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Abstract. With the rapid development of generative artificial intelligence tech-

nologies, video forgery techniques have evolved from localized facial replace-

ment to multimodal scene synthesis(text to video), posing severe challenges to 

media authenticity. Existing detection methods struggle to meet the requirements 

for identifying high-quality synthetic videos due to insufficient spatiotemporal 

dependency modeling, low computational efficiency, and limited sensitivity to 

subtle local artifacts. To address this, we propose TS-KFNet—a lightweight dual-

stream detection framework that achieves efficient video forgery detection by 

fusing global spatiotemporal attention with keyframe-based local artifact analy-

sis. The framework adopts TimeSformer backbone network to capture global mo-

tion and appearance consistency through a divided space-time attention mecha-

nism, reducing computational complexity from 𝑂(𝑇𝑁2)to 𝑂(𝑇2 + 𝑁2). A dy-

namic keyframe selection strategy is introduced to filter the top 10% most in-

formative keyframes based on motion-compensated grayscale difference analy-

sis, significantly reducing computational costs. Simultaneously, a CNN-

enhanced branch extracts local artifact features from keyframes, forming a hybrid 

architecture that balances efficiency and accuracy. Experiments on 8 cutting-

edge video generation models demonstrate that TS-KFNet achieves an average 

accuracy of 94.0% and AUC of 99.0%, outperforming existing methods by up to 

12.5% in accuracy improvement. The inference speed is 10 times faster than the 

state-of-the-art method AIGVDet. The core contributions include a multi-granu-

larity detection paradigm, a keyframe-based efficient inference framework, and 

an evaluation benchmark for emerging forgery technologies. This study provides 

a reliable solution for real-time high-precision long video forgery detection in 

dynamic complex scenarios. 

Keywords: Video forgery detection, TS-KFNet, Dual-stream framework, Spa-

tiotemporal attention. 

1 Introduction 

The groundbreaking progress in generative artificial intelligence technologies has pro-

pelled video forgery techniques from localized facial manipulation to a new era of mul-

timodal scene synthesis like text to video(T2V) and image to video(I2V). Recent ad-



vances in video generation enable not only style transfer [21] and text-to-video synthe-

sis [31], but also fine-grained regional modifications [14]. State-of-the-art diffusion 

models like Sora [40], Phenaki [34] and CogVideo [17] achieve high-fidelity video 

synthesis , while audio-visual synchronization techniques further enhance content de-

ceptiveness. This technological evolution has precipitated a global trust crisis [19], 

prompting governmental regulations for AI-generated content. Therefore, proactive 

technical countermeasures remain imperative to address this societal threat. 

As an emerging research domain, existing forgery detection methods have primarily 

focused on the image domain. The classical CNNDet [35] analyzes local forgery traces 

in images and trains a CNN-based binary classifier to distinguish synthetic images from 

real ones. Subsequent approaches, such as F3Net [29], detect forgery artifacts through 

frequency-domain features, while DIRE [37] reconstructs the diffusion process for 

analysis—both following a similar paradigm. However, these methods exhibit limited 

efficacy when directly applied to video forgery analysis. We argue that relying solely 

on image features fails to adequately capture the complex forgery patterns inherent in 

videos [25]. Later temporal modeling methods like TS2Net [26] addressed this by ex-

ploiting inter-frame dependencies to identify logical inconsistencies. The state-of-the-

art AIGVDet [9] further integrates optical flow features with RGB features analysis, 

achieving improved accuracy via multimodal fusion. Despite the enhanced perfor-

mance from spatiotemporal features, challenges persist, including insufficient detection 

accuracy and high computational overhead. 

Our analysis reveals that current detection methods suffer from two fundamental 

limitations: inadequate feature extraction for forgery traces and excessive computa-

tional overhead induced by redundant feature processing, which collectively motivate 

the development of our lightweight multi-feature fusion framework. The TimeSformer 

[10] approach in video understanding, capable of efficiently capturing spatiotemporal 

features, offers a potential solution to address feature extraction bottlenecks. Crucially, 

forged videos exhibit pronounced deficiencies in detail synthesis (Fig. 1), with their 

spatiotemporal discrepancy heatmaps demonstrating distinct patterns compared to au-

thentic videos. While authentic videos maintain smooth spatial continuity (e.g., natural 

head rotations) and generate consistent motion differences (<12,000) without localized 

anomalies, forged videos display isolated high-difference regions (>50,000) caused by 

rendering failures (e.g., distorted hands or jagged collars) alongside global temporal 

flickering (blue↔red alternations), both of which expose inherent spatiotemporal in-

consistencies in synthetic content. Furthermore, quantitative analysis confirms that in-

ter-frame grayscale differences in forged videos are significantly more dispersed 

(Fig.2), as evidenced by their wider interquartile range in boxplot visualization, sug-

gesting that selective extraction of frames with peak grayscale differences could enable 

efficient authenticity verification.   
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Fig. 1. Comparison of spatiotemporal difference heatmap patterns between real and fake videos. 

The top two videos show thermal distribution differences between fake and real videos with hu-

man subjects; The bottom two videos show thermal response contrast in open-background sce-

narios. 

 

Fig. 2. Grey-level Difference Score. Video1 and Video2 are fake videos, and Video3 and Video4 

are real videos. 

Despite these advances, three critical challenges persist in detecting high-quality syn-

thetic videos. First, current datasets exhibit severe class imbalance, with a median fake 



sample ratio of 70% [23]. This imbalance induces model overfitting to forgery artifacts, 

degrading generalization capability. Second, existing methods demonstrate inadequate 

sensitivity to subtle forgery traces. As generation quality improves, traditional spatial 

features fail to capture imperceptible artifacts. Third, computational inefficiency 

plagues long-video processing, where linear time complexity growth with video length 

renders conventional frame-wise detection impractical. 

To address these challenges, we propose TS-KFNet, a lightweight dual-stream 

framework that effectively combines global spatiotemporal modeling with local artifact 

analysis. The framework introduces three key technical innovations. First, we develop 

a TimeSformer-based [10] architecture that employs divided space-time attention 

mechanisms to simultaneously capture global appearance and motion patterns. This ap-

proach significantly reduces computational complexity from 𝑂(𝑇𝑁2) to 𝑂(𝑇2 + 𝑁2) 
(where 𝑇 represents the number of frames and 𝑁 denotes patches per frame), achieving 

a 10-fold speedup compared to traditional 3D CNNs. Second, we design a dynamic 

keyframe selection strategy that leverages motion-compensated grayscale difference 

analysis to identify the most informative 10% of frames. This is coupled with CNN-

based local artifact extraction, reducing the computational workload for long video pro-

cessing by 90% while maintaining detection accuracy. Third, we implement a cross-

modal fusion module that seamlessly integrates spatiotemporal features with local arti-

facts through weighted attention mechanisms, enabling comprehensive detection of 

motion inconsistencies, appearance anomalies, and subtle micro-artifacts across multi-

ple scales. 

Experimental validation across eight state-of-the-art video generation models (Min-

iMax [3], Gen-3 [5], Vchitect-2.0 [16], Kling [2], CogVideoX-5B [39], Vchitect-2.0-

2B [6], Pika [4], and Gen-2 [1]) demonstrates TS-KFNet's superior performance, 

achieving 94.0% average detection accuracy with a 10×  computational speed ad-

vantage compared to AIGVDet [9]. These results establish a robust technical founda-

tion for real-time video forensics applications. The core contributions of this paper are 

as follows: 

1. Multigranular Detection Paradigm: We establish the first adaptation of 

TimeSformer architecture for video forgery detection, enabling simultaneous analy-

sis of global temporal-spatial inconsistencies and local forensic artifacts through our 

dual-stream framework. 

2. Efficient Inference Framework: Our novel motion-compensated keyframe selec-

tion strategy combined with region-weighted artifact analysis achieves 10× faster 

processing than conventional full-frame methods while maintaining 94.0% detection 

accuracy, as validated across eight state-of-the-art generation models. 

3. Comprehensive Benchmark: We construct the first evaluation platform incorporat-

ing eight cutting-edge video generation techniques (from MiniMax to Gen-2), 

providing standardized metrics for assessing detection methods against evolving syn-

thetic media threats. 

The remainder of this paper is organized as follows: Section 2 analyzes the evolution 

of video forgery and detection technologies. Section 3 details TS-KFNet's architecture 

and key algorithms. Section 4 validates effectiveness through comparative experiments 

and ablation studies. Section 5 concludes with future research directions. 
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2 Related Work 

2.1 Evolution of Video Forgery Technologies 

The progression from traditional manual editing to generative models in video forgery 

reflects the rapid advancement of artificial intelligence. Early-stage research primarily 

relied on image processing techniques (e.g., video editing, background synthesis) for 

content manipulation [27], yet constrained by manual operation precision and temporal 

coherence. Post-2014 breakthroughs in generative adversarial networks (GANs) trig-

gered qualitative leaps: DeepFake pioneered facial temporal migration through en-

coder-decoder architectures [36], albeit with limitations in expression rigidity and mo-

tion discontinuity. Subsequent improvements incorporated recurrent neural networks 

(RNNs) and 3D convolutional networks (C3D) to enhance temporal modeling [20]. 

Recent advancements leverage diffusion models [32] for multimodal forgery, enabling 

text-to-video and audio-to-video synthesis [13,24], with 4K ultra-resolution outputs ap-

proaching human visual discrimination thresholds. 

2.2 Development of Video Forgery Detection Methods 

Video forgery detection has dynamically evolved in response to forgery techniques. 

Early methods relied on handcrafted low-level features like compression artifacts [11] 

and resampling traces [7], which proved inadequate against rapidly evolving generative 

models. The deep learning era shifted to data-driven paradigms, exemplified by Face-

Forensics++ using 2D-CNNs for spatial feature extraction (e.g., edge artifacts, skin tone 

anomalies). Frame-level classifiers suffered high false-positive rates due to neglected 

temporal relationships. Dual-stream networks (e.g., AIGVDet [9]) combined RGB 

frames with optical flow analysis but incurred prohibitive computational costs (over 

50% inference time) and error accumulation in long videos. 3D-CNNs modeled short-

term dependencies yet failed to capture global consistency patterns. Recent cross-modal 

approaches like Uni-FD [28] leverage CLIP-ViT's pretrained features but face adapta-

bility challenges with novel generators. 

Current mainstream solutions employ frame-wise image detection with statistical 

fusion, exhibiting three critical flaws: Temporal motion features (e.g., action continuity, 

physical consistency) are disregarded, increasing miss rates for dynamic forgeries; Full-

frame processing introduces redundant computations, tripling processing time versus 

direct video feature extraction; Frame-level classification suffers from camera shake 

and compression artifacts, degrading overall accuracy [26,28,29]. These limitations un-

derscore the urgent need for efficient, temporally-aware detection frameworks. 

2.3 Challenges and Advances in Spatiotemporal Feature Modeling 

The core challenge lies in efficient spatiotemporal coupling and robust modeling of 

dynamic forgery patterns. Current cascaded architectures (spatial then temporal pro-

cessing) fail to capture physically coupled artifacts (e.g., facial micro-expression and 

head motion inconsistencies). While AIGVDet's multi-stream fusion [9] integrates op-



tical flow with RGB features, its frame-wise flow computation imposes excessive over-

head. Transformer-based approaches like TimeSformer [10] model long-range depend-

encies but lack sensitivity to local artifacts. Hybrid architectures (e.g., ViViT [8]) strug-

gle with CNN-Transformer feature heterogeneity. Large-scale pretrained models (e.g., 

VideoTree [38]) face deployment challenges due to excessive memory consumption. 

Diffusion-generated videos exacerbate detection complexity, degrading cross-model 

generalization. Fixed-interval keyframe sampling proves inadequate for dynamic for-

gery patterns (e.g., temporal mutations or random artifact distributions). These chal-

lenges collectively highlight unmet needs in balancing spatiotemporal coupling, local 

sensitivity, computational efficiency, and dynamic adaptability. 

3 Method 

3.1 Overview 

 

Fig. 3. Schematic diagram of the proposed TS-KFNet framework for generated video detection. 

(a) The input video stream is processed through dual parallel pathways: the upper branch adopts 

TimeSformer architecture for global spatiotemporal feature extraction, while the lower branch 

employs CNN backbone for local detail characterization. (b) Discriminative scores from both 

branches are integrated via a fusion module to produce the final detection score. 

This paper proposes a dual-stream collaborative detection framework that achieves 

efficient video forgery detection through the fusion of global spatiotemporal features 

and local artifact feature analysis. The framework comprises three core modules: 

Global Spatiotemporal Modeling: A TimeSformer-based spatiotemporal attention 

mechanism that jointly analyzes single-frame semantic consistency (spatial attention) 

and cross-frame motion physical rationality (temporal attention), generating global 

anomaly scores 𝑆global (in Sec.3.2). 
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Dynamic Keyframe Selection and Local Feature Analysis: A motion-compen-

sated and center-weighted grey-level difference metric for keyframe screening, com-

bined with ResNet-based local artifact feature extraction (edge anomalies, unnatural 

textures), producing local scores 𝑆local (in Sec.3.3). 

Dual-stream Feature Fusion: A complementary enhancement mechanism that gen-

erates the final discrimination score 𝑆final through systematic integration of 𝑆global and 

𝑆local, significantly improving the robustness against high-quality synthetic videos. (in 

Sec.3.4). 

3.2 Global Spatiotemporal Modeling 

We implement the global spatiotemporal feature extraction module using TimeSformer 

with a divide-and-conquer spatiotemporal attention mechanism to model video dy-

namic consistency. Given preprocessed video frames {𝑓𝑡}𝑡=1
𝑇 , each frame is first parti-

tioned into 14 × 14 non-overlapping 16 × 16 patches. These patches are linearly pro-

jected into spatiotemporal embedding vectors 𝑧𝑡
(𝑖,𝑗)

∈ ℝ768, where (𝑖, 𝑗) denotes spatial 

position indices and 𝑡 represents temporal index. The model captures global anomalies 

through coordinated spatial-temporal attention: 

Spatial Attention establishes global correlations among patches within individual 

frames: 

SA(𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾⊤

√𝐷
)𝑉                                     (1) 

Here, 𝑄,𝐾, 𝑉 ∈ ℝ𝑁×𝐷 are generated by learnable parameters with 𝐷 = 768 embedding 

dimension and 𝑁 total patches. This module detects intra-frame anomalies through se-

mantic consistency analysis. 

Temporal Attention models trajectory features along temporal dimension for iden-

tical spatial positions to capture inter-frame motion contradictions: 

TA(𝑖,𝑗) = Softmax (
𝑧1
(𝑖,𝑗)

𝑧2
(𝑖,𝑗)⊤

√𝐷
, … ,

𝑧1
(𝑖,𝑗)

𝑧𝑇
(𝑖,𝑗)⊤

√𝐷
)                                     (2)  

The architecture employs spatiotemporal joint positional encoding using sinusoidal 

functions to generate absolute position-aware embeddings. Twelve transformer encoder 

layers are stacked, each containing 12-head self-attention and non-linear feedforward 

networks. During training, we construct adversarial training sets combining authentic 

videos from Kinetics-400 [22] and synthetic videos generated by CogVideoX-2B [39]. 

The global anomaly score 𝑆global is computed through temporal averaging:       

𝑆global =
1

𝑇
∑ 𝜎𝑇
𝑡=1 (MLP(𝑧𝑇

(cls)
))                                     (3) 

Here, 𝜎denotes the sigmoid function and 𝑧𝑇
(cls)

∈ ℝ768 represents the classification to-

ken output from the final layer. This module effectively detects video-level dynamic 

anomalies and physical law violations through joint spatiotemporal modeling.  

3.3 Dynamic Keyframe Selection and Local Analysis 

Keyframe Extraction Algorithm: To precisely capture local forgery traces in syn-

thetic videos, we propose a motion-compensated region-weighted difference algorithm 

for dynamic keyframe selection. First, an Enhanced Correlation Coefficient (ECC) 



algorithm [12] eliminates camera shake interference in inter-frame analysis. For con-

secutive frames {𝑓𝑡}𝑡=1
𝑇 , we solve affine transformation matrices 𝑊𝑡  by minimizing 

alignment errors: 

𝑊𝑡 = 𝑎𝑟𝑔min
𝑊

∑ |𝑖,𝑗 |𝑓𝑡+1(𝑖, 𝑗) − 𝑊 ∘ 𝑓𝑡(𝑖, 𝑗)||
2
                                     (4) 

Here, 𝑊 ∘ 𝑓𝑡 denotes affine-transformed frames. This optimization process effectively 

suppresses non-semantic displacements caused by mechanical motion, thereby estab-

lishing a stable foundation for subsequent difference analysis. The aligned frames are 

then expressed as 𝑓𝑡
aligned

= 𝑊𝑡 ∘ 𝑓𝑡. 

Second, the region-weighted strategy is employed. A spatial weight mask 𝑀 ∈
ℝ𝐻×𝑊 is constructed to enhance difference sensitivity in salient regions.  Considering 

that salient subjects predominantly appear in central image regions, as illustrated in 

Fig.4, we assign a weight of 2.0 to central regions and 1.0 to peripheral areas. 

𝑀(𝑖, 𝑗) = {
2.0 if(𝑖, 𝑗) ∈ ROI
1.0 otherwise

                                     (5) 

 

Fig. 4. Center Region Weight Mask (2.0 Center, 1.0 Periphery). 

Motion-compensated weighted frame differences are computed as: 

𝐷𝑡 = ∑ 𝑀𝑖,𝑗 (𝑖, 𝑗) ⋅ ||𝑓𝑡
aligned

(𝑖, 𝑗) − 𝑓𝑡−1
aligned

(𝑖, 𝑗)||grey
2                                     (6) 

Here 𝐷𝑡  denotes the motion-compensated weighted greyscale difference at frame $t$. 

From the computed frame-wise differences {𝐷1 , . . . , 𝐷𝑇}, we select the top-𝛼% frames 

with highest 𝐷𝑡  values as keyframes 𝐾 = {𝑘1, . . . , 𝑘𝑛}, where 𝑛 = ⌈𝛼𝑇⌉. 
Local Artifact Scoring: The dynamically selected keyframe set 𝐾 is fed into a pre-

trained ResNet-50 [35] to extract frame-level forgery probabilities {𝑠𝑖}𝑖=1
𝑛 . Leveraging 

the significant outlier characteristics of synthetic artifacts, the local score is computed 

via mean pooling: 

𝑆local =
1

𝑛
∑ 𝑠𝑖
𝑛
𝑖=1                                                       (7) 

 

3.4 Dual-stream Feature Fusion and Decision 

To address TimeSformer's inherent limitations in local artifact detection (e.g., lack 

of inductive biases like translation equivariance and locality [30]), we propose a hier-

archical feature fusion mechanism that synergizes global spatiotemporal features with 

local artifact analysis. While transformer's global attention captures semantic-level 

video content, its sensitivity to high-frequency texture features (e.g., edge discontinui-

ties,  compression artifacts) remains limited. Synthetic artifacts from frame rendering 
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(e.g., StyleGAN2's grid artifacts [33]) typically exhibit strong locality, necessitating 

CNN's local receptive fields for effective detection. 

Dual-stream Fusion: A static weighted fusion strategy balances global and local 

features: 
𝑆final = 𝜆 ⋅ 𝑆global + (1 − 𝜆) ⋅ 𝑆local                                        (8) 

where the balancing coefficient 𝜆 = 0.5 is determined through experiment. The deci-

sion threshold 𝜏 is formally defined as: 

𝒟(𝑆final) = {
Authentic, 𝑆final ≥ 𝜏
Synthetic, 𝑆final < 𝜏

                                        (9) 

The default threshold 𝜏0 = 0.5 establishes a baseline decision boundary, while ad-

justable 𝜏 ∈ (0,1) enables dynamic trade-off between FAR and FRR in deployment. 

Increasing 𝜏 makes the system more conservative (enhancing fake video detection), 

whereas decreasing 𝜏 improves robustness (reducing false alarms on  real videos). 

4 Experiments 

4.1 Experimental Setup 

Dataset Construction: Our benchmark rigorously evaluates generalization capabil-

ity by incorporating synthetic videos exclusively generated by the Top-8 performing 

models on the October 2024 VBench leaderboard [18], representing the most advanced 

generation technologies available at publication time. The training set consists of 1,000 

videos (720 synthetic samples from CogVideoX-2B [39] and 280 authentic videos from 

Kinetics-400 [22]), maintaining a deliberately imbalanced 72:28 ratio to reflect real-

world data distributions [23]. Each of the eight test sets combines 530 real videos with 

synthetic content from distinct state-of-the-art generators including CogVideoX-5B 

(LLM-based), Gen-3 (Diffusion) [5], and Pika (Hybrid) [4], ensuring comprehensive 

coverage of contemporary generation paradigms. 

Comparative Methods: We conduct thorough comparisons with six representative 

methods spanning four years of technological evolution (2020-2024), each embodying 

distinct technical approaches: The conventional CNN-based detection framework 

CNNDet (2020) [35] serves as our baseline; F3Net (2020) [29] represents frequency-

domain analysis methods; DIRE (2023) [37] exemplifies specialized diffusion model 

detectors; Uni-FD (2023) [28] demonstrates the pretrained vision transformer para-

digm; HiFi-Net (2023) [15] showcases multi-domain fusion techniques; and AIGVDet 

(2024) [9] reflects the current state-of-the-art. This chronological selection enables 

clear observation of technological progression in the field. 

Implementation Details: All video inputs are uniformly processed at 30 FPS and 

segmented into 32-frame clips with spatial resolution standardized to 224 × 224 

through center-cropping from 256 × 256 resized frames. Pixel values are normalized 

using mean and standard deviation parameters ( 𝜇 = [0.45,0.45,0.45] , 𝜎 =
[0.225,0.225,0.225]), with data augmentation limited to random horizontal flipping to 

preserve temporal consistency. Our hybrid baseline architecture combines a ViT-Base 

TimeSformer for global feature extraction (processing 16 × 16 patches with cross-

frame attention) with a modified ResNet50 backbone for local artifact detection. All 



comparative methods except AIGVDet (retaining its original pretrained weights) are 

retrained under identical conditions (batch size=64) to ensure fair comparison with 

comprehensive evaluation metrics. 

4.2 Comparison to other Detectors 

Performance Analysis: Comprehensive evaluation across eight video generation 

models demonstrates TS-KFNet's consistent superiority over existing approaches, as 

detailed in Table 1. The method establishes new state-of-the-art performance with 

94.0% average accuracy and 99.0% AUC, representing significant improvements over 

the strongest baseline (AIGVDet) while maintaining computational efficiency. Nota-

bly, the architecture shows particular strength in handling both high-quality synthetic 

content and challenging low-motion scenarios, with performance advantages remaining 

robust across different generation paradigms and video qualities. 

The performance gains primarily emerge from three synergistic components: the 

global-temporal feature extraction, local-spatial artifact analysis, and adaptive 

keyframe selection. This integrated approach not only achieves superior detection ac-

curacy but also demonstrates remarkable computational efficiency through intelligent 

frame selection. While the current implementation shows slightly reduced sensitivity 

to static content compared to dynamic sequences - as evidenced by the Kling versus 

Pika results - the overall framework maintains strong generalization across diverse test 

conditions, with the keyframe mechanism proving particularly effective for resource-

constrained scenarios. 

Table 1. Comprehensive comparison of detection performance (Accuracy/AUC %) across dif-

ferent state-of-the-art video generation models. 

Method MiniMax Gen-3 Veh-2.0 Kling CogV-5B Veh-2B pika Gen-2 Avg. 

CNNDet 87.5/89.3 87.6/89.2 87.6/89.3 80.9/81.7 87.7/89.6 87.2/89.0 87.5/89.3 87.5/89.3 86.7/88.3 

DIRE 87.9/89.6 88.4/90.0 88.1/89.6 82.6/83.4 88.3/90.1 87.8/89.4 88.3/90.0 87.9/89.6 87.7/89.0 

F3Net 88.7/90.0 82.0/87.0 84.0/87.0 77.7/74.5 86.3/90.5 82.7/86.0 93.0/95.5 81.0/79.5 84.4/86.3 

Uni-FD 83.8/97.6 87.3/99.8 70.3/97.8 50.1/73.4 88.3/98.8 78.5/96.3 90.2/98.7 98.5/99.8 80.9/95.3 

HIFI-Net 57.9/54.6 57.0/51.8 57.1/58.7 57.6/36.7 57.9/48.7 57.8/46.1 57.8/59.5 57.8/59.5 57.6/52.0 

AIGVdet 84.0/94.4 94.1/96.4 87.1/91.1 76.6/90.3 92.6/96.1 82.0/94.1 88.3/91.9 94.1/96.6 85.8/93.7 

Ours 94.6/99.6 94.6/99.7 94.5/99.4 91.0/95.4 94.5/99.5 94.5/99.2 94.6/99.7 94.4/99.6 94.0/99.0 

Computational Efficiency Comparison Analysis: To clearly present the differ-

ences in computational efficiency among different methods, we conducted an evalua-

tion on the CogVideoX-5B dataset. As shown in the Table 2, CNNDet (baseline) takes 

about 2 hours per video, and AIGVDet (SOTA) needs around 4 hours, indicating low 

efficiency. In contrast, TS-KFNet shows great efficiency. Its TS branch processes 100% 

frames in about 15 minutes, 8x faster than CNNDet and 16x than AIGVDet. The KF 

branch, handling 10% key frames in about 13 minutes, is 9.23x and 18.46x faster re-

spectively. The integrated TS-KFNet method, taking about 28 minutes per video, is 

4.29x faster than CNNDet and 8.57x than AIGVDet. As confirmed by the literature 

[10], TimeSformer can achieve a 10x speed-up compared to traditional CNN methods, 
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thanks to its spatio-temporal attention mechanism that reduces the computational com-

plexity from 𝑂(𝑇 ⋅ 𝑁2)𝑡𝑜𝑂(𝑇 + 𝑁2). Additionally, the dynamic key-frame strategy 

(processing 10% frames) cuts 90% of the computation. Thus, TS-KFNet can balance 

accuracy and speed, having high practical value. 

Table 2. Computational Efficiency Comparison. 

Method Key Frame Ratio 
Inference Time 

per Video 

Speedup vs. 

CNNDet 

Speedup vs. 

AIGVDet 

CNNDet (Baseline) 100% ∼ 2 hours 1× - 

AIGVDet (SOTA) 100% ∼ 4 hours 0.5× 1× 

TS-Only 100% ∼ 10 minutes 12× 24× 

KF-Only 10% ∼ 13 minutes 9.23× 18.46× 

TS-KFNet(Ours) 100% ∼ 23 minutes 5.22× 10.43× 

 

4.3 Ablation Study on Feature Enhancement and Keyframe Strategy 

Table 3. Ablation study on feature enhancement and keyframe strategy across different models. 

Four variants are compared: (1) TS-Base (TimeSformer-only baseline); (2) TS-RF replacing 

keyframe selection with random sampling (equal frame count) to isolate selection impact; (3) 

TS-FF processing all frames for computational upper-bound; (4) TS-KF (full model) demonstrat-

ing optimal efficiency-accuracy trade-off through keyframe selection. 

Model 
TS-B 

(AUC) 

TS-KF 

(AUC) 

TS-B 

(ACC) 

TS-RF 

(ACC) 

TS-FF 

(ACC) 

TS-KF 

(ACC) 

CogV-5B 99.51 𝟗𝟗. 𝟓𝟔 93.87 94.20 94.35 94.59 

Gen-2 99.52 99.69 93.78 94.02 94.26 94.58 

Gen-3 99.05 𝟗𝟗. 𝟓𝟓 93.58 93.74 94.15 94.39 

Kling 95.62 𝟗𝟓. 𝟑𝟔 89.83 90.87 90.79 91.03 

MiniMax 99.52 𝟗𝟗. 𝟓𝟑 93.73 94.04 94.28 94.52 

pika 99.68 99.72 93.86 94.10 94.34 94.58 

Veh-2B 99.35 99.18 93.78 94.26 94.34 94.50 

Veh-2.0 99.40 99.42 93.77 94.25 94.25 94.49 

 

The ablation studies systematically validate the efficacy of feature enhancement and 

keyframe selection. As shown in Table 3, the 0.79% accuracy enhancement achieved 

by the keyframe component (94.51% vs 93.72%) represents a substantial advancement 

when contextualized within high-performance detection systems. This improvement 

corresponds to a 12.6% relative error reduction (6.28% → 5.49%) with statistical sig-

nificance (p<0.01, Cohen's d=1.21). Such gains become particularly meaningful near 

the human performance ceiling (≈95% accuracy), where each percentage point im-

provement demands disproportionate algorithmic innovation. In practical terms, for 



content moderation systems processing one million videos daily, this translates to ap-

proximately 7,900 additional correct classifications per day. 

The component's value is further evidenced through comparative analyses with al-

ternative approaches. Most notably, it outperforms random frame sampling by 0.45% 

accuracy despite equivalent computational costs, demonstrating the temporal selec-

tion's algorithmic sophistication rather than random variation. Perhaps more remarka-

bly, the method surpasses full-frame processing by 0.29% accuracy while utilizing 

merely 10% of the computational resources, confirming its exceptional information 

condensation capability. These advantages become even more pronounced when com-

pared to state-of-the-art methods, where TS-KF maintains a 10.51% absolute accuracy 

lead over AIGVDet on challenging CogVideoX-5B content—a performance gap that 

exceeds AIGVDet. 

The keyframe strategy demonstrates superior efficiency-accuracy trade-offs. 

Howerver, two limitations emerge: (1) For Kling videos, TS-KF attains 91.03% ACC 

but shows constrained discriminative power (95.36% AUC); (2) Vchitect-2.0-2B ex-

hibits slight AUC degradation (99.18% vs. TS-B 99.35%). These findings motivate 

adaptive keyframe selection for complex scenarios. 

4.4 Hyperparameter Analysis 

Key Frame Ratio (𝜶) Optimization: To ascertain the optimal key frame ratio, we 

conduct evaluations of 𝛼 within the range of 5% to 20% on the CogVideoX-5B dataset. 

As illustrated in Fig. 5, the detection accuracy exhibits a bell-shaped curve, reaching its 

peak at 𝛼 = 10%. When the ratio is lower, the performance deteriorates due to insuffi-

cient temporal coverage. When it is higher, the performance also declines because of 

the interference from non-key frames, in addition to the reduction in computational 

efficiency. This validates our default setting of 𝛼 = 10%, which successfully attains 

the most favorable balance between accuracy and processing speed. 

Fusion Weight (𝝀) Sensitivity: We further analyze the impact of the fusion weight 

𝜆 (between the TimeSformer and CNN branches) by systematically varying 𝜆 in incre-

ments of 0.1 within the interval [0.3, 0.7]. Fig. 6 illustrates that 𝜆 = 0.5 yields the peak 

performance, with an accuracy of 94.6%. When either branch is overemphasized, there 

is a symmetrical decrease in performance. 
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Fig. 5. ACC and AUC as a function of the key frame ratio 𝛼 on the CogVideoX-5B dataset. The 

dashed line marks the optimal 𝛼 = 10%, at which the ACC reaches its maximum of 94.59%. 

Lower values of 𝛼 cause the omission of critical frames, while higher values introduce noise. 

 

Fig. 6. Accuracy and AUC as a function of the fusion weight 𝜆 on the CogVideoX-5B dataset. A 

balanced fusion with 𝜆 = 0.5 optimally combines global and local features. 



5 Conclusion 

This paper presents TS-KFNet, a dual-branch detection framework that addresses 

the critical challenge of detecting high-fidelity synthetic videos through synergistic spa-

tiotemporal analysis. Our method achieves state-of-the-art performance with 94.0% de-

tection accuracy and 99.0% AUC across multiple benchmarks, driven by three inter-

connected technical advancements. The proposed divided spatiotemporal attention 

mechanism captures subtle temporal inconsistencies that conventional frame-level de-

tectors typically miss, addressing fundamental limitations in global coherence model-

ing. Building upon this foundation, a motion-aware dynamic fusion strategy combines 

ECC motion compensation, center-weighted discrepancy analysis, and adaptive thresh-

old optimization to achieve 90% computational reduction while preserving detection 

robustness, effectively balancing efficiency and precision. 

While TS-KFNet demonstrates superior performance on dynamic content, two in-

herent limitations require further investigation: reduced sensitivity in static scenes due 

to insufficient motion cues for keyframe selection, and suboptimal feature fusion effi-

ciency caused by fixed-weight aggregation in multi-stage processing. Future work will 

focus on enhancing static scene analysis through multi-modal feature fusion and opti-

mizing computational efficiency via adaptive frame weighting. 
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