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Abstract. Partial Label Learning (PLL) is a prominent research direction in weak 

supervision, in which each instance is associated with a set of ambiguous candi-

date labels. Recent PLL methods primarily focus on uncovering the latent true 

label using label ambiguity information. However, the candidate label set con-

tains only one true label. We directly utilize the entire candidate set will introduce 

label noise and hinder performance improvement of model training. To address 

this issue, we propose a guided model learning method called Class Prototype-

induced Weighted Contrastive Partial Label Learning method (PIWCL) to effec-

tively reduce the impact of label noise. Specifically, PIWCL consists of the Class 

Prototype-guided Module (CPGM) and the Weighted Contrastive Learning Mod-

ule (WCLM). WCLM employs a novel weighting scheme to learn more compact 

and discriminative representations, mitigating the confusion caused by ambigu-

ous class samples while capturing useful latent information. Meanwhile, CPGM 

guides the classifier's learning process, further improving its ability to distinguish 

between positive and negative samples and facilitating the training of WCLM. 

Experimental results show that, compared to existing PLL methods, PIWCL 

achieves significant improvements in effectiveness. 

Keywords: Partial Label Learning, Class Prototype, Contrastive Learning, 

Weakly Supervised Learning 

1 Introduction 

The excellent performance of deep neural networks heavily relies on a large amount of 

accurately labeled data. To reduce the cost of data labeling, non-experts annotators are 

often chosen to label the data, but this may lead to label ambiguity[1, 2](see Fig. 1). To 

address this issue, Partial Label Learning (PLL) has emerged as a promising solution 

[2-11]. Its goal is to train models using candidate labels that contain ambiguous labels, 

helping the model infer the true label for each sample and resolve label uncertainty. 

PLL is also widely applied in fields such as malignant prediction of lung nodules[12], 

image classification[6], and object detection[8]. 

To address the issue of label ambiguity in training instances in PLL, researchers have 

explored methods to identify true labels from candidate labels [13-15]. Early works 

optimized models using maximum likelihood models and the expectation maximization 

algorithm [16]. Current PLL methods mainly employ techniques such as contrastive 



learning, label disambiguation and feature representation optimization [2, 17]. Some 

approaches suggest treating all candidate labels equally and using the model's output 

average for prediction [18, 19]. Additionally, SAUTE selects features related to label 

information by maximizing mutual information [20]. However, these methods often 

rely on specific assumptions, such as the independence of candidate labels or an over-

reliance on label information. ABLE introduced an instance-based PLL approach, sug-

gesting that each candidate label in the candidate labels can be used as a basis for con-

trastive learning to extract additional information from ambiguous labels [9]. Some re-

searchers have proposed a novel "mutual supervision" paradigm by introducing a part-

ner classifier and designing a collaboration term to mutually supervise with the base 

classifier, aiming to identify and correct mislabeled samples in PLL [4].  

However, noise is often introduced during the process of utilizing label ambiguity 

information. Specifically, since the model is not effective in distinguishing samples that 

are difficult to distinguish, if the label information containing ambiguity continues to 

be used, it is easy to aggravate the uncertainty of the model to select the wrong label 

and introduce noise. As training progresses, these noises gradually accumulate and 

eventually affect the performance of the model. Therefore, it is necessary to pay special 

attention to the potential interference of these ambiguous labels on the learning of real 

labels. We compared the performance of several methods (see Fig. 2) and the experi-

mental results showed that the performance improvement of most methods significantly 

slowed down or even stagnated in the late training period due to the influence of noise. 

In order to solve the above problems, we are inspired by class prototype and contrast 

learning and establish a prototype-sample bidirectional cooperative optimization mech-

anism. A new Class Prototype-induced Weighted Contrastive Partial Label Learning 

(PIWCL) method is proposed. Specifically, we use a classifier-based feature selection 

mechanism to divide positive pairs into positive and fuzzy sets and apply weights to 

them. This module is called the Weighted Contrastive Learning Module (WCLM). The 

weighted design not only captures potentially ambiguous information while clarifying 

the boundaries between classes, but also generates better class prototypes. In addition, 

the proposed Class Prototype-guided Module (CPGM) calculates the feature similarity 

between samples and the constructed class prototypes,which is used to construct the 

class prototype-guided loss. The class prototype guides the classifier to train the model 

Fig. 1. In Partial Label Learning, we typically assign a candidate label set to images that are 

difficult to distinguish. For example, the bird image highlighted with a red box in the figure is 

assigned a candidate label set containing four labels, of which only one is the true label for the 

image. 
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and enhances its ability to distinguish between positive class and fuzzy class, which 

facilitates the training of PIWCL. These two modules complement each other and work 

together to improve the performance of the model. The detailed method is described in 

Section 3. Our contributions are summarized as follows: 

1. We reconsidered the ambiguity-induced contrastive learning module in ABLE [9] 

and proposed that while ambiguous labels have value for utilization, it is also important 

to be mindful of their boundaries with the true labels. 

2. To solve the problem of model noise accumulation in partial label learning, we pro-

pose a dynamic class prototype guidance method named Class Prototype-induced 

Weighted Contrastive Partial Label Learning (PIWCL). This method uses Weighted 

Contrastive Learning Module (WCLM) to perceive ambiguous information and assign 

different attention to different categories to generate better representations, thus pro-

moting the construction of high-quality class prototypes. Then the Class Prototype-

guided Module (CPGM) guides the classifier to learn. Furthermore, the semantic am-

biguity propagation in partial label learning is suppressed, and the discriminant ability 

of the model is enhanced. 

3. Experiments on multiple datasets show that PIWCL outperforms most of the current 

advanced PLL methods. 

2 Related Works 

2.1 Partial Label Learning (PLL) 

PLL originates from weakly supervised learning and multilabel learning. It can be di-

vided into three aspects: disambiguation-based strategies, transformation-based strate-

gies and theorydriven strategies [1, 4-17, 21]. Recently, transformation-based strategies 

have improved label disambiguation and the overall performance of PLL by enhancing 

Fig. 2. In PLL, we typically assign a candidate label set to images that are difficult to distinguish. 

For example, the bird image highlighted with a red box in the figure is assigned a candidate label 

set containing four labels, of which only one is the true label for the image. 



feature space consistency [4, 5]. Another group of researchers has pointed out the po-

tential of theoretical approaches [21, 22]. Disambiguation-based strategies mainly fo-

cus on eliminating incorrect labels in candidate labels. IMVPML uses lowrank and 

sparse decomposition to remove noisy labels, combined with graph Laplacian regular-

ization and orthogonality constraints to constrain the true labels [17]. MILe eliminates 

label ambiguity by propagating binary predictions between teacher and student net-

works within an iterative learning framework [22]. ABLE minimizes the contrastive 

and classification losses to avoid over-reliance on label information [9]. However, we 

notice that few approaches address the distinction between ambiguous and true labels 

while utilizing ambiguous label information. 

2.2 Class prototype 

The class prototype method is a prototype-based learning approach that aims to achieve 

classification or clustering tasks by representing each class with a "typical" or "repre-

sentative" sample (i.e., class prototype)[23, 24]. Some researchers have proposed to use 

multi-class label information and a pyramid feature fusion module during the training 

process to encourage the network to generate compact features and robust prototypes 

for each semantic class [25]. Others have proposed a non-parametric method based on 

unlearnable prototypes, which overcomes the limitations of parametric segmentation 

mechanisms [26]. Inspired by the above, we introduce the class prototype method into 

PLL, using prototypes to guide the classifier's training. 
 

Fig. 3. Illustration of PIWCL. In Class Prototype-guided Module, an appropriate feature is se-

lected for updating the class prototypes through a confidence-based prototype filter. Then, the 

similarity between the instance and prototype features is used as the basis for pseudo-target up-

dates, thereby constructing a class prototype-guided loss to guide the classifier's learning. Addi-

tionally, classifier-based feature selection mechanism is used to select the positive example set, 

fuzzy example set, and negative example set, which are then used to build a weighted contrastive 

loss. Finally, the model improves performance and accuracy by minimizing the two losses above, 

jointly optimizing the classifier and the projector. 
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2.3 Contrastive learning 

Contrastive learning is an unsupervised learning method that helps the model learn data 

features by pulling similar samples closer and pushing dissimilar samples apart [27]. 

RegionPLC achieved high-quality 3D learning without human annotations using a 3D 

perception strategy and contrastive learning [28]. Other researchers use label infor-

mation to cluster similar samples, and separate dissimilar samples through supervised 

contrastive loss to optimize the representation in the embedding space [29]. Contrastive 

learning has been widely applied in fields such as image, text and audio. In this paper, 

we utilize contrastive learning to capture potential ambiguous information in the can-

didate label set. 

3 Methods 

In this section, we will provide a detailed introduction to the PIWCL method. First, in 

Section 3.1, we will introduce some basic methods and notations. This is followed by 

an explanation of our PIWCL method. Sections 3.2 and 3.3 give a detailed description 

of the Class Prototype Guidance Module and the Weighted Contrastive Learning Mod-

ule. A brief description of PIWCL is also provided (see Fig. 3). 

3.1 Preliminaries 

We assume that  is the input space, and {1,2, , }y m= is the label space containing m

class labels. Given a training dataset {( , ) |1 }i iD x Y i N=   for PLL, where ix represents 

the -i th training sample and iY y represents the candidate label set corresponding to 

the -i th sample. PLL aims to identify the true label of sample ix from the candidate label 

set Y , which contains multiple possible labels and uses these candidate labels to train 

the model. Through iterative optimization, the model gradually infers the most likely 

true label. Here, we consider the general instance-dependent case, which is consistent 

with ABLE [9]. Given a batch of samples {( |1 }),k kB x Y k b=   , we adopt the universal 

method to randomly generate a weak augmented view )( )( ,w i iAug x Y and ( )sAug a 

strong augmented view )( )( ,s i iAug x Y [29]. Here, ( )wAug and represent the weak aug-

mentation function and strong augmentation function, respectively. Therefore, the two 

sets of augmented samples for the batch are defined as }( ){ ( , |1)w w i iB Aug x Y k b=   and 

}) ){( ( , |1s s i iB Aug x Y k b=   . Each sample has a corresponding index, and their indices 

in the contrastive pool are given by {1,2, ,2 }I b= . During training, these two sets of 

samples w sB B , with a total of 2b samples, are used as the training samples for the 

batch. Based on SimCLR [30], these two augmented views of the sample 
w

kx and s

kx

are input into a shared-weight encoder network ( )f , resulting in a pair of representa-

tions ( ( ))w w

k w kv f Aug x= and ( ))(
s

s

k s kv f Aug x= . Subsequently, these representations 
w

kv

and 
s

kv are mapped through a projection network ( )g to )( pdw w

k kz g v=  and 



)( pds s

k kz g v=  , and are further normalized onto the unit sphere in pd . To ensure the 

reliability of the prototypes, we use confidence-based prototype filter to select high-

confidence features for prototype updating. The classifier's performance is improved 

by minimizing the crossentropy loss between the prototype similarity and the disam-

biguated labels. Meanwhile, the classifier ( )h receives 
w

kv as input and outputs 

)( w

k ky h v= , training the model by minimizing the classification loss for PLL. Addition-

ally, we introduce WCLM, which divides the received sample features kz into positive, 

ambiguous and negative classes using confidence-based prototype filter. A weighted 

contrastive loss is then constructed to encourage the model to focus on learning positive 

samples and extracting information from ambiguous samples. During training, CPGM 

guides the classifier to better distinguish between real and ambiguous classes, while 

WCLM generates better representations and class prototypes to guide the classifier's 

learning.  

3.2 Class Prototype Guidance Module(CPGM) 

As analyzed earlier, when we utilize information with label ambiguity, it is easy to 

confuse the boundaries between categories. To address this issue, we are inspired by 

PiCO  [31]. We propose using CPGM to guide the classifier's training, enabling it to 

better distinguish between real and ambiguous classes. 

Confidence-based Prototype Filter. Considering that the model may be unstable in 

the early stages of training and may assign incorrect pseudo-labels to some samples, 

we propose a Confidence-based Prototype Filter to filter reliable samples for effective 

prototype updates. Specifically, given each class prototype k ,where 

{1,2, , }k y m = . We update the prototype using high-confidence samples predicted 

to belong to the same class, with their features 
w

kz . Moreover, to avoid the high com-

putational cost of recalculating class prototypes k at each iteration, we adopt a moving 

average method to update the class prototypes k : 

 ( )1 ifw

k k k

k

k

z y

otherwise

  




 + − 
= 


   (1) 

Where   is the update coefficient, which decreases as the epoch increases.  is the set 

confidence threshold, and argmax ))( (c

c Y wk h Aug x= . 

Class Prototype Guidance Loss. As analyzed earlier, we need to use the prototypes 

k to guide the classifier during training. For each given sample ( ),i ix Y , we compute its 

highest similarity with the class prototype k as the basis for updating, and use a mov-

ing average approach to update the pseudo-targets: 

 
1 if j arg max

(1 ) ,
0 else

j Y i j

ij ij j j

z
s s c c


  

 =
= + − = 


 (2) 
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Where  is the smoothing factor, and the pseudo-target ijs is initialized using a uniform 

distribution, 
1

( )
| |

ij i

i

s j Y
Y

=   , which proiides a good initialization for the classifier 

( )h . Now, using the pseudo-target ijs as the learning objectiie, we employ cross-en-

tropy loss as the class prototype guidance loss to train the classifier ( )h : 

                             
( )
( )

1 1

exp1
log

exp

N m ij

pgl ij mi j

ikk

y
L s

N y
= =

 
 = − −
 
 

 


 (3) 

Where ijy  is the logits ialue for the -j th  class of the -i th sample,  N  is the total num-

ber of samples and m  is the number of classes. 

3.3 Weighted Contrastive Learning Module(WCLM) 

Based on the previous section, the update of class prototypes relies on the representa-

tions of the samples. Contrastive learning can play the role of class clustering in the 

embedding space to generate a good representation for the samples, thus facilitating the 

generation of class prototypes [31]. Here, we propose a Weighted Contrastive Learning 

Module. WCLM employs a classifier-based feature selection mechanism to construct 

contrastive learning by selecting the positive set positiveP , pseudo-positive set pseudoP and 

negative set negativeP . The positive set )( iP x of sample 
ix is defined as follows: 

 ( )i positive pseudoP x P P=   (4) 

Here, ( )    1,2, , \N i N i= represents the index set of all samples in the augmented 

batch except for sample i , and ˆ
iy is the predicted label of sample i . Then, 

( }ˆ ˆ{ ),positive k iP k k N i y y
 =  = and ˆ ˆ ˆ{ ( ), , }pseudo k i k iP k k N i y y y Y 

 =    . After obtaining 

the positive set )( iP x , we can construct the weighted contrastive loss. We create a con-

trastive loss for each sample, aiming to bring the distance to the instances in the positive 

set )( iP x closer and push away the remaining instances. It is worth noting that, due to 

the presence of pseudo-positive examples selected through the pseudo-positive set 

)( iP x , we need to be cautious about the "pulling force" of the positive example set. 

Clearly, the "pulling force" should be strongest for instances of the same class, while it 

should be weaker for other instances. Based on this, we construct a weight ij for the 

contrastive loss: 

 ( )( )+ ( )ij ij pseudo positivei P i P  =    (5) 

Similarly, we use a uniform distribution 
1

( )
| |

ij i

i

j Y
Y

 =  to ensure a well-initialized 

weights.  is an adjustable factor for the "pulling force" of pseudo-positive instances, 

with a default value of 0.5. The formula for ij is as follows: 

 if

0

i

ij

i

ikij k Y

y
j Y

y

otherwise







= 




 (6) 



Now, we can construct the weighted contrastive loss using the positive set and the 

weights: 

 ( )

( )( )

( )

exp /1
log

( ) exp /i i

i k

wcl ijj Y k x
i i ll N i

z z
L

x z z




 




=


 


 (7) 

Where 0  is the temperature coefficient. We train the model by minimizing the 

weighted contrastive loss for each sample to generate better representations. By learn-

ing the weighted contrastive loss, the samples in the positive set )( iP x are pulled closer 

together, while the samples in the negative set are pushed further apart. Additionally, 

under the weighted influence, the pseudo-positive samples in the positive set )( iP x not 

only allow the model to learn their potential information but also help distinguish them 

from the positive samples. Furthermore, the classification loss for each sample is as 

follows: 

 ( )
( )( )

exp
log

expi

ij

cls ij mk P x

ikk

y
L

y




 
 =
 
 




 (8) 

Throughout the process, WCLM and CPGM work in tandem. WCLM uses classi-

fier-based feature selection mechanism to divide samples into positives, pseudo-posi-

tives and negatives. Then, WLCM employs a reweighting strategy to construct a 

weighted contrastive loss, enabling the model to focus on learning from positives while 

also exploring the potential information in pseudo-positives. Meanwhile, CPGM assists 

the classifier in accurately distinguishing positives from pseudo-positives, providing 

WCLM with more precise samples. This drives WCLM to generate higher-quality class 

representations, optimizing decision boundaries and class prototypes k . Ultimately, 

the overall loss for each sample is as follows: 

 
cls pgl wclL L L L = + +  (9) 

Here,  and  are the weight parameters for the class prototype-guided loss and 

weighted contrastive loss, respectively, with a default value of 1.0. 

4 EXPERIMENTATS 

4.1 Setup 

Dataset. We used four benchmark datasets widely applied in computer vision tasks: 

MNIST [32], FashionMNIST [33], Kuzushiji-MNIST [34], and CIFAR-10 [35]. These 

datasets cover different image classification tasks, providing high representativeness 

and comparability. Additionally, for the candidate labels required by PLL, we adopted 

the same method as in ABLE [9]. The prediction confidence of the trained neural net-

work is used as the probability of flipping the incorrect label for an instance. We con-

ducted multiple experiments and recorded the best result. 

Baseline. We compared PIWCL with six advanced PLL methods: (1) ABLE [9], 

which introduces ambiguity information into contrastive learning and enables the col-

laborative training of the encoder and classifier. (2) PiCO [31], which addresses the 

challenges of representation learning and label disambiguation through contrastive 

learning and a class prototype-based label disambiguation algorithm. (3)RECORDS 
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[36] proposes a dynamic rebalancing strategy that, through biased output parameter 

decomposition, performs harmless adjustment to the label disambiguation process 

without assuming any prior knowledge of class distribution. (4) PRODEN [11] pro-

poses a new classification risk estimator and a progressive identification algorithm that 

is compatible with stochastic optimization. (5) LWS [10] introduces a new loss function 

that balances the relationship between partial and non-partial labels. (6) VALEN [13] 

recovers the label distribution through a label enhancement process, iteratively training 

the prediction model. These methods were configured according to the parameters ref-

erenced in their respective papers. 

Implementation. For all datasets, we employ commonly used data augmentation 

methods [9]. We chose ResNet-18 as the encoder network, which outputs features with 

512 dimensions [37]. The projector is a multilayer perceptron with one hidden layer 

(using ReLU activation function) and outputs a 128-dimensional embedding vector for 

contrastive learning. Additionally, the classifier is instantiated as a single linear layer. 

During training, we set the batch size to 64, the number of epochs to 800 and the initial 

learning rate to 0.001 to ensure model convergence stability. The optimizer uses sto-

chastic gradient descent. To evaluate the model's performance, we conducted three in-

dependent experiments and selected the best value as the final result. 

Table 1. The seven methods are compared on four benchmark datasets: MNIST, Fash-

ionMNIST, Kuzushiji-MNIST, and CIFAR-10, where the best performance is indicated in bold. 

 MNIST FashionMNIST Kuzushiji-MNIST CIFAR-10 

PIWCL(ours) 99.41% 92.34% 98.66% 91.94% 

ABLE 99.32% 92.14% 98.38% 90.89% 

PiCO 99.28% 88.98% 91.99% 88.54% 

RECORDS-LTPLL 99.36% 90.93% 98.74% 78.44% 

PRODEN 97.61% 88.67% 88.93% 59.52% 

LWS 98.86% 90.45% 87.60% 87.14% 

VALEN 97.89% 89.14% 89.10% 84.83% 

Table 2. Accuracy of PIWCL under Different Confidence Thresholds . 

500epoch 0.6 =  0.7 =  0.8 =  0.9 =  0.95 =  0.98 =  

CIFAR-10 91.29% 91.79% 91.58% 91.94% 91.66% 91.84% 

Table 3. The impact of using CPGM or WCLM in PIWCL on the CIFAR-10 and Fashion-

MNIST datasets. 

 CIFAR-10 FashionMNIST 

PIWCL 91.94% 92.34% 
w/o CPGM 91.34% 91.65% 
w/o WCLM 90.26% 90.76% 



4.2 Experimental Results 

PIWCL achieves state-of-the-art performance. Table 1 presents the results of various 

methods on four datasets: MNIST [32], FashionMNIST [33], Kuzushiji-MNIST [34] 

and CIFAR-10 [35]. Bold values in the table indicate the best performance. Clearly, 

PIWCL consistently outperforms all baselines across all datasets. Notably, on the 

CIFAR-10 dataset, it surpasses the ABLE method by 1.05% and the PICO method by 

3.4%. This demonstrates the effectiveness of the PIWCL method. 

Impact of Confidence Threshold  . We investigated the performance of the confi-

dence threshold  in CPGM at values of 0.6, 0.7, 0.8, 0.9, 0.95 and 0.98 as shown in 

Table 2. The experiment results indicate that the best performance is achieved when the 

threshold. This suggests that using more confident samples to update prototypes is ben-

eficial, but a higher threshold is not always better. 

Fig. 4. Comparison of Classification Accuracy of PIWCL with and without Class Prototype 

Guidance and Weighted Contrastive Learning. 

Fig. 5. Accuracy Variation of PIWCL with Different Batch Sizes as Epochs Increase on the 

CIFAR-10 Dataset. 
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The impact of batch size. The best performance is achieved when the batch size is 

64 (see Fig. 5). This suggests that smaller batch sizes can increase the flexibility of the 

training process, helping to escape local minima and find the global optimum, espe-

cially when dealing with samples that have ambiguous labels. 

Ablation study of class prototype guidance and weighted contrastive learning. To 

demonstrate the individual effects of the CPGM and the weighted WCLM, we con-

ducted ablation experiments, as shown in Table 3. (1) PIWCL represents the original 

version. (2) w/o CPGM indicates the model without the class prototype guidance mod-

ule. (3) w/o WCLM indicates the model without the weighted contrastive learning mod-

ule. From the table, we can see that PIWCL performs the best. It is important to note 

that CPGM improves the classifier's performance, especially in the early stages of train-

ing (see Fig. 4). When CPGM is not used, the performance in the early stages is signif-

icantly worse than that of PIWCL, demonstrating that CPGM enables faster conver-

gence in the initial training phases. Furthermore, without WCLM, the model's perfor-

mance improves more slowly after 300 epochs and tends to plateau, further proving the 

necessity of WCLM. These experiments confirm that both CPGM and WCLM are in-

dispensable. 

5 Conclusion 

In this paper, we propose a simple PLL method called PIWCL. Specifically, to address 

the issue of exacerbated label ambiguity caused by directly using information from can-

didate labels, we introduce CPGM and WCLM. In PIWCL, CPGM and WCLM work 

collaboratively. CPGM effectively enhances the classifier's ability to judge ambiguous 

labels in candidate labels, helping the model better distinguish positive and negative 

sample pairs to facilitate the effective training of WCLM. Additionally, it accelerates 

the model's convergence in the early training stages. Meanwhile, WCLM leverages 

contrastive learning to generate more compact representations. By employing a re-

weighting strategy, it avoids confusion among ambiguous class labels. This approach 

optimizes the decision boundary between positive and negative sample pairs, resulting 

in more accurate class prototypes. Experimental results demonstrate that our method is 

effective on benchmark datasets. 
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