence "Y, S, 

L, …, C" presented in Fig. 2 serves as a representative example of the randomized 

presentation protocol employed in this study. 
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Fig. 2. The Experimental paradigm. 

2.3 Preprocessing 

The experimental framework was implemented on a high-performance computing sys-

tem featuring an Intel® Core™ i9-12900K processor (5.20 GHz), 96 GB DDR4 RAM, 

and an NVIDIA GeForce RTX 3090 GPU with 24 GB GDDR6X memory, operating 

under Ubuntu 20.04.3 LTS. Neural network architectures were developed using 

PyTorch 1.12.0 [20] with CUDA acceleration. To address inherent class imbalance 

(1:39 target-to-nontarget ratio), a weighted loss function was employed without altering 

data distributions. 

Neurophysiological signals from 30 EEG channels underwent preprocessing through 

a fourth-order Butterworth bandpass filter (0.5-10 Hz) implemented via MNE-Python 

[21][22], followed by epoch extraction synchronized to stimulus onsets. Each 600 ms 

post-stimulus epoch (150 samples/channel at 250 Hz) underwent baseline correction 

using a 200 ms pre-stimulus interval, 6:1 temporal downsampling, and channel-wise z-

score normalization: 
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Where i  and i  represent channel-specific means and standard deviations.  

 The processed data was structured as a 4 dimensional tensor 
h pS T R C C T    

X R  

encompassing S subjects, T trials, R=10 repetitions, C=40 character targets, hC =30 

EEG channels, and pT  temporal samples. A progressive averaging scheme consoli-

dated flash repetitions:  
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During model training, full repetition averages (k=R) were utilized, while testing eval-

uated performance across incremental repetitions. This pipeline optimized noise sup-

pression while preserving spatiotemporal features critical for P300 detection, achieving 

computational efficiency through tensor-based operations and hardware acceleration. 

 

Fig. 3. The architecture of the proposed method. 

3 Methods 

3.1 Domain Adaptation and Classification 

The proposed DASTCN architecture represents a significant advancement in cross-sub-

ject BCI systems through its novel integration of adversarial domain adaptation and 

generative modeling paradigms. As depicted in Fig. 3, the framework's architectural 
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innovation lies in its five interconnected neural modules that collectively address the 

fundamental challenges of domain shift and limited target domain data in P300 classi-

fication tasks. 

The feature extraction module ( )f fN   , parameterized by f , employs a hierar-

chical architecture with leaky rectified linear unit (LeakyReLU) activations to capture 

discriminative spatiotemporal patterns: 

 LeakyReLU( ) max(0, ) leak min(0, ), leak (0,1)= +  α α α  (3) 

This activation scheme preserves gradient flow during backpropagation while main-

taining computational efficiency. The final layers in both the generator tgN  and fea-

ture extractor fN  utilize hyperbolic tanent (Tanh) activations, which mitigate satura-

tion effects commonly observed in sigmoidal functions [23]. The optimization frame-

work strategically combines adaptive moment estimation (Adam) [24] for the genera-

tive components with stochastic gradient descent (SGD) [25] for the discriminative net-

works, ensuring balanced convergence across all submodules. 

 Let 
d nX R  denote the input space and Y = {0,1} represent the binary class la-

bels (P300 vs. non-P300). Given a source domain sD  ~ sP  and target domain tD  ~ 

tP , the framework operates on sN  source subjects and a  -scaled subset of target 

samples f tX D . The synthetic data generation process is driven by Gaussian noise 

zZ P : 
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The adversarial training objective minimizes the cross-entropy loss between predicted 

( ( ))q x  and true ( ( ))p x  distributions: 
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x

p q p x q x= −L  (5) 

The generator network tgN  undergoes optimization through the following objective: 
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while the discriminator network tdN  is optimized through: 
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The framework achieves Nash equilibrium when 0.5td =L , indicating that tgN  can 

synthesize target-conforming data while tdN  maintains robust discriminative capabil-

ity. The domain adaptation process subsequently selects sN  source subjects with max-

imal tdN  probability scores, ensuring optimal transfer learning candidates for the tar-

get domain. 

 The label predictor yN  operates on features extracted from the selected source sub-

jects, optimized through the following composite loss function: 
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 (8) 

This comprehensive framework demonstrates superior performance in cross-subject 

P300 classification through its innovative combination of adversarial learning and gen-

erative modeling, effectively addressing the challenges of domain shift and limited tar-

get domain data in practical BCI applications. 

 As illustrated in Fig. 3, we propose a simple yet efficient feature extraction network 

designed to effectively capture both temporal and spatial features from P300 signals. 

The network consists of four distinct layers, labeled L1–L4, each of which contributes 

to the comprehensive feature extraction process: 

• L1 - Input Layer: This layer ingests the P300 signal, represented as a 1 × 30 × 25 

tensor, where 30 denotes the number of input channels, and 25 represents the number 

of time points per channel. 

• L2 -- Spatial Convolution Layer: In this layer, a convolutional kernel of size 30 × 

1 is applied across the channel dimension to extract spatial features at each time 

point. The resulting output, with a dimension of 20 × 25, is produced by 20 filters, 

each capturing distinct spatial patterns across the 30 input channels. 

• L3 - Temporal Convolution Layer: A temporal convolution operation follows, uti-

lizing a kernel of size 1 × 25. This operation extracts temporal features from the 20 

spatially filtered feature maps generated in the previous layer. The output of this 

layer is 20 × 1 × 25, with 20 filters learning the dynamic temporal characteristics 

of the P300 signal. 
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• L4 - Feature Pooling Layer: A pooling operation with a 2 × 2 window is per-

formed to downsample the spatial dimensions, resulting in an output of size 20 × 

10 × 12. This layer reduces computational complexity and helps mitigate overfit-

ting, while retaining the crucial temporal information that is critical for accurate clas-

sification. 

The final output is flattened into a 2400-dimensional feature vector, which is subse-

quently passed to the fully connected network for classification. This model effectively 

integrates both temporal and spatial feature extraction, positioning it as a powerful tool 

for P300 signal classification in BCI applications. 

The EEG data collected from 20 subjects were utilized for cross-subject analysis. 

The dataset was partitioned for leave-one-out cross-validation, where each subject's 

data served as the test set once, while the remaining 19 subjects' data were used for 

training. This iterative process was repeated for all 20 subjects, ensuring a comprehen-

sive evaluation of the model’s generalization capability across diverse EEG patterns 

and inter-subject variability. 

 

4 Results 

The experimental results, summarized in Table 1, demonstrate the superior classifica-

tion performance of DASTCN across varying stimulus repetition counts. The proposed 

framework achieves a state-of-the-art recognition accuracy of 84.9% at 10 repetitions, 

surpassing existing methodologies by effectively addressing key challenges in cross-

subject P300 classification. 

A central contribution of this work is the design and implementation of a novel spa-

tio-temporal feature extraction network tailored specifically for the analysis of P300 

event-related potentials (ERPs). Unlike conventional approaches that often treat spatial 

and temporal features independently or with limited integration, our architecture ex-

plicitly models the complex interplay between channel-wise (spatial) and time-depend-

ent (temporal) patterns inherent in electroencephalographic (EEG) data. This is 

achieved through a carefully designed dual-stream framework: one branch focuses on 

capturing discriminative spatial topographies using multi-scale graph convolutional op-

erations defined over the scalp electrode montage; the other specializes in modeling 

temporal evolution via dilated causal convolutions that effectively capture long-range 

dependencies while preserving temporal resolution. A central contribution of this work 

is the design of a spatio-temporal feature extraction network, which captures both the 

spatial and temporal characteristics of P300 signals. This network achieves an accuracy 

of 53.6% with only 3 repetitions, outperforming traditional CNN architectures by 

17.2%. The success of this approach lies in its dual ability to extract spatial topograph-

ical patterns and temporal dynamics, offering a more comprehensive representation of 

P300 signals and yielding consistent improvements across all repetition counts. 

Another pivotal innovation is the integration of generative adversarial components, 

facilitating domain adaptation through synthetic data generation. By leveraging random 



 

noise to generate samples resembling the target domain, the framework effectively bal-

ances the data distribution between source and target domains. This component proves 

particularly advantageous in low-repetition scenarios, where DASTCN achieves 41.3% 

accuracy at 2 repetitions, outperforming EEGNet (38.4%) and SepConv1D (37.1%) by 

a notable margin. 

Table 1. Average accuracies with standard deviations (%) with respect to the number of flash 

rounds obtained with different methods on leave-one-out cross validation 

Methods 
Repetition 

1 2 3 4 5 6 7 8 9 10 

SVM [25] 16.3±12.1 23.4±13.4 30.1±10.0 33.3±11.1 42.1±13.6 47.0±12.3 53.8±11.9 58.2±12.5 62.7±13.8 65.7±12.1 

LDA [26] 17.1±11.4 19.5±12.9 27.7±13.0 34.7±11.7 43.0±12.3 51.6±13.1 59.9±12.9 64.2±13.3 69.5±14.2 73.0±12.1 

CNN1 [12] 21.5±12.5 27.7±13.1 36.4±12.6 44.1±13.2 51.9±13.6 56.5±13.8 61.0±12.8 65.4±12.6 68.9±13.8 71.7±12.9 

UCNN1 [12] 21.6±12.9 35.3±13.8 43.7±13.6 21.6±12.9 52.2±12.9 54.6±13.1 63.4±13.8 68.1±13.7 71.4±13.2 74.8±12.2 

ERP-CaspNet [27] 22.4±12.9 38.0±13.2 50.8±13.3 58.4±13.1 65.9±12.9 70.7±13.9 74.8±13.5 78.5±13.0 80.7±13.1 82.2±12.0 

ST-CaspNet [28] 21.6±12.7 38.0±13.7 51.5±12.8 59.1±13.3 64.8±13.1 69.7±13.5 73.6±12.4 77.7±13.5 79.7±13.5 81.2±13.8 

EEGNet [14] 23.7±13.5 38.4±12.6 41.8±13.8 55.3±13.5 59.1±13.5 64.5±12.2 73.3±12.8 77.1±13.6 80.1±13.2 82.5±12.0 

SepConv1D [29] 22.2±12.9 37.1±13.2 39.2±13.7 48.8±13.6 54.9±12.9 66.2±12.1 71.5±13.6 74.8±13.7 79.3±13.7 81.9±12.9 

DANN [17] 21.1±11.3 35.4±11.2 38.7±12.7 46.8±11.3 53.7±11.9 64.8±11.1 72.3±10.6 73.3±11.9 78.6±11.2 80.9±10.1 

DASTCN 22.5±12.22 41.3±11.3 53.7±12.5 60.7±12.5 66.5±12.8 74.3±12.9 79.8±12.5 81.5±12.5 82.9±11.9 84.94±10.5 

The framework’s ability to select optimal source subjects based on distribution similar-

ity further enhances its cross-subject generalization. This capacity significantly 

strengthens knowledge transfer and mitigates the risks associated with negative trans-

fer. A comparative analysis further confirms the consistent performance enhancement 

of DASTCN, culminating in a 4.35 percentage point advantage over the nearest com-

petitor, EEGNet (82.5%), at 10 repetitions. 

Moreover, when compared to DANN, DASTCN demonstrates clear superiority in 

domain adaptation. While DANN exhibits only modest accuracy improvements, 

DASTCN showcases more pronounced performance gains, due to its effective combi-

nation of spatio-temporal feature extraction, synthetic data generation for domain ad-

aptation, and optimal subject selection. Across various repetition counts, DASTCN 

consistently outperforms DANN, particularly in terms of cross-subject generalization 

and robustness to domain shifts. 

Taken together, these results underscore the efficacy of DASTCN in addressing crit-

ical challenges in BCI systems. The framework excels in three key aspects: 1) efficient 

spatio-temporal feature extraction, 2) domain adaptation through synthetic data, and 3) 

optimal source subject selection for enhanced cross-subject generalization. DASTCN’s 

ability to maintain robust performance across varying repetition counts positions it as a 

promising solution for practical BCI applications, requiring minimal calibration and 

offering strong cross-subject performance. 
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5 Conclusion 

In this paper, we propose an enhanced DANN-based transfer learning model, 

DASTCN, for EEG-based cross-subject P300 prediction. The DASTCN model inte-

grates GAN with transfer learning techniques to address key challenges, including bal-

ancing the sample size discrepancies between the source and target domains, selecting 

the most relevant subjects from the source domain for experimentation, and maximiz-

ing the extraction of domain-invariant features. This transfer learning framework is 

adaptable to various domain and data tasks. The study introduces DASTCN, a novel 

approach that advances cross-subject P300 classification through three primary inno-

vations: (1) a streamlined spatiotemporal feature extraction network that effectively 

captures both spatial and temporal patterns in EEG signals; (2) a generative adversarial 

mechanism that mitigates the domain shift by generating synthetic data; and (3) an 

adaptive source selection strategy that optimizes cross-subject knowledge transfer. Ex-

perimental results demonstrate superior performance across different repetition counts, 

with particular strengths in low-data scenarios. The framework’s computational effi-

ciency and robust generalization capabilities position it as a promising solution for prac-

tical brain-computer interface applications, requiring minimal calibration and enabling 

rapid deployment. 

Looking ahead, the rapid advancements in transfer learning, coupled with the grow-

ing capabilities of brain-computer interface technologies, promise to open new frontiers 

in personalized healthcare, neuroprosthetics, and human-computer interaction. The 

scalability and flexibility of the proposed model, along with its potential for real-world 

applicability, suggest that such frameworks will play a crucial role in the widespread 

adoption of BCI, bridging the gap between research and practical implementation. Fu-

ture work will focus on refining these models for broader clinical use, improving their 

adaptability to a wider range of cognitive states, and further enhancing their real-time 

performance in dynamic environments. 
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